1. Two moles of helium gas are placed in a cylindrical container with a piston. The gas is at room temperature 27 °C and under a pressure of 2.5-105 Pa. When the pressure from the outside is decreased, while keeping the temperature the same as the room temperature, the volume of the gas doubles. Use that the gas constant R= 8.31 J/(mol K). Think: What kind of process is this? Isobaric, isothermal, adiabatic, isochoric or non-quasi-static? (a) Find the work the external agent does on the gas in the process. Wext agent (b) Find the heat exchanged by the gas and indicate whether the gas takes in or gives up heat. Assume ideal gas behavior. Q= VJ Q is realeased by gas Q is absorbed by the gas To O D O A YOUR

Answers

Answer 1

In this problem, we have a system of two moles of helium gas in a cylindrical container with a piston. The gas is initially at room temperature and under a certain pressure. The pressure from the outside is decreased while keeping the temperature constant, resulting in the doubling of the gas volume.
We need to determine the type of process (isobaric, isothermal, adiabatic, isochoric, or non-quasi-static) and calculate the work done by the external agent on the gas and the heat exchanged by the gas.

The process described in the problem, where the pressure is decreased while keeping the temperature constant, is an isothermal process. In an isothermal process, the temperature remains constant, and the ideal gas law can be used to relate the pressure, volume, and number of moles of the gas.

(a) The work done by the external agent on the gas in an isothermal process can be calculated using the equation: W = -nRT * ln(Vf/Vi), where W is the work, n is the number of moles of gas, R is the gas constant, T is the temperature, and Vf and Vi are the final and initial volumes, respectively. In this case, the volume doubles, so Vf/Vi = 2. Plugging in the values, we can calculate the work done by the external agent on the gas.
(b) In an isothermal process, the heat exchanged by the gas is equal to the work done on the gas. Since the work done by the external agent is negative (as the gas is compressed), the heat exchanged by the gas is also negative. This means that the gas gives up heat to the surroundings. The magnitude of the heat exchanged is equal to the magnitude of the work done.

By calculating the work done by the external agent on the gas and determining the heat exchanged, we can find the answers to parts (a) and (b) of the problem.
Learn more about Heat Exchange from the given link:
https://brainly.com/question/13088479
#SPJ11


Related Questions

If equal amounts of heat are added to two containers of water and the resultant temperature change of the water in one container is five times that of the water in the other container, then what can you say about the quantities of water in the containers? O The container with five times the temperature change contains one-fifth as much water. O The container with five times the temperature change contains twenty-five times as much water. O The container with five times the temperature change contains five times as much water. O The quantities of water in the two containers are equal.

Answers

The container with five times the temperature change contains one-fifth as much water.

It is to be determined what can be said about the quantities of water in the containers if equal amounts of heat are added to two containers of water and the resultant temperature change of the water in one container is five times that of the water in the other container. So, the answer is "The container with five times the temperature change contains one-fifth as much water."

Let the amount of water in one container be W1, and that in the other be W2 and let the temperature increase be T1 and T2 respectively.

The specific heat capacity of water is the same for both containers.

Let the amount of heat added be Q1 and Q2.

Q1 = Q2, T1 = 5T2.

So, W1 × T1 = Q1 = Q2 = W2 × T2W1 × 5T2 = W2 × T2W1/W2 = 1/5

Therefore, the container with five times the temperature change contains one-fifth as much water.

Learn more about specific heat capacity here:

https://brainly.com/question/28302909

#SPJ11

determine the magnitude of the forces P for which the deflection is
zero at end A of the beam. Use E 5 29 3 106 psi.

Answers

A beam is subjected to forces that cause deflection. This question requires the determination of the magnitude of forces P for which the deflection is zero at end A of the beam.The beam is considered as an engineering structure that is designed to support loads.

Its capacity to support loads is dependent on its structure, including its materials, cross-sectional area, and length. In the context of mechanical engineering, the maximum stress that a material can withstand before it yields is known as yield stress. It's a significant design consideration for beams.The problem statement indicates that the deflection is zero at end A of the beam.

Therefore, a point load is considered at point B on the beam to obtain the magnitude of the forces P. The beam's dimensions and other essential parameters have been supplied in the image below. The problem-solving approach entails applying the formula for the deflection of a beam due to a point load and utilizing the result to determine the value of P. The equation to use here isδ = PL^3/3EI

Whereδ = deflection

P = Force

L = Length

E = Modulus of Elasticity

I = Moment of Inertia

The Moment of Inertia for a rectangular beam is given by:

I = (bh^3)/12Whereb is the width h is the height

Substituting the given values of length, modulus of elasticity, width, height, and the moment of inertia into the deflection equation provides a value of P that can be solved. Here's the calculation for P:P = (3 x EI x 0)/L^3The formula for the moment of inertia for a rectangular beam is:I = (bh^3)/12

The height of the beam (h) is equal to 3 in and the width (b) is equal to 4 in.

I = (4 x 3^3)/12

I = 27/4

Substituting the values for the moment of inertia, length, and modulus of elasticity results in:

P = 0 P is the magnitude of the forces required to produce zero deflection at point A of the beam. This indicates that the beam can withstand any load up to and including this force without deflecting. The engineering structure's maximum capacity is equal to this force. Therefore, the maximum load the beam can support is P.

To know more about determination visit :

https://brainly.com/question/29898039

#SPJ11

What are cond to the largest potential enero Nond Help? 17. 1-/1 Points DETAILS SERPSE 10 28.A.OP.027.MI. MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER A partide with positive charge -1.75*10cmoves with a velocity v1.-) / through a region where born a uniform magnetic field and a uniform electne nederst Chote che total force on the moving ortice, takong 8 -44.5+ Tand --- Vm Give your answers in for each component) - what ng does the force vector more with the positive X-7 (ve your answer in degree counterdockwise from the #xaxis.) Interdeckwise from the to what in for what vector electric field would the total force on the partice be wrow your answers in Wim for each component.) W W/m Need Help 1 in 2 DET

Answers

The force vector makes an angle of θ = 135° with the positive x-axis in the counterclockwise direction. The electric field vector that would result in the total force on the particle is given by E = Ex i + Ey j = [25.4 × 10-6 + v1.-) / 1.75] i.

A particle with positive charge -1.75 x 10C moves with a velocity v1.-) / through a region where born a uniform magnetic field and a uniform electric field.

The total force on the moving particle is 8 -44.5+ T and --- Vm and need to find the force vector on the positive x-7 and electric field that would result in the total force on the particle.

Solution: The total force on the moving particle, F = 8 - 44.5 + T, q = 1.75 x 10C, v = v1.-).

The force on a moving charged particle due to magnetic field is given by Fm = q v × B.

The force is perpendicular to both the velocity and the magnetic field vectors.

Thus, the force vector makes an angle of θ = 135° with the positive x-axis in the counterclockwise direction.

The magnetic field vector B is perpendicular to the force vector and to the velocity vector.

The total force on the particle is given by F = Fm + Fe, where Fm is the force due to the magnetic field and Fe is the force due to the electric field.

Therefore, Fe = F - Fm = 8 - 44.5 + T - q v × B.

The force on a moving charged particle due to electric field is given by Fe = qE, where E is the electric field vector.

The electric field vector E that would result in the total force on the particle is therefore given by E = Fe / q = (8 - 44.5 + T - q v × B) / q.

The electric field vector E has two components along the x-axis and y-axis.

The x-component is given by Ex = E cosθ and the y-component is given by Ey = E sinθ.

Therefore, Ex = [8 - 44.5 + T - q v B cosθ] / q = [8 - 44.5 + (- 1.75 × 10 C) × v1.-) × ( - 44.5 × 10-6 T) cos135°] / (1.75 × 10-6 C) = (44.5 × 10-6 + 1.75 × 10-6 × v1.-) / 1.75 = 25.4 × 10-6 + v1.-) / 1.75

The y-component is given by Ey = E sinθ = [8 - 44.5 + T - q v B sinθ] / q = [8 - 44.5 + (- 1.75 × 10 C) × v1.-) × ( - 44.5 × 10-6 T) sin135°] / (1.75 × 10-6 C) = 0 N/C.

Thus, the electric field vector that would result in the total force on the particle is given by E = Ex i + Ey j = [25.4 × 10-6 + v1.-) / 1.75] i.

To know more about force vector refer to:

https://brainly.com/question/1489378

#SPJ11


Obtain Root Locus plot for the following open loop system:
() =
+ 3
( + 5)( + 2)( − 1)
For which values of gain K is the closed loop system stable?

Answers

The values of gain K for which the closed-loop system is stable cannot be determined without plotting the Root Locus.

To obtain the Root Locus plot for the given open-loop system, we need to determine the poles and zeros of the system and then plot the loci of the roots as the gain K varies.

The given open-loop transfer function is:

G(s) = K(s + 3) / ((s + 5)(s + 2)(s - 1))

The poles of the system are the values of 's' that make the denominator of the transfer function equal to zero. So, we have poles at s = -5, s = -2, and s = 1.

The zeros of the system are the values of 's' that make the numerator of the transfer function equal to zero. In this case, there is a zero at s = -3.

To find the values of gain K for which the closed-loop system is stable, we need to determine the regions of the Root Locus plot that lie on the left-hand side of the complex plane. In other words, the regions where the number of poles to the right of a point is an odd number. From the given transfer function, we can see that there are three poles at s = -5, s = -2, and s = 1. Therefore, the Root Locus plot will start from these three poles and extend towards infinity. To find the breakaway and break-in points on the Root Locus plot, we can perform calculations and analysis using the characteristic equation. However, since the calculations are involved and require step-by-step analysis, it is best to refer to a graphical representation of the Root Locus plot. Please refer to a Root Locus plot software or tool to obtain the complete Root Locus plot for the given open-loop system. The plot will show the regions of stability and the values of gain K for which the closed-loop system is stable.

To learn more about Root Locus plot , Click here:

https://brainly.com/question/32148714

#SPJ11

Assuming a nuclear meltdown unfortunately occurs in Daya Bay nuclear power plant on 1 Jan 2050 and due to this accident the total amount of radioactive cesium-137 released into the air in 30 days is 5.5 × 1018 Bq.

Hong Kong is about 50 km from Daya Bay nuclear power plant. If this accident occurs during a windy season, the cesium-137 could spread out further in a shape of a much bigger cylinder with a height of 12 km. It is assumed that the spreading just reaches Hong Kong on the 30th day after the accident. Find Hong Kong’s average radioactivity in Bq/m3 of the released cesium-137 due to this nuclear disaster.

Answers

The average radioactivity in Hong Kong due to the nuclear disaster in Daya Bay nuclear power plant is approximately 4.79 × [tex]10^8[/tex] Bq/m³ of cesium-137.

In order to calculate the average radioactivity in Hong Kong, we need to consider the volume of the cylinder-shaped area where the cesium-137 has spread. The volume of a cylinder is calculated by multiplying its base area by its height. Assuming the spread of cesium-137 forms a cylinder with a height of 12 km, we need to determine the base area.

Given that Hong Kong is approximately 50 km away from the nuclear power plant, we can consider the area of a circle with a radius of 50 km as the base area of the cylinder. The formula to calculate the area of a circle is A = πr², where A is the area and r is the radius.

Substituting the values, we get A = 3.14 × (50 km)² = 7850 km².

Now, we multiply the base area by the height of the cylinder to obtain the volume: V = 7850 km² × 12 km = 94,200 km³.

To find the average radioactivity in Hong Kong, we divide the total amount of cesium-137 released ([tex]5.5 × 10^18 Bq[/tex]) by the volume of the cylinder (94,200 km³) and convert the units to Bq/m³: ([tex]5.5 × 10^18 Bq[/tex]) / (94,200 km³ × 1,000,000,000 m³/km³) = [tex]4.79 × 10^8 Bq/m³[/tex].

Therefore, the average radioactivity in Hong Kong due to the nuclear disaster is approximately [tex]4.79 × 10^8 Bq/m³[/tex] of cesium-137.

Learn more about radioactivity

brainly.com/question/31865009

#SPJ11

Laplace Transform problem (20 points) 1) Transform the circuit to the Laplace domain 2) Find the expression for current \( I_{S}(s) \) in the Laplace domain (no need to do the inverse Laplace transfor

Answers

1) Transform the circuit to the Laplace domain In the circuit given, I is the current flowing through the inductor and R1 and R2 are the resistance of the resistors. V is the voltage across the inductor.

The given circuit can be transformed into the Laplace domain by applying the basic formulae.

Using Ohm's Law, V = IRi.e., I

= V/R

Substituting R1 + R2 as R, we get I

= V/R ...(1)The voltage V across the inductor L is given by:

L(di/dt) + Ri = V => L(di/dt) = V - Ri

Now, taking Laplace transform on both sides, we get:

L(sI(s) - i(0)) + R(I(s))

= V(s)

=> I(s)

= [V(s) + Li(0)]/[sL + R]

Thus, the transformed circuit in Laplace domain is as follows:

2) Find the expression for current \(I_{S}(s)\) in the Laplace domain (no need to do the inverse Laplace transform)

By Kirchoff's Current Law, I1 + I2 = I

where I1 is the current passing through the resistor R1 and I2 is the current passing through the resistor R2 and I is the current passing through the inductor L.

We can use Ohm's Law to represent I1 and I2 in terms of voltage V across the inductor and R1 and R2 respectively.

Substituting the values of I1 and I2 in the above equation, we get V/R1 + V/R2 = I(s)Now, substituting the value of V from above, we get:

I(s) = V/R

= L(di/dt + I(s))/R1 + L(di/dt + I(s))/R2

=> I(s)

= [sL + (R1 + R2)]/[s^2L + s(R1 + R2)]

To know more about circuit visit :

https://brainly.com/question/12608516

#SPJ11

the operating speed of a fluid power system is adjusted by the ____.

Answers

The operating speed of a fluid power system is adjusted by the flow control valve. Flow control valves are used in fluid power systems to adjust the speed of actuator operations. They function by limiting the flow of fluid in the system.

They also act as a pressure regulator, ensuring that the actuator receives only the fluid it requires to execute its task. The fluid flow in a hydraulic system can be adjusted or regulated using a flow control valve. The flow control valve, or metering valve, is a device that regulates the speed of fluid flow to the actuator. It is used in a variety of hydraulic systems, from braking systems to production line machinery.

The flow control valve is a critical component in a hydraulic system. It is a simple device that regulates fluid flow. It regulates the speed of fluid flow through the system to maintain the desired speed of actuator movement. This guarantees that the actuator does not move too quickly or too slowly and that the system is efficient and reliable.

To know more about fluid power system, refer

https://brainly.com/question/14967131

#SPJ11

while a variety of factors can produce redshifts in the spectrum, the one associated with the expansion of the universe is called:\

Answers

The one associated with the expansion of the universe is called cosmological redshift.

Cosmological redshift is the increase in the wavelength of photons as they travel through space due to the expansion of the universe. This redshift occurs as the universe expands, causing the galaxies and other celestial objects to move away from each other.

The term redshift refers to the fact that as light moves away from us, its wavelength becomes longer, and it appears redder. The amount of redshift observed for distant galaxies is directly proportional to their distance from us and is due to the expansion of the universe.

Cosmological redshift is caused by the expansion of the universe and is one of the most important discoveries of modern cosmology. It provides evidence that the universe is expanding and has been doing so for billions of years.

To know more about cosmological redshift please refer to:

https://brainly.com/question/31459437

#SPJ11

3 marks Question 7 One of the most important concepts in particle physies is conservation laws'. These describe certain properties of a system that do not change when a physical process or interuction (like beta - decay or beta + decay) takes place A radionuclide decays by a beta positive decay when a proton transmutates into a neutron and a positron and a neutrino. p^n + B +v a) What is the baryon number and electronic lepton number (L) of the neutron? Lepton number (1) A B С D Mule Baryon number B 1 1/3 0 1 0 1 0 1 mark

Answers

The baryon number and electronic lepton number (L) of the neutron are 1 and 0, respectively. The baryon number and electronic lepton number (L) of the neutron are 1 and 0, respectively.

What is the baryon number and electronic lepton number (L) of the neutron?

The baryon number (B) is a quantity that is preserved in all strong interactions and is given by: B = 1/3 (Nq − N¯q) where Nq and N¯q are the number of quarks and antiquarks, respectively. The neutron is a baryon, which means it consists of three quarks. Since there are no antiquarks in the neutron, Nq = 3 and N¯q = 0. Therefore, the baryon number of the neutron is B = 1/3 (Nq − N¯q) = 1.Electronic lepton number (L) is defined as the difference between the number of leptons (electrons, muons, and tau particles) and the number of antileptons in a system. Since the neutron does not contain any leptons or antileptons, its electronic lepton number is zero (L = 0).

to know more about baryon number visit:

https://brainly.com/question/1580934

#SPJ11







Question 11 In a DC circuit Ohm's law can be applied to: (a) Resistors (b) Voltage sources (c) Inductors (d) Capacitors O (a), (c), and (d) O (a) and (b) all only (a)

Answers

In a DC circuit, Ohm's law can be applied to resistors.

What is Ohm's Law?

Ohm's Law is a law in physics that establishes a relationship between electric current, voltage, and resistance in an electric circuit. Georg Simon Ohm first proposed this in 1827. This law applies to direct current (DC) circuits and is utilized to find out about the behavior of electrical circuits.

There are three main factors to remember when it comes to Ohm's law; current, resistance, and voltage. Ohm's law states that the current through a conductor between two points is directly proportional to the voltage across the two points and inversely proportional to the resistance between them. The three parts of this equation are:

I = Current (in amperes) V = Voltage (in volts) R = Resistance (in ohms)

Hence, in a DC circuit Ohm's law can be applied to resistors only.

learn more about Ohm's law here

https://brainly.com/question/14296509

#SPJ11

the gold foil experiment performed in rutherford's lab ________.

Answers

The gold foil experiment, conducted by Ernest Rutherford in 1911, provided evidence for the existence of a compact, positively charged nucleus within the atom.

The gold foil experiment, also known as the Rutherford scattering experiment, was conducted by Ernest Rutherford in 1911. Rutherford aimed to investigate the structure of the atom and the distribution of positive charge within it.

In the experiment, Rutherford used a beam of alpha particles, which are positively charged particles, and directed them towards a thin sheet of gold foil. The prevailing model at the time suggested that atoms were composed of a diffuse positive charge with electrons scattered throughout, so Rutherford expected the alpha particles to pass through the gold foil with minimal deflection.

However, the results of the experiment were surprising. Rutherford observed that some of the alpha particles were deflected at large angles, and a few even bounced back. This indicated that the positive charge of the atom was concentrated in a small, dense region called the nucleus, while the majority of the atom was empty space.

The gold foil experiment provided evidence for the existence of a compact, positively charged nucleus within the atom. It revolutionized the understanding of atomic structure and led to the development of the modern model of the atom, with electrons orbiting the nucleus.

Learn more:

About gold foil experiment here:

https://brainly.com/question/730256

#SPJ11


tIs it correct that the larger the gate length the lower the
leakage?

Answers

Yes, it is correct that the larger the gate length, the lower the leakage because in MOSFET, the leakage current through the gate oxide increases as the gate length decreases, increasing the gate length decreases the leakage current.

For MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), when the gate oxide is thin, the gate leakage current increases and the MOSFET has less threshold voltage (VT). So, when the MOSFET's gate length reduces, the gate oxide thickness is less, and that leads to an increase in gate oxide leakage. Gate leakage can have a significant impact on power dissipation and performance in VLSI (Very Large-Scale Integration) circuits.

Therefore, minimizing gate leakage is crucial. By increasing the gate length of MOSFETs, gate oxide leakage can be reduced. Thus, the larger the gate length, the lower the leakage, making it possible to minimize power dissipation and boost performance in VLSI circuits. In conclusion, it is correct that the larger the gate length, the lower the leakage.

Learn more about MOSFET at:

https://brainly.com/question/33293779

#SPJ11

One arm of a U-shaped tube (open at both ends) contains water, and the other alcohol. If the two flulds meet at exactly the bottom of the U, and the alcohol is at a height of 16.0 cm, at what height will the water be? Assume pulrikil =0.790 ×10 3kg/m 3
Express your answer with the appropriate units. X Incorrect; Try Again; 5 attempts remaining

Answers

The height of the water is found using the principle of communicating vessels. The principle of communicating vessels is a concept of fluid mechanics that states that any fluid in a container will attempt to find its level, and the pressure is the same at all points that are at the same height from the liquid's surface.

When the two fluids are joined together in a U-shaped tube, they will form a single column with the same height in both arms. Therefore, the height of the water can be determined using the following steps:Let the height of the water column be 10 meters.

Let the density of water be w and the density of alcohol be a. The pressure at the bottom of the U-shaped tube is the same on both sides. wgh = agh + Patm Where Patm is the atmospheric pressure, g is the acceleration due to gravity (9.8 m/s2), and h is the height of the water column.

ρw = 1000 kg/m³ and

a = 790 kg/m3.

Substituting these values into the above equation, we get:h = (ρa / ρw) * 16.0 cm

= (790 kg/m³ / 1000 kg/m³) * 0.16 m

= 0.1264 m

Therefore, the height of the water column is 0.1264 meters, or 12.64 centimeters. Answer: 12.64 cm.

To know more about fluid mechanics, visit:

https://brainly.com/question/31027486

#SPJ11

Image transcription text[-/9 Points]
DETAILS
SERCP11 16.1.OP.006. 0/5 Submissions Used
The figure below shows a small, charged bead, with a charge of q = +45.0 nC, that moves a distance of d = 0.179 m from point A to point B In the presence of a uniform electric field E of magnitude 270 N/C, pointing rig
(a) What Is the magnitude (in N) and direction of the electric force on the bead?
magnitude
N
direction
-Select-
(b) What is the work (in ]) done on the bead by the electric force as it moves from A to B?
(c) What is the change of the electric potential energy (in ]) as the bead moves from A to 8? (The system consists of the bead and all its surroundings.)
PE - PEA =
(d) What is the potential difference (in V) between A and B?
V8 - VE
Need Help?
Read It... Show more

Answers

(a) Magnitude and direction of the electric force is 12.15 µN, (b) Work done by the electric force is 2.18 µJ,(c) Change of the electric potential energy is (45.0 nC)ΔV,(d)the potential difference is 48.33 V.

(a) The magnitude of the electric force on the bead can be calculated using the formula F = qE, where F is the force, q is the charge, and E is the electric field.

F = (45.0 nC)(270 N/C) = 12.15 µN

(b) The work done on the bead by the electric force can be calculated using the formula W = Fd, where W is the work, F is the force, and d is the distance.

W = (12.15 µN)(0.179 m) = 2.18 µJ

(c) The change in electric potential energy can be calculated using the formula ΔPE = qΔV, where ΔPE is the change in potential energy, q is the charge, and ΔV is the change in electric potential.

ΔPE = (45.0 nC)ΔV

(d) The potential difference between points A and B can be calculated using the formula ΔV = EΔd, where ΔV is the potential difference, E is the electric field, and Δd is the distance.

ΔV = (270 N/C)(0.179 m) = 48.33 V

To learn more about potential

https://brainly.com/question/24142403

#SPJ11

To check the radius of a railroad curve, the effect of 20 lb weight is observed to be 20.7 lbs on a spring scale suspended from the rood of an experimental car rounding the curve at 40 mph. What is the radius of the curve in ft.

Answers

The radius of the railroad curve is approximately 2551 ft.

The radius of the railroad curve is approximately 2551 ft.

The effect of 20 lb weight is observed to be 20.7 lbs on a spring scale suspended from the road of an experimental car rounding the curve at 40 mph.

To determine the radius of the railroad curve in ft. The force exerted on the object can be defined as, F = mature, the force exerted on the object is given by, F = 20.7 - 20 = 0.7lbs.

The object is undergoing circular motion, so its acceleration can be defined as,

a = v² / rWhere,v = velocity of the object = radius

the velocity of the object is 40 mph,

40 * 1.47 = 58.8 ft/substituting the values of F, a, and v

the above equation,0.7 = (58.8)² / rr = (58.8)² / 0.7r ≈ 2551 ft.

To know more about railroad curve please refer to:

https://brainly.com/question/31111591

#SPJ11

off In the forward active region, the bipolar transistor exhibits an exponential relationship between base-emitter voltage Select one: True False In order to increase the gain of a common emitter amplifier, we have to reduce the output imp Select one: True False

Answers

1. In the forward active region, the bipolar transistor exhibits an exponential relationship between base-emitter voltage. This statement is true.

2. In order to increase the gain of a common emitter amplifier, we have to reduce the output impedance. This statement is false.

1. True. In the forward active region of operation, the bipolar transistor follows an exponential relationship between the base-emitter voltage (VBE) and the collector current (IC). This relationship is described by the exponential term in the Shockley diode equation, which governs the behavior of the base-emitter junction in the transistor.

In order to increase the gain of a common emitter amplifier, we have to reduce the output impedance.

2. False. To increase the gain of a common emitter amplifier, it is more common to focus on increasing the input impedance, maximizing the transconductance, and optimizing the load impedance. Reducing the output impedance alone does not directly affect the gain of the amplifier. The gain is primarily determined by the transistor's characteristics, biasing, and the overall circuit design.

To learn more about, bipolar transistor, click here, https://brainly.com/question/31052620

#SPJ11

A spherically symmetric charge distribution has a charge density rhoo = rhoo e^r/r. Use Gauss's law to determine E-field at any point.

Answers

To discover the electric field in a spherically symmetric charge distribution, we connected Gauss's law and found that the E-field is given by (2ρ₀) / (ε₀r²), where ρ₀ is the charge density and r is the distance from the origin.

How to determine E-field at any point using Gauss's law

To calculate the electric field (E-field) at any point in a spherically symmetric charge distribution with a charge density of [tex]ρ₀e^{(-r/r₀)}[/tex], we will utilize Gauss's law. Gauss's law states that the electric flux through a closed surface is rise to the full charge enclosed divided by the permittivity of free space (ε₀).

Let's consider a Gaussian surface within the shape of a circle centered at the beginning with sweep r. The E-field will have radial symmetry, indicating radially outward or internal at each point on the surface.

To begin with, we got to calculate the whole charge encased inside the Gaussian surface. The charge thickness ρ(r) is given by[tex]ρ₀e^{-r/r₀)}.[/tex]

The charge encased is:

Q_enclosed = ∫ρ(r) dV

Since the charge distribution is spherically symmetric, ready to express the charge encased as:

Q_enclosed = 4π∫ρ(r) r² dr

Substituting the given charge thickness [tex]ρ(r) = ρ₀e^{(-r/r₀)}[/tex], we have:

Q_enclosed = [tex]4πρ₀ ∫e^{(-r/r₀)} r² dr[/tex]

To assess this necessarily, we will make a substitution: u = -r/r₀, du = -dr/r₀. The limits of integration alter appropriately: when r = 0, u = 0, and when r → ∞, u → -∞.

The necessary get to be:

Q_enclosed = [tex]-4πρ₀r₀³ ∫e^{(u)} u² du[/tex]

Integrating this expression gives:

Q_enclosed = [tex]-4πρ₀r₀³ [e^{(u)}(u² + 2u + 2) / r₀³][/tex]assessed from to -∞

Simplifying further, we have:

Q_enclosed = [tex]-4πρ₀r₀³ [lim(u → -∞) e^{(u)}(u² + 2u + 2) / r₀³ - e^{0}(0² + 2(0) + 2) / r₀³][/tex]

Since e^(-∞) approaches zero, the primary term within the brackets gets to be zero.

Q_enclosed = (-4πρ₀r₀³) (0 - 2/r₀³) = (8πρ₀r₀³ / r₀³) = 8πρ₀

Presently, ready to decide on the electric field at any point utilizing Gauss's law:

E = Q_enclosed / (4πε₀r²)

Substituting the value of Q_enclosed, we get:

E = 8πρ₀ / (4πε₀r²) = 2ρ₀ / ε₀r²

Hence, the electric field in a spherically symmetric charge distribution was found to be given by (2ρ₀) / (ε₀r²), where ρ₀ is the charge density and r is the distance from the origin.

Learn more about the electric field here:

https://brainly.com/question/19878202

#SPJ4

Two independent single phase semiconverters are supplying the armature and field circuits of a separately excited dc motor for controlling its speed. The firing angle of the converter supplying the field adjusted such that maximum field current flows. The machine parameters are armature resistance = 0.25 2, field circuit resistance 147 , motor voltage constant K = 0.7032 V/A *rad/s. The load torque is T = 45 Nm at 1000 rpm. The converters are fed from a 208 V, 50 Hz ac supply, and the friction and windage losses are neglected. The = m. 1032V/4 e ind inductance of the field and armature circuits is sufficient to make the armature and field current continuous and ripple free. Determine (a) The field current (b) The delay angle of the armature converters (c) The input power factor of armature circuit converters.

Answers

(a) Field current is calculated as;If = V/ff Rfwhere, V

= 208 V (supply voltage)ff

= 50 Hz (supply frequency)Rf

= 147 Ω (field circuit resistance)Therefore,If

= 208/50*147

= 0.282 A(b) The motor voltage equation is given by,Ea

= KφNwhere,Ea

= V - Ia Raφ is fluxN is the speedK

= 0.7032 V/A rad/sIa

= V1 / Rawhere V1 is the converter output voltage.Rearranging these equations,φ

= (Ea - V1) / KIa

= V1 / RaEa

= KφN + Ia RaV - V1

= KφN + V1 / Ra Ra∴ V1

= (V - KφN Ra ) / (1 + Ra ).

Where,V = 208 VK = 0.7032 V/A rad/sRa

= 0.25 ΩN = 1000 rpm

= 2πN / 60 rad/s≈ 104.67 rad/s Substituting all these values,V1

= (208 - 0.7032 * φ * 104.67 * 0.25) / (1 + 0.25)

= 31.79φHence, Ia

= V1 / Ra

= 31.79/0.25

= 127.16 A The power input to the armature circuit,P

= V1 Ia cos (α)
= 31.79 * 127.16 cos(α)

The load torque TL = 45 Nm
So, α = cos⁻¹ (TL / KIaN)
α = cos⁻¹ (45 / 0.7032 * 127.16 * 104.67)
α = 47.23°(c) The input power factor of armature circuit converters is given as:
PF = cos (α) = cos (47.23°)

= 0.68.
Therefore, the power factor of the armature circuit converters is 0.68.

To know more about voltage visit:-

https://brainly.com/question/30466448

#SPJ11



Find solutions for your homework

science

physics

physics questions and answers

substitute known quantities and solve for the unknown quantity. (cont.) solving ohm's law for the instantaneous current gives (175 v)sin(55лt) r and substituting known values gives i = ¡ = = av r = av (175 v)sin(55лt) r = r -3 (175 v)sin 55(4.30 × 10 s)] = 0.423 a. 280 ω -3 the unknown quantity to be determined in part (e) is the instantaneous power

This problem has been solved!

You'll get a detailed solution from a subject matter expert that helps you learn core concepts.

See Answer

Question: Substitute Known Quantities And Solve For The Unknown Quantity. (Cont.) Solving Ohm's Law For The Instantaneous Current Gives (175 V)Sin(55лt) R And Substituting Known Values Gives I = ¡ = = Av R = Av (175 V)Sin(55лt) R = R -3 (175 V)Sin 55(4.30 × 10 S)] = 0.423 A. 280 Ω -3 The Unknown Quantity To Be Determined In Part (E) Is The Instantaneous Power



Show transcribed image text

Expert Answer

100% 

Given Current I = 0.4…

View the full answer



Transcribed image text: 

Substitute known quantities and solve for the unknown quantity. (cont.) Solving Ohm's law for the instantaneous current gives (175 V)sin(55лt) R and substituting known values gives i = ¡ = = Av R = Av (175 V)sin(55лt) R = R -3 (175 V)sin 55(4.30 × 10 S)] = 0.423 A. 280 Ω -3 The unknown quantity to be determined in part (e) is the instantaneous power dissipated by the resistor when t = 4.30 x 10 s. The instantaneous power dissipated by the resistor is given by P = i²R. What instantaneous power is dissipated by the resistor at t = 4.30 × 10¯ s? -3 X Incorrect. Substitute the instantaneous current and resistance into the power equation. W Submit Skip (you cannot come back)

Answers

Answer: The instantaneous power dissipated(P) by the resistor when t = 4.30 x 10 s is 0.05 W.

The instantaneous power dissipated by the resistor(r) when t = 4.30 x 10 s is P = i²R. Current(i) Therefore, substituting the given values will give: P = (0.423 A)² × 280 ΩP = 0.05 W.

To know more about resistor visit:

https://brainly.com/question/30611906

#SPJ11








215 The radioactive nuclide 335 Bi decays into 315 Po. (a) Write the nuclear reaction for the decay process. (b) Which particles are released during the decay.

Answers

The nuclear reaction for the decay process of the radioactive nuclide 335 Bi is  335Bi →  315Po + α, where α represents an alpha particle. The alpha particle is released during the decay process.

A nuclide is said to be radioactive if it is unstable and it tends to decay to become more stable. During the decay process, the nuclide will release particles. Alpha decay is one of the types of radioactive decay where a nucleus emits an alpha particle consisting of two protons and two neutrons.

The nuclear reaction for the decay process is given as 335Bi →  315Po + α.

The alpha particle is represented by α. During the decay process, the nuclide 335 Bi releases an alpha particle to become a more stable nuclide 315 Po. The alpha particle released during the decay is composed of two protons and two neutrons. Therefore, the particles released during the decay of the radioactive nuclide 335 Bi into 315 Po is an alpha particle.

Learn more about decay process here:

https://brainly.com/question/32391915

#SPJ11

Design series inverter :- supplies a maximum load current (1 A) passing through load resistance (150 ohm) with frequency 400 HZ, if Tyristor turn off, time is 25 u sec.

Answers

Design series inverter: supplies a maximum load current of 1 A, which flows through a load resistance of 150 ohm at a frequency of 400 Hz. When the Thyristor is turned off, the time is 25 microseconds (us).

An inverter is a circuit that converts a direct current (DC) source to an alternating current (AC) source. An inverter converts direct current (DC) to alternating current (AC). An inverter is used to power appliances, machinery, and other electrical equipment in remote areas or places where electricity is inaccessible.

In a series inverter, the load is connected in series with the thyristor. A voltage is applied to the load through a capacitor and an inductor when the thyristor is switched on. The capacitor is used to store energy, while the inductor is used to create a magnetic field. The inductor and capacitor combination creates a resonant circuit that allows for a current to flow through the circuit, which is then fed into the load.

The thyristor is then turned off, and the current is allowed to flow through the inductor and the load. The inductor's stored energy is released in the form of a current pulse, which is used to power the load. When the current is no longer needed, the circuit is broken by turning the thyristor back on. This is how a series inverter works.

The maximum load current is 1 A in this particular circuit, and it flows through a load resistance of 150 ohm at a frequency of 400 Hz. When the Thyristor is turned off, the time is 25 microseconds (us).

Learn more about direct current (DC): https://brainly.com/question/31609186

#SPJ11

_________________is a electromechanical device that performs
the same function as a fuse and in addition acts as a switch.
_______________is a device that changes or transforms
alternating current (AC

Answers

An electromechanical device that performs the same function as a fuse and acts as a switch is known as a circuit breaker. A transformer is a device that changes or transforms alternating current (AC) to direct current (DC) or vice versa.

A circuit breaker is a type of electrical switch that automatically interrupts the electrical circuit in the event of a short circuit, overload, or a fault. In addition, the circuit breaker can be manually tripped to switch off the electrical circuit.

Circuit breakers are commonly found in residential, commercial, and industrial electrical systems. They are more convenient than fuses since they can be reset rather than having to replace them when they fail. A circuit breaker has two main components: a current sensor and a contact system. When an abnormal current flows through the circuit breaker, the current sensor senses the current, and the contact system interrupts the flow of current.In electrical engineering, a device that changes or transforms alternating current (AC) to direct current (DC) or vice versa is known as a transformer. It works on the principle of electromagnetic induction. It has two windings, primary and secondary, that are wrapped around a magnetic core.

When AC current flows through the primary winding, it produces a varying magnetic field that induces a voltage in the secondary winding. The transformer can increase or decrease the voltage level in the secondary winding based on the number of turns in the primary and secondary windings. The transformer is an essential component of electrical power transmission and distribution systems.

A circuit breaker is an electromechanical device that performs the same function as a fuse and in addition acts as a switch.

To know more about electromechanical visit:

https://brainly.com/question/13257554

#SPJ11

Question 1: Identify the period (in seconds) and the frequency (in Hertz) of the waveforms given below, which are present in various Power Electronics circuits. A plot of the output voltage wave form

Answers

The waveform given below indicates a square waveform with a period of 10 ms and a frequency of 100 Hz. Waveforms of this type are commonly used in power electronics circuits.

A power electronic circuit is a circuit that is responsible for managing the power of an electrical system. They are commonly used in various devices such as electric vehicles, inverters, and power supplies. Power electronics have various advantages such as improved energy efficiency, reduced emissions, and reduced weight/power requirements.\

The above waveform represents a square wave with a period of 10 ms and a frequency of 100 Hz. This waveform is used to convert DC voltage into AC voltage using pulse-width modulation. In this method, the width of the square wave is varied to control the output voltage.

A high output voltage corresponds to a wide pulse, while a low output voltage corresponds to a narrow pulse. This method is used to create an AC waveform of variable frequency and amplitude.

Finally, power electronics have numerous applications in various industries, and they play an essential role in managing the power in electrical systems.

To learn more about frequency visit;

https://brainly.com/question/29739263

#SPJ11

Determine the values of \( h(n) \) for linear phase low-pass FIR filter with 11 taps and a cut-off frequency of \( 0.22 \) pi radians using the frequency sampling method. \[ H_{k} \text { at } \Omega_

Answers

A linear phase low-pass FIR filter with 11 taps and a cut-off frequency of \(0.22 \pi\) radians can be created using the frequency sampling method. This can be accomplished by using the following steps:1. Determine the ideal frequency response of the filter[tex]\(H_{d}(e^{j \Omega})\)2.[/tex]

Determine the impulse response of the filter\(h(n)\)3. Determine the frequency response of the filter using the impulse response\(H(e^{j \Omega})\)4. Determine the desired frequency response of the filter\(H_{k}\)5. Determine the values of the impulse response of the filter\(h(n)\) using the inverse Fourier transform of \(H_{k}\)The ideal frequency response of the filter is determined by the equation\[tex](H_{d}(e^{j \Omega}) = \begin{cases}1, &0 \leq \Omega \leq \Omega_{c}\\0, &\Omega_{c} \leq \Omega \leq \pi\end{cases}\)where \(\Omega_{c} = 0.22 \pi\) radians.[/tex]

The desired frequency response of the filter can be determined by sampling the ideal frequency response at equally spaced frequencies:\(H_{k} = H_{d}(e^{j \frac{2 \pi}{N} k})\)The values of the impulse response of the filter can be found by taking the inverse Fourier transform of the desired frequency response:\(h(n) = \frac{1}{N} \sum_{k=0}^{N-1} H_{k} e^{j \frac{2 \pi}{N} kn}\)where \(N\) is the number of taps.In summary, to determine the values of \(h(n)\) for a linear phase low-pass FIR filter with 11 taps and a cut-off frequency of \(0.22 \pi\) radians using the frequency sampling method, the following steps should be taken:1.

To know more about linear visit:

https://brainly.com/question/31510530

#SPJ11

Answer the value that goes into the blank.
The energy of a single photon with wavelength = 0.66 nm is ------× 10-16 J.

Answers

The energy of a single photon with a wavelength of 0.66 nm can be calculated using the equation E = hc/λ, where h is Planck's constant and c is the speed of light. The value that fills in the blank is determined by evaluating this equation.

The energy of a photon is given by the equation E = hc/λ, where E represents energy, h is Planck's constant (approximately 6.626 x 10^-34 J·s), c is the speed of light (approximately 3.00 x 10^8 m/s), and λ is the wavelength of the photon.

To find the energy of a single photon with a wavelength of 0.66 nm, we can substitute the values into the equation:

E = (6.626 x 10^-34 J·s) * (3.00 x 10^8 m/s) / (0.66 x 10^-9 m)

Simplifying the equation, we get:

E = 3.00 x 10^-19 J

Therefore, the energy of a single photon with a wavelength of 0.66 nm is 3.00 x 10^-19 J or 3.00 x 10^-16 × 10^-3 J.

Learn more about Single photon from the given link:

https://brainly.com/question/31992128

#SPJ11

6. Figure 6 shows the top view of a child of mass m with initial
speed v0 and stepping onto end B of the plank. The plank has length
L and mass M that is perpendicular to the child’s path as shown.

Answers

A plank of mass M and length L is situated parallel to the ground. It is set up to pivot about one end A and is supported by a rope from the other end B. A child of mass m and initial speed v0 is shown in Figure 6, stepping onto the plank at point B. After a short time, the child and the plank come to rest relative to the ground.


As we can observe from that a child of mass m with initial speed v0 stepping onto end B of the plank. The plank has length L and mass M that is perpendicular to the child’s path as shown. It is set up to pivot about one end A and is supported by a rope from the other end B. After a short time, the child and the plank come to rest relative to the ground. To solve this problem, we have to apply the law of conservation of momentum for the system and law of conservation of energy.

The velocity of the child can be calculated by law of conservation of momentum for the system of child and plank before and after the collision. Let the velocity of child and plank after collision be v1. So, according to law of conservation of momentum:Total momentum before collision = Total momentum after collisionmv0 = (M + m) v1....(1)The velocity of child and plank relative to the ground can be calculated by law of conservation of energy.

Total energy before collision = Total energy after collision

The initial kinetic energy of the child is mv0²/2As the plank is at rest, its initial kinetic energy is zero.The final potential energy of the system is (M+m)gL

The final kinetic energy of the system is (M+m)v1²/2Thus, we can write,mv0²/2 = (M+m)gL + (M+m)v1²/2....(2)From equation (1), v1 = mv0/(M+m)

To know more about parallel visit :

https://brainly.com/question/22746827

#SPJ11

A 2 Question: If we wish to exponentiate a number, we use the " (index) symbol. For example, if we wish to type an expression like ?, we can do so by typing **(-2) into the answer box. Additionally, there are a number of Greek letters whose use is commonplace in physics, such as Q, 1, 7, 8. In a question where you are required to use the variables in your answer, you type the English spelling for the Greek letter. The names of the Greek letters are listed on your formula sheet. For example, to use ju you would type mu. Try and enter the expression below into the answer box. μα? 20 In the box below, enter the expression for the volume of a cylinder with radius r, and height h. V= One thing you may notice is that a doesn't display as a 'variable found in your answer', whereas the other Greek letters do. This is due to the fact that a is usually given its canonical value of 3.14159265.... You should not copy variables from the question text, instead type them into the answer box using your keyboard. Check

Answers

The expression for the volume of a cylinder with radius r, and height h is V = πr²h. It is worth noting that if we wish to exponentiate a number, we use the "^" symbol. For example, if we wish to type an expression like "x to the power of 3," we can do so by typing "x^3" into the answer box.

Additionally, there are a number of Greek letters whose use is commonplace in physics, such as α (alpha), β (beta), γ (gamma), δ (delta), θ (theta), λ (lambda), μ (mu), etc. In a question where you are required to use the variables in your answer, you type the English spelling for the Greek letter. The names of the Greek letters are listed on your formula sheet. For example, to use μ (mu), you would type "mu."When typing variables, it is important not to copy them from the question text. Instead, type them into the answer box using your keyboard. Also, note that the variable "a" does not display as a "variable found in your answer" because it is usually given its canonical value of 3.14159265. Hence, it's recommended to use "pi" instead of "a" while solving mathematical problems.

To know more about volume visit:

https://brainly.com/question/13969612

#SPJ11

b. Gas turbines can also operate in open cycle mode, for which
exhaust gas temperatures exiting the gas
turbine may be around 150° C.
i. Calculate the maximum theoretical efficiency of open cycle gas

Answers

The maximum theoretical efficiency of open cycle gas can be calculated using the Carnot efficiency formula. The Carnot efficiency formula is given as:ηC = 1 - T2/T1

Where T2 is the temperature of the exhaust gas exiting the gas turbine and T1 is the temperature of the gas entering the combustion chamber. The maximum temperature for an open cycle gas turbine is around 150° C.T1 can be taken as the temperature at which the air is drawn into the compressor.

For gas turbines, this is typically around 15° C. Substituting these values into the formula:ηC = 1 - T2/T1ηC = 1 - (150+273)/(15+273)ηC = 1 - 423/288ηC = 0.357 or 35.7%Therefore, the maximum theoretical efficiency of open cycle gas is 35.7%.

Note: The Carnot efficiency formula provides an upper limit to the efficiency that can be achieved by any heat engine operating between two given temperatures. However, it is not possible to achieve this efficiency in practice due to various thermodynamic losses and irreversibilities.

To know more about efficiency visit :

https://brainly.com/question/30861596

#SPJ11

Take a vector with magnitude A=3.4 and angle from the x-axis θ=23.0 degrees. What are the components of this vector and their proper unit vector assignation? Answer to 3 sig figs without units. Use vector component order of x-axis then y-axis values. A=

Answers

The components of this vector and their proper unit vector(PUV) assignation are (-2.86, 1.46), with unit vectors (-0.919, 0.395) along x and y-axis values respectively.

The components of this vector and their PUV  assignation are (-2.86, 1.46), with unit vectors(UV) (-0.919, 0.395) along x and y-axis values respectively. Given, A = 3.4and angle θ = 23°Using the given magnitude and angle, we can calculate the horizontal and vertical components as: x = A cosθy = A sinθ. On substituting the given values, we get; x = 3.4 cos 23°y = 3.4 sin 23° Evaluating the above expression gives the components of the vector as follows; x = 3.4 cos 23° = 2.86y = 3.4 sin 23° = 1.46. We need to find the UVs for the above components.

Unit vector means dividing each component by its magnitude(m) to get a vector of magnitude 1.x-axis unit vector = (x / |x|) = -2.86/3.4 = -0.919 y-axis unit vector = (y / |y|) = 1.46/3.4 = 0.395.

To know more about Unit vector visit:

https://brainly.com/question/28028700

#SPJ11

2) Re-write the equation in terms of 6 \[ \gamma_{d}=\frac{G_{s} \gamma_{w}}{1+e} \]

Answers

The equation given as:

[tex][tex]\[ \gamma_{d}[/tex]

=[tex]\frac{G_{s} \gamma_{w}}{1+e} \][/tex][/tex]

needs to be rewritten in terms of 6. We know that e = 2.71 approximately,  the equation in terms of 6 is:

[tex][tex]\[\gamma_d = \frac{6G_s\gamma_w}{22.26}\][/tex][/tex]

This new equation gives the value of γd in terms of 6.

so we will substitute this value in the equation to get:

[tex]\[\gamma_d = \frac{G_s\gamma_w}{1+2.71}\][/tex]

Simplifying the expression by adding the denominator terms and getting a common denominator, we get:

[tex][tex]\[\gamma_d = \frac{G_s\gamma_w}{3.71}\][/tex][/tex]

Now, we can divide both sides of the equation by 3.71 to isolate γd on one side and write the equation in terms of 6, as follows:

[tex]\[\gamma_d[/tex]

[tex]= \frac{G_s\gamma_w}{3.71} \times \frac{6}{6}\] \[\gamma_d [tex][/tex]

[tex]= \frac{6G_s\gamma_w}{22.26}\][/tex][/tex]

To know more about denominator visit:

https://brainly.com/question/15007690

#SPJ11

Other Questions
Please give the answer within 25 help3. a. Explain why Peterson's solution is not guaranteed to work on modem hardware. How to overcome the problem. [3.5] b. Explain how low priority process can block a high priority process? [2] c. Cons a well-written discussion section of a journal article should begin with What is the Python print statement for the following nailservices so that it appears that all data is formatted as atable?Full Set $30.00Refill $35.00Nail Repair $ 7.00Eyebrows $ 9.99 the adams-onis treaty is significant because the u.s. Imagine that you own a company, Optimus, Inc., which is funded with 40% debt and 60% common stock; there is no preferred stock in the capital structure. The debt has an after-tax cost of 4%. You have studied the Electrobicycle project, and you believe that the auto company who has done the research and development (R&D) has made a crucial mistake. You believe that after the first 5 years, there will be worldwide expansion opportunities and many more years of revenues and earnings from selling Electrobicycles. Thus, you would not shut down the project in Year 5. Instead, you believe you will be able to sell the Electrobicycle business in Year 5 to a multinational company that will continue to produce the products and sell them internationally for many years into the future. You believe the sale of the Electrobicycle business in Year 5 will be for at least $15.0 million. Thus, you believe the value of the Electrobicycle project is significantly higher than the auto company realizes.For the initial post,Calculate Optimus required rate of return on equity using the capital asset pricing model (CAPM). For the CAPM, use the following assumptions:Use a risk-free rate of 4.0%.Use 6.0% as the market risk premium.For the beta, use the beta below, according to the first letter of your first name --- Letter R -- 1.10First Letter of First NameBetaA through B0.30C through D0.40E through F0.50G through H0.60I through J0.70K through L0.80M through N0.90O through P1.00Q through R1.10S through T1.20U through V1.30W through Z1.40Calculate the WACC for Optimus. As a reminder, Optimus is funded with 40% debt and 60% common stock; there is no preferred stock in the capital structure. The debt has an after-tax cost of 4%.Use the Optimus required rate of return on equity that you calculated using the CAPM.Explain why it is appropriate for Optimus to value the Electrobicycle project using its WACC. Compare using the WACC to using solely the cost of equity in valuing the Electrobicycle project Determine the average rate of return for a project that is estimated to yield to income of $ 231,840 over the a $ 73,900 residual value. Round to the nearest whole number. % What is the healthiest meal business unfair advantage? Accrual to cash flows LO 10 For each of the following items, calculate the cash sources or cash uses that should be recognized on the statement of cash flows for Baldin Co. for the year ended December 31, 2019: Required: a. Sales on account (all are collectible) amounted to $758,000, and accounts receivable decreased by $21,900. How much cash was collected from customers? b. Income tax expense for the year was $135,000, and income taxes payable decreased by $32,600. How much cash was paid for income taxes? c. Cost of goods sold amounted to $405,000, accounts payable increased by $20,400, and inventories increased by $14,400. How much cash was paid to suppliers? d. The net book value of buildings increased by $249,000. No buildings were sold, and depreciation expense for the year was $195,000. How much cash was paid to purchase buildings? some chimpanzees, gorillas, and orangutans have been taught: An integrated delivery system (IDS) is an organization of _____that offer joint health care services to subscribers. Given the price-demand and price-supply equations below, find the consumers' surplus at the equilibrium price level. D(x) = p = 5-0.008x^2S(x) = p = 1+0.002x^2Round your answer to the nearest dollar. Do not include a dollar sign in your answer. which two needs does hobbes believes drive human action? The marginal tax rate is used to calculate the incremental tax (or tax savings) on additional income (or additional deduction). True False" Given that h(x) = (x - 1)^3 (x - 5), find (a) The domain. (b) The x-intercepts. (c) The y-intercepts. (d) Coordinates of local extrema (turning points). (e) Intervals where the function increases/decreases. (f) Coordinates of inflection points. (g) Intervals where the function is concave upward/downward. (h) Sketch the graph of the function. Exercise 18.4 (a) Assume that the Galaxy is a homogeneous disk and the Sun lies in the cen- tral plane of the disk. The absolute magnitude of a star is M, galactic latitude b, and distance from the central plane z. What is the apparent magni- tude of the star, if the extinction inside the Galaxy is a mag kpc-? (b) Assume that the thickness of the galactic disk is 200 pc. Find the apparent magnitude of a star with M = 0.0, b = 30, distance r = 1 kpc, and a = 1 mag kpc. the ____ component of a node stores the address of the next node in a list. A Scotsman and an Irishman walk into a bar and find they have absolutely nothing in common. How did Rankine and Thomson figure out where absolute zero was?Group of answer choicesThey inverted the thermometer scale so that colder temperatures would read as larger numbers.They mixed ice with salt to lower the temperature that water freezes.They never forgot to put their name on their scantron form. (Do that right now!)They lowered the density of water until it began to float as ice.They measured how the pressure of different gases changed as the temperature changed. Two power plants are currently emitting 8,000 tonnes of pollution annually each (totalling 16,000 tonnes of pollution). Pollution reduction costs for Plant 1 are given by MCC1 = 0.02Q and for Plant 2 by MCC2 = 0.03Q, where Q represents the number of tonnes of pollution reduction.a) Suppose a regulation is implemented that requires each plant to reduce its pollution by 5,000 tonnes. What will be each firm's pollution control costs? Draw two graphs (one for each firm) to support your answer. (25 marks)b) Suppose instead that a pollution tax of $120 per tonne of pollution emitted is implemented. How much will each firm now pay in pollution reductions costs (not considering taxes)? How do total pollution reduction costs with the tax compare to the costs calculated in part a? Explain why the costs differ. How much does each firm pay in taxes? Draw two graphs (one for each firm) to support your answer. (25 marks)c) Finally, suppose that a tradeable permit scheme is instituted in which permits for emissions of 6,000 tonnes are freely issued, 3,000 permits to each plant. What are the pollution reduction costs to each firm without trading? Use a graph to support your answer, showing 10,000 tonnes of total pollution reduction. (25 marks)d) Using the same diagram from part c, explain which firm will sell permits (and how many), and which firm will buy permits. Assuming all permits sell for the same price, how much will each permit cost? Calculate each firm's costs after trading, considering their pollution reduction costs and the costs (or revenues) from the permit sale A manufacturing Corporation produces three joint products. During a recent accounting period, joint costs totaled $365,000. Additional data appear below:M1 M2 M3Volume (units) 150,000 50,000 300,000Sales value at the split-off point $375,000 $155,000 $600,000Sales value after further processing $450,000 $200,000 $900,000Separable costs $50,000 $35,000 $100,000Required:1. Use Physical output method to allocate joint costs to joint products.2. Use Sales value at split-off point method to allocate joint costs to joint products. Comparing can give us some sense of what the money multiplier is the monetary base to M2 M1 to M2 the monetary base to M1 the monetary base to fiat money Multiple Choice Surved