We cannot find the exact height at the start of the experiment. The object's greatest height will be (16 + 2 sinθ) meters. The first time the object reaches the greatest height is when it is thrown vertically upwards.
a) Given, S(t) = h = x + y
Where, x = 16 m and y = 2 sinθS(t) = x + y = 16 + 2 sinθa)
The object's height at the start of the experiment will be h = x + y = 16 + 2 sinθThe value of sinθ is not given. Hence, we cannot find the exact height at the start of the experiment.
b) The object's greatest height will be:
The object's greatest height will be when the object is at the highest point i.e. when
v = 0.S(t) = x + y
where S(t) is the displacement of the object at time t.
As the object is at the highest point, its displacement from the ground will be equal to the greatest height it reaches. Let's find when the object is at its highest point. At the highest point,
v = 0.0 = v - gt0 = v0 - gt (initial velocity,
v0 = v + gt)gt = v0v0 = gt
Maximum height is reached when the object is halfway through its trajectory.
Maximum height, H = S(t) at t = T/2 = x + y at t = T/2
T = time period of oscillation.
T = 2π/ω, where
ω = angular frequency
ω = 2π/T
Let's find the angular frequency
ω = 2π/T = 2π/4 = π/2H = x + y = 16 + 2 sinθ (maximum height)
Therefore, the object's greatest height will be (16 + 2 sinθ) meters.
e) The first time the object reaches this greatest height will be
H = x + y = 16 + 2 sinθH
= 16 + 2H - 16 = 2 sinθH/2
= sinθ (H is the maximum height of the object)θ
= sin⁻¹(H/2)
Substitute
H = 16 + 2 sinθ = sin⁻¹((16 + 2 sinθ)/2) sinθ = sin(sin⁻¹((16 + 2 sinθ)/2)) = (16 + 2 sinθ)/2sinθ = 8 + sinθsinθ/1 + sinθ = 8/2sinθ/1 + sinθ = 4sinθ = 4 (1 + sinθ)sinθ - 4 - 4 sinθ = 0sinθ (1 - 4) = 4sinθ = -4/3
(rejected as it is out of range) or sinθ = 0sinθ = 0 ⇒ θ = 0°
Therefore, the first time the object reaches the greatest height is when it is thrown vertically upwards.
d) The object will never reach the ground as it will oscillate between its initial height and its greatest height.
To learn more about angular frequency:
https://brainly.com/question/3654452
#SPJ11
What is the distance between the first and second fringes
produced by a diffraction grating having 4500 lines per centimeter
for 575-nm light, if the screen is 1.35 m away?
The distance between the first and second fringes produced by a diffraction grating having 4500 lines per centimeter for 575-nm light, if the screen is 1.35 m away is 1.27 mm (Approx.).
The distance between the first and second fringes produced by a diffraction grating having 4500 lines per centimeter for 575-nm light, if the screen is 1.35 m away is 1.27 mm.
What is a diffraction grating? A diffraction grating is an optical device that uses interference to separate light into its component wavelengths. When light enters a diffraction grating, it is diffracted, causing it to spread out in different directions. When the diffracted light reaches the screen, it creates a diffraction pattern, which consists of a series of bright and dark fringes separated by equal distances. What is the formula for distance between fringes in a diffraction grating?
The distance between fringes in a diffraction grating is calculated using the following formula:
d = mλ / N
where: d = distance between fringes m = order of the fringe l = wavelength of ligh tN = number of lines per unit length (grating constant)Putting the given values in the above formula: d = (1)(575 nm) / 4500 lines/cm= 0.1275 mm = 1.27 mm (Approx.)
Therefore, the distance between the first and second fringes produced by a diffraction grating having 4500 lines per centimeter for 575-nm light, if the screen is 1.35 m away is 1.27 mm (Approx.).
To know more about centimeter visit:
https://brainly.com/question/9133571
#SPJ11
A block of mass m = 7.3kg with initial speed of v₁ = 12.4m/s travels a distance d = 10.3m on an inclined plane with 0 = 38⁰ and comes to rest. Determine the coefficient of kinetic friction, Mk =? using two decimal places. Take g = 9.80m/s².
The formula for calculating the coefficient of kinetic friction (Mk) for a block moving on an inclined plane is given as
Mk = tan(0).
Initially, the block of mass m = 7.3kg is moving with an initial speed v1 = 12.4 m/s.
The block moves a distance of d = 10.3m on an inclined plane with 0 = 380 and comes to rest.
Finally, the coefficient of kinetic friction (Mk) is given by,
Mk = tan(0)
Mk = tan(38⁰)
= 0.78 (up to two decimal places)
Therefore, the coefficient of kinetic friction (Mk) is 0.78. Hence, option B is the correct answer.
Note: Here, we have assumed that the inclined plane is frictionless. Therefore, the only force acting on the block is the force of gravity.
To know more about kinetic friction, visit:
https://brainly.com/question/30886698
#SPJ11
What is thee period of 2500 Hz sinewave?
The period of a 2500 Hz sine wave is 0.0004 seconds.
The period of a 2500 Hz sine wave is 0.0004 seconds. A sine wave is a type of periodic waveform that is defined by a single frequency, which is often measured in hertz (Hz). A wave's period is the time it takes for one complete cycle of the wave to occur. It is often measured in seconds. The period is determined by dividing the frequency by 1.
In other words, the period is the reciprocal of the frequency.
In this case, the frequency is 2500 Hz.
So, to determine the period, you need to divide 1 by 2500 Hz:
1/2500 = 0.0004 seconds
Therefore, the period of a 2500 Hz sine wave is 0.0004 seconds.
To know more about sine wave visit:
https://brainly.com/question/32149687
#SPJ11
the drag force from air resistance is given by F= pACv2/2. where p is the density of air, A is the cross-sectional area (assume to be a circle), C is the drag coefficient based on shape and v is the speed. You may guess that larger raindrops may have a larger terminal speed, but let's see if this is true. Assume a spherical raindrop of radius r and density p.. I) Derive an expression for the terminal speed of the raindrop in terms of r, C, g. pw and p. (where p, is the density of air that is in the drag force expression). Mass cannot be in your expression. il) From your expression, if you double the radius, what happens to the terminal speed?
The terminal speed of a raindrop is proportional to the square of the radius.
If the radius is doubled, the terminal speed will quadruple.
The terminal speed of a raindrop is the speed at which the drag force from air resistance balances the force of gravity. The drag force is given by F = pACv^2/2, where p is the density of air, A is the cross-sectional area, C is the drag coefficient, and v is the speed.
The cross-sectional area of a spherical raindrop is A = πr^2, where r is the radius of the raindrop.
The force of gravity is given by F = mg, where m is the mass of the raindrop and g is the acceleration due to gravity.
For a raindrop to reach its terminal speed, the drag force must equal the force of gravity. This means that pACv^2/2 = mg.
Solving for v, we get v = (2mg)/(pCπr^2).
The terminal speed is proportional to the square of the radius. This means that if the radius is doubled, the terminal speed will quadruple.
v = (2mg)/(pCπr^2)
If r = 2r, then v = (2mg)/(pCπ(2r)^2) = 4 * (2mg)/(pCπr^2) = 4v
Therefore, the terminal speed will quadruple.
To learn more about terminal speed click here: brainly.com/question/33442558
#SPJ11
The structural diversity of carbon-based molecules is based upon which of the following properties?
A. the ability of those bonds to rotate freely
B. the ability of carbon to form four covalent bonds
C. None of these choices is correct.
D. All of these choices are correct.
E. the orientation of those bonds in the form of a tetrahedron
The ability of carbon to form four covalent bonds: Carbon has four valence electrons, allowing it to form up to four covalent bonds with other atoms.
This versatility in bonding allows for the formation of complex and diverse carbon-based molecules.E. The orientation of those bonds in the form of a tetrahedron: Carbon atoms bonded to four different groups tend to adopt a tetrahedral geometry. This arrangement contributes to the three-dimensional shape and structural diversity of carbon-based molecules.Therefore, all of these choices contribute to the structural diversity of carbon-based molecules.
To know more about molecules visit :
https://brainly.com/question/32298217
#SPJ11
Apoint charge of 870 nC is located on the nC as located at the origin and a second charge of 300 axis at a -1.75cm
The electric field at point P has a magnitude of 3.27x10⁵ N/C and is directed to the right.
The electric field due to a point charge can be calculated using Coulomb's law, which states that the electric field E at a distance r from a point charge q is given by E=kq/r², where k is Coulomb's constant.
In this scenario, a point charge of 870 nC is located at the origin, and a second charge of 300 nC is located at a distance of -1.75cm on the x-axis. We need to calculate the electric field at a point P located at a distance of 3.5 cm from the origin along the x-axis.
Let's begin by calculating the electric field at point P due to the charge of 870 nC. Using Coulomb's law, we have E₁=kq₁/r₁²where q₁=870 nC and r₁=3.5 cm=0.035 m Therefore, E₁=(9x10⁹ Nm²/C²)(870x10⁻⁹ C)/(0.035m)²=8.68x10⁴ N/C
Now let's calculate the electric field at point P due to the charge of 300 nC. Using Coulomb's law, we have E₂=kq₂/r₂² where q₂=300 nC and r₂=0.0175 m Therefore, E₂=(9x10⁹ Nm²/C²)(300x10⁻⁹ C)/(0.0175m)²=4.14x10⁵ N/C
Note that the electric field due to the charge of 300 nC is in the negative x-direction because the charge is to the left of point P. Therefore, the total electric field at point P is given by the vector sum of the electric fields due to the two charges: E=E₁+E₂=(-8.68x10⁴ N/C)+(4.14x10⁵ N/C)=3.27x10⁵ N/C
The electric field at point P has a magnitude of 3.27x10⁵ N/C and is directed to the right.
To know more about electric visit:
https://brainly.com/question/33513737
#SPJ11
Formulate Hamilton's equations for a body (mass m) falling in a
homogeneous gravitational field and solve them.
Hamilton's equations can be formulated for a body (mass m) falling in a homogeneous gravitational field by defining the generalized coordinates and momenta.
Let's consider the vertical motion of the body along the y-axis.
Generalized Coordinate:
We can choose the position of the body, y, as the generalized coordinate.
Generalized Momentum:
The momentum conjugate to the position y is the vertical component of the body's momentum, which is given by [tex]p_y = m * v_y[/tex], where [tex]v_y[/tex] is the vertical velocity.
The Hamiltonian (H) is the total energy of the system and is given by the sum of kinetic and potential energies:
H = T + V = (p_y^2 / (2m)) + m * g * y,
Hamilton's equations for this system are:
[tex]dy/dt = (∂H/∂p_y) = p_y / m,\\dp_y/dt = - (∂H/∂y) = -m * g.[/tex]
These equations describe the time evolution of the generalized coordinate y and the generalized momentum p_y.
To solve these equations, we can integrate them. Integrating the first equation gives:
[tex]y = (p_y / m) * t + y_0,[/tex]
where y_0 is the initial position of the body.
Integrating the second equation gives:
[tex]p_y = -m * g * t + p_y0,[/tex]
where [tex]p_y0[/tex] is the initial momentum of the body.
Therefore, the solutions for the position and momentum as functions of time are:
[tex]y = (p_y0 / m) * t - (1/2) * g * t^2 + y_0,\\p_y = -m * g * t + p_y0.[/tex]
These equations describe the motion of the body falling in a homogeneous gravitational field as a function of time.
To learn more about Hamilton's equations
https://brainly.com/question/33841994
#SPJ11
A superheterodyne receiver is to tune the range 88.1 MHz to 107.1 MHz. The RF circuit inductance is pH. The IF is 1800kHz. High side injection is used. (8 pts)
a. If the minimum capacitance of the variable capacitor of the local oscillator is 0.5pF, calculate the maximum capacitance
b. If the receiver has a single converter stage, calculate the image frequency of 101.3MHz
c. Calculate the IFRR (in dB) of (b) if Q of the preselector is 50
d. To increase IFRR of (b) by 5dB, double conversion is used. What must be the frequency of the 1st IF?
The frequency of the first IF should be 1.98 MHz to increase the IFRR by 5 dB.
a. The minimum frequency of the local oscillator can be given by:
fLO = fRF + fIF
We can obtain the maximum frequency by substituting the highest RF frequency (107.1 MHz) and the same IF frequency:
fLO, max = (fRF,max + fIF)
= 109.9 MHz
C1 = 8.4 pF
Therefore, the maximum capacitance of the variable capacitor can be given by:
C2, max = C1 × [(fLO,min) / (fLO,max)]
= 6.5 pF
b. Image frequency can be given by:
fIM = 2fIF ± fRF
Firstly, calculate the RF image frequency:
fIM,RF = 2 × 1.8 MHz + 88.1 MHz
= 91.7 MHz
Since the desired frequency is 101.3 MHz, it lies above the RF image frequency. Therefore, the image frequency can be given by:
fIM = 2fIF + fRF
= 3.7 MHz + 107.1 MHz
= 110.8 MHz
c. The IFRR can be calculated by the given equation:
IFRR = 20 log(Q) + 20 log(π) + 20 log(fRF / fIF)
IFRR = 20 log(50) + 20 log(π) + 20 log(101.3 MHz / 1.8 MHz)
IFRR = 37.1 dB
Round off to the nearest decimal place:
IFRR ≈ 37.1 dB
d. Since the required increase in IFRR is 5 dB, the new IFRR can be given by:
IFRR, new = IFRR, old + 5IFRR, new = 37.1 + 5
= 42.1 dB
Let the first IF frequency be fIF1.
Since high side injection is used, the image frequency of the first IF will be:
fIM1 = 2fIF1 + fRF
The frequency difference between the image frequency of the first IF and the RF frequency must be more than the required IFRR:
Δf = |fIM1 - fRF| > fIFRR / 2
Since we are doubling the conversion frequency, we have to choose a first IF frequency which is less than half the image frequency of the RF frequency:
fIM,RF = 2fIF2 + fIF1Δf
= |fIM1 - fRF|
= 2fIF1 + fRF - fRF
= 2fIF1Δf > fIFRR / 2Δf
= 2fIF1IFRR
= 20 log(Q1) + 20 log(Q2) + 20 log(π) + 20 log(fRF / fIF1) + 20 log(π) + 20 log(fIF1 / fIF2)
Q1 = Q2 = 50IFRR, new = 42.1 dB
Fixing the Q of the preselector, the above equation can be used to solve for the first IF frequency:
fIF1 = 1.98 MHz
Substituting in the above equation and solving for the second IF frequency:
fIF2 = 23.9 kHz
Therefore, the frequency of the first IF should be 1.98 MHz to increase the IFRR by 5 dB.
Learn more about frequency from the given link
https://brainly.com/question/254161
#SPJ11
You take an AP thoracic radiograph. You used a kV of 71.3, mA of 200 and time of 0.3 seconds. The resultant image is high in contrast, but the overall density is within acceptable levels. You determine that you need to re-take the image. When you re-take this image, what kV should be used? Please answer to 1 decimal place, do not use units.
When retaking an AP thoracic radiograph, the kV to be used should be 79.1 (to one decimal place), given that the initial image was high in contrast but the overall density was within
acceptable
levels.However, let's see
how to derive the answer:According to the question, the first thoracic radiograph was taken using a kV of 71.3, an mA of 200, and a time of 0.3 seconds. Since the image is high in contrast and the overall density is within acceptable levels, it indicates that the kV used was too low, resulting in a high
contrast
image. Thus, to correct the image's contrast, the kV should be increased.On the other hand, to ensure that the overall density remains within acceptable levels, the mAs value should remain the same. The product of mAs is equal to density, which is the result of the intensity of the x-rays or the energy used to produce the image.
Therefore, a change in kV will require a corresponding change in mAs to ensure that the
density
remains constant.The following formula can be used to determine the new kV required:
Old kV x Old mAs / New mAs = New Conv
VSince we are trying to determine the new kV,
rearranging
the formula will give us:N
ew kV = Old kV x Old mAs / New mAsSubstituting the values from the question in the above formula, we get:New kV = 71.3 x 200 / 200New kV
= 71.3Since we know that the kV should be increased to improve the image contrast, we can add 10% to the initial value to get the new kV value:New kV = 71.3 + 7.13New kV
= 78.43 or 79.1 (rounded to one decimal place)Therefore, the kV used when re-taking the thoracic radiograph should be 79.1 (to one decimal place), and this should result in an image that has better contrast while maintaining an acceptable overall density.
To know more about radiograph, visit:
https://brainly.com/question/32756071
#SPJ11
1. A hydrogen atom consists of a single proton and a single electron. The proton has a charge of +ve and The electron has -ve. In the ground state of the atom, the electron orbits the proton at most probable distance of 5.29x10-11 m. Calculate the electric force on the electron due to the proton. 2. A 1/4 coluomb charge is at x =1.0cm and a -1.5/coluomb charge is at x= 3.0cm. What force does the positive charge exert on the negative one? 3. A 9.5/C charge is at x = 16cm, y = 5.0cm, and a -3.2/C charge is at x = 4.4cm, y = 11 cm. Find the force on the negative charge.
The electric force on the electron due to the proton is approximately 8.24x10-8 N.
The electric force between two charged particles can be calculated using Coulomb's law, which states that the force is directly proportional to the product of the charges and inversely proportional to the square of the distance between them.
In this case, we have a hydrogen atom where the electron orbits the proton. The charge of the proton is +1.6x10-19 C, and the charge of the electron is -1.6x10-19 C (charges of opposite signs attract each other).
The most probable distance at which the electron orbits the proton in the ground state is given as 5.29x10-11 m.
Using Coulomb's law, we can calculate the electric force (F) as:
F = [tex](k * |q1 * q2|) / r^2[/tex]
where k is the electrostatic constant (approximately [tex]9x10^9 Nm^2/C^2[/tex]), q1 and q2 are the charges, and r is the distance between them.
Plugging in the values, we get:
[tex]F = (9x10^9 Nm^2/C^2) * (1.6x10-19 C * 1.6x10-19 C) / (5.29x10-11 m)^2[/tex]
Calculating this, we find that the electric force on the electron due to the proton is approximately 8.24x10-8 N.
Learn more about Coulomb's law
brainly.com/question/506926
#SPJ11
A sphere with magnetization M is placed inside of a uniform magnetic field Bo. Find the magnetic field inside and outside of the sphere. (8 points)
The magnetic field inside the sphere is µ₀M and the magnetic field outside the sphere is µ₀ (M + Bo).
A sphere with magnetization M is placed inside of a uniform magnetic field Bo. Find the magnetic field inside and outside of the sphere.
The magnetic field inside and outside of the sphere is given by:
B = µ₀ (M + H)B = µ₀ (M + H)
Where B is the magnetic field, H is the magnetic field strength, M is the magnetization of the material, and µ₀ is the permeability of free space.Magnetic field inside of the sphere:
The magnetic field inside of the sphere is given by:
Binside = µ₀M
Binside = µ₀M
where
Binside is the magnetic field inside the sphere, M is the magnetization of the sphere, and µ₀ is the permeability of free space.
Magnetic field outside of the sphere:
The magnetic field outside of the sphere is given by:
Boutside = µ₀ (M + Bo)
Boutside = µ₀ (M + Bo)
where Boutside is the magnetic field outside the sphere, M is the magnetization of the sphere, Bo is the uniform magnetic field, and µ₀ is the permeability of free space.
Therefore, the magnetic field inside the sphere is µ₀M and the magnetic field outside the sphere is µ₀ (M + Bo).
To know more about magnetic field visit:
https://brainly.com/question/14848188
#SPJ11
A dc shunt motor has the following characteristics: Tr= 65 N.M, Ts = 240 N.M, rated speed = 1250 R.P.M. Its speed at load torque = 10 N.M is:
a) 178.15 rad/sec.
b) 172.04 rad/sec.
c) 167.32 rad/sec.
d) None.
None of the given options (a, b, c) accurately represents the speed of the motor at a load torque of 10 Nm. To determine the speed of the DC shunt motor at a load torque of 10 Nm, we can use the torque-speed characteristic of the motor. The correct option is D.
To determine the speed of the DC shunt motor at a load torque of 10 Nm, we can use the torque-speed characteristic of the motor. The torque-speed characteristic relates to the torque and speed of the motor.
Given:
Tr = 65 Nm (torque at rated speed)
Ts = 240 Nm (torque at stall)
Rated speed = 1250 RPM
To calculate the speed at a load torque of 10 Nm, we can use the following formula:
Speed = Rated Speed * (1 - (Load Torque / Rated Torque))
First, we need to calculate the rated torque. Since the rated torque is not directly given, we can use the torque-speed characteristic to find the rated torque. At the rated speed of 1250 RPM, the torque is given as Tr = 65 Nm.
Now, we can calculate the speed at the load torque of 10 Nm:
Speed = 1250 RPM * (1 - (10 Nm / 65 Nm))
Simplifying the equation:
Speed = 1250 RPM * (1 - 0.1538)
Speed = 1250 RPM * 0.8462
Speed = 1057.75 RPM
To convert the speed from RPM to radians per second (rad/s), we can use the conversion factor: 1 RPM = 0.10472 rad/s.
Speed = 1057.75 RPM * 0.10472 rad/s
Speed ≈ 110.72 rad/s
Therefore, none of the given options (a, b, c) accurately represents the speed of the motor at a load torque of 10 Nm.
The correct option is D.
To learn more about DC shunt motor click here
https://brainly.com/question/28564856
#SPJ11
An object is spun in a horizontal circle such that it has a constant tangential speed at all points along its circular path of constant radius. A graph of the magnitude of the object's tangential speed as a function of time is shown in the graph. Which of the following graphs could show the magnitude of the object's centripetal acceleration as a function of time?
The graph that could show the magnitude of the object's centripetal acceleration as a function of time is the graph with a constant non-zero value.
The centripetal acceleration magnitude is constant because the speed of the object is constant and its direction is changing continuously.
The formula for centripetal acceleration is given by `a = v²/r`.
An object is said to be moving in a circular motion when it moves along the circumference of a circle. The acceleration experienced by an object in a circular motion is called centripetal acceleration.
Centripetal acceleration is directed towards the center of the circle and its magnitude is given by `a = v²/r`.
The given graph shows the magnitude of the object's tangential speed as a function of time. Since the tangential speed of the object is constant, the graph is a straight line with constant slope. The slope of the graph represents the acceleration.
Thus, the acceleration of the object is zero because the slope is zero.
The following graph could show the magnitude of the object's centripetal acceleration as a function of time:
The graph of centripetal acceleration as a function of time
The graph shows that the magnitude of the object's centripetal acceleration is constant and non-zero. The magnitude of the acceleration is given by `a = v²/r`, which is constant because the speed of the object is constant and its direction is changing continuously.
To learn more on centripetal acceleration :
https://brainly.com/question/24373514
#SPJ11
the observed change in wavelength due to the doppler effect occurs
The observed change in wavelength due to the Doppler effect occurs when there is relative motion between a source of waves and an observer. It causes a shift in the observed frequency or wavelength, resulting in either a higher pitch (blue shift) or a lower pitch (red shift).
The observed change in wavelength due to the Doppler effect occurs when there is relative motion between a source of waves and an observer. This phenomenon can be observed in various situations, such as sound waves, light waves, and even waves in water.
When the source of waves is moving towards the observer, the observed wavelength decreases. This means that the waves are compressed, resulting in a higher frequency or pitch. This is known as a blue shift. On the other hand, when the source is moving away from the observer, the observed wavelength increases. This means that the waves are stretched, resulting in a lower frequency or pitch. This is known as a red shift.
The Doppler effect has important applications in various fields. In astronomy, it is used to determine the motion of celestial objects and measure their radial velocity. In meteorology, it helps in studying weather patterns and predicting the movement of storms. In medical imaging, it is used in techniques like Doppler ultrasound to visualize blood flow and detect abnormalities.
Learn more:About Doppler effect here:
https://brainly.com/question/28106478
#SPJ11
The observed change in wavelength due to the Doppler effect occurs when the distance between the source of the wave and the observer changes.
The Doppler effect can be seen when a wave source is moving relative to an observer.In a long answer, we can explain that the Doppler effect is the change in frequency or wavelength of a wave that is perceived by an observer moving relative to the wave source. The effect is most commonly experienced with sound waves, where it results in a change in the pitch of a sound.
However, it also occurs with electromagnetic waves, including light.In the case of light, the observed change in wavelength due to the Doppler effect occurs when the distance between the source of the wave and the observer changes. If the source of the wave is moving closer to the observer, the wavelength of the wave appears shorter (bluer). If the source is moving away from the observer, the wavelength of the wave appears longer (redder). This is known as the redshift and blueshift, respectively.
To know more about Doppler effect visit:-
https://brainly.com/question/15318474
#SPJ11
A) The lunar excursion module has been modeled as a mass supported by four symmetrically located legs, each of which can be approximated as a spring-damper system with negligible mass. Design the spri
The Lunar Excursion Module (LEM) was designed to make a soft landing on the lunar surface, which required that the LEM must not bounce back into space upon impact. The LEM, therefore, was modeled as a mass that was supported by four symmetrically located legs.
Each of these legs could be approximated as a spring-damper system with negligible mass.The design of the springs had to be such that the total energy of the system was dissipated during the landing without causing any structural damage to the LEM. This is because the energy of the landing must not cause the spacecraft to bounce back into space.The design of the springs was also affected by the nature of the lunar surface. The lunar surface was not homogeneous and, therefore, the spacecraft had to be designed to deal with different types of soil and rocks.
This meant that the springs had to be able to adjust to different soil types and absorb the energy of the impact.In addition, the design of the springs was also affected by the lunar environment. The temperature on the moon fluctuates widely between day and night. Therefore, the springs had to be designed to withstand extreme temperatures without losing their resilience.
Finally, the design of the springs was affected by the mass of the spacecraft. The springs had to be able to support the weight of the spacecraft without collapsing while also being light enough to not add too much weight to the spacecraft. This meant that the springs had to be designed using lightweight and strong materials such as titanium alloys.
To know more about symmetrically visit :
https://brainly.com/question/31184447
#SPJ11
Problem 9: (Waves in lossy medium) In a homogeneous nonconduc region where u, = 1, find ε, and o if
Ē = z30pi e^j[61-(4/3)Y] V/m and H = xe^j[wt+(4/3)y] A/m.
What is the speed of light in this medium?
To determine the speed of light in the given medium, we need to find the values of the permittivity (ε) and permeability (μ) of the medium. The equations for electric field (E) and magnetic field (H) are provided, which can help us find these values.
to determine the speed of light in this medium, we need additional information or equations relating the variables involved.
Comparing the given electric field equation to the standard form of a plane wave:
E = E0 * e^(j(kz - ωt))
We can equate the exponents of the complex exponential terms:
j(61 - (4/3)y) = jkz
This equation implies that the propagation constant k is equal to (61 - (4/3)y). Therefore, we can find the value of k.
k = 61 - (4/3)y
Similarly, comparing the given magnetic field equation to the standard form of a plane wave:
H = H0 * e^(j(kz - ωt))
We equate the exponents of the complex exponential terms:
j(wt + (4/3)y) = jkz
This equation implies that the propagation constant k is equal to (4/3)y + ω. By substituting the value of k from the previous equation, we can solve for ω.
4/3y + ω = 61 - (4/3)y
Simplifying the equation, we find:
7/3y + ω = 61
Now that we have obtained the values of k and ω, we can determine the values of ε and μ from the relationship between the propagation constant, angular frequency, permittivity, and permeability:
k = ω√(εμ)
By substituting the known values, we get:
61 - (4/3)y = ω√(εμ)
We have one equation with two unknowns, ε and μ. To solve for the speed of light, we need to find the ratio of ε to μ, which is the square of the speed of light (c) in the medium:
c^2 = ε/μ
To determine the speed of light in this medium, we need additional information or equations relating the variables involved.
To determine the speed of light in the given medium, we need to find the values of the permittivity (ε) and permeability (μ) of the medium. The equations for electric field (E) and magnetic field (H) are provided, which can help us find these values.Comparing the given electric field equation to the standard form of a plane wave:E = E0 * e^(j(kz - ωt)). We can equate the exponents of the complex exponential terms:
j(61 - (4/3)y) = jkz. This equation implies that the propagation constant k is equal to (61 - (4/3)y). Therefore, we can find the value of k. k = 61 - (4/3)y
Similarly, comparing the given magnetic field equation to the standard form of a plane wave: H = H0 * e^(j(kz - ωt)). We equate the exponents of the complex exponential terms: j(wt + (4/3)y) = jkz. This equation implies that the propagation constant k is equal to (4/3)y + ω. By substituting the value of k from the previous equation, we can solve for ω.
4/3y + ω = 61 - (4/3)y. Simplifying the equation, we find: 7/3y + ω = 61. Now that we have obtained the values of k and ω, we can determine the values of ε and μ from the relationship between the propagation constant, angular frequency, permittivity, and permeability:
k = ω√(εμ). By substituting the known values, we get:61 - (4/3)y = ω√(εμ)We have one equation with two unknowns, ε and μ. To solve for the speed of light, we need to find the ratio of ε to μ, which is the square of the speed of light (c) in the medium:c^2 = ε/μ. Therefore, to determine the speed of light in this medium, we need additional information or equations relating the variables involved.
To learn more about speed of light;
https://brainly.com/question/28224010
#SPJ11
When the permanent magnet field type DC motor is not connected to the power, the rotor
When rotating at 500[rpm], the induced electromotive force generated in a armature winding is 30[V].
When a current of 1.5[A] is input to the armature winding of the DC motor,
How much torque is generated?
( assume pie=3 in the calculation )
Expert Answer
To calculate the torque generated by the DC motor, we can use the following formula:
Torque (τ) = (Power (P) / Angular velocity (ω))
First, we need to calculate the power generated by the motor using the induced electromotive force (EMF) and the current.
Power (P) = EMF * Current
Substituting the given values:
Power (P) = 30[V] * 1.5[A] = 45[W]
Next, we need to convert the rotational speed from RPM to rad/s.
Angular velocity (ω) = (500[rpm] * 2π) / 60 = 52.36[rad/s]
Now, we can calculate the torque:
Torque (τ) = 45[W] / 52.36[rad/s] = 0.859[Nm]
Therefore, the torque generated by the DC motor when a current of 1.5[A] is input to the armature winding is approximately 0.859 Nm.
It's important to note that the torque calculation assumes ideal conditions and neglects any losses or inefficiencies in the motor. In practical applications, there may be additional factors to consider.
Learn more about Torque from the given link:
https://brainly.com/question/31323759
#SPJ11
A horse is pulling a carriage up on a tilted road \( \beta=15^{\circ} \). The velocity of the carriage is constant, and the mass of the carriage is \( m=1300 \mathrm{~kg} \). The coefficient of the dy
(a) The forces acting upon the carriage are the force of gravity (Weight), normal force (N), force applied by the horse (F_h), and friction force (F_friction). (b) The force applied to the carriage by the horse only (F_h) is approximately 12,740 N. This force is required to overcome the force of gravity and friction to maintain a constant velocity while pulling the carriage up the tilted road.
(a) The forces acting upon the carriage are:
Force of gravity (Weight): This force acts vertically downwards and is given by the equation F_gravity = m * g, where m is the mass of the carriage (1300 kg) and g is the acceleration due to gravity (approximately 9.8 m/s²).
Normal force (N): The normal force acts perpendicular to the surface and supports the weight of the carriage. On an inclined plane, it is given by N = m * g * cos(β), where β is the angle of the tilted road (15°).
Force applied by the horse (F_h): This is the force exerted by the horse to pull the carriage up the inclined road.
Friction force (F_friction): This force opposes the motion of the carriage and acts parallel to the surface of the inclined road. It is given by F_friction = µ * N, where µ is the coefficient of dynamic friction (0.15).
(b) To calculate the force applied to the carriage by the horse only (F_h), we need to consider the forces in the vertical direction. Since the velocity of the carriage is constant, the net force in the vertical direction is zero.
Summing the forces in the vertical direction:
F_gravity * sin(β) - N = 0
F_gravity * sin(β) = N
Substituting the values:
(m * g * sin(β)) = (m * g * cos(β))
Simplifying:
sin(β) = cos(β)
This equation holds true for β = 45°.
Therefore, the force applied to the carriage by the horse (F_h) is equal to the force of gravity acting on the carriage:
F_h = m * g = 1300 kg * 9.8 m/s²
Calculating this, we find:
F_h = 12,740 N
To know more about force refer here
brainly.com/question/30507236
#SPJ11
Complete Question : A horse is pulling a carriage up on a tilted road β = 15◦ . The velocity of the carriage is constant, and the mass of the carriage is m = 1300 kg. The coefficient of the dynamic friction is µ = 0.15.
(a) Identify all the forces that act upon the carriage;
(b) Calculate the force Fh that is applied to the carriage by the horse only.
Question 2. The inductance of a coil is determined by various factors. These factors include (2) a) Number of turns b) Cross sectional area of the core c) Length of the core d) Permeability of the cor
Inductance is the property of a coil to develop an electromotive force when there is a change in the current flowing through it. There are various factors that determine the inductance of a coil, including the number of turns, cross-sectional area of the core, length of the core, and permeability of the core.
The inductance of a coil is given by the expression: L= μN²A/l
Where L is the inductance of the coil, N is the number of turns, A is the cross-sectional area of the core, l is the length of the core, and μ is the permeability of the core.
Therefore, the factors that determine the inductance of a coil are:
1. Number of turns
2. Cross-sectional area of the core
3. Length of the core
4. Permeability of the core
The inductance of a coil is a measure of its ability to develop an electromotive force.
The inductance of a coil depends on various factors, including the number of turns, cross-sectional area of the core, length of the core, and permeability of the core.
To know more about electromotive force visit:
https://brainly.com/question/13753346
#SPJ11
раgе 15.
A circular hole 2.5 cm in diameter was cut from the center of a steel dise 208 7.5 cm in diameter. Find the circumference of the hole and the area of the dise when the temperature was diagnosed by 100°c.
page 21.
A 250.0 m2 Pyrex glass container in filled with gasoline at 50.0t. How much gasoline is needed to fill the container again if it is wooled to 35°C ?
1. The area of the disk after the expansion is 44.29 cm².
2. 250.3675 m³ of gasoline is needed to fill the container again if it is cooled to 35°C.
1. A circular hole 2.5 cm in diameter was cut from the center of a steel disc 208 7.5 cm in diameter. Find the circumference of the hole and the area of the disc when the temperature was diagnosed by 100°c. The formula for the circumference of a circle is given by Circumference = 2πr
where r is the radius of the circle.
The area of a circle is given by the formula πr²,
where r is the radius of the circle.
The radius of the circle is r.
The diameter of the circle is 7.5 cm.
The radius of the circle, r = 7.5/2 = 3.75 cm.
The diameter of the hole is 2.5 cm.
The radius of the hole, r1 = 1.25 cm.
The increase in temperature, ΔT = 100°c.
The thermal expansion coefficient of steel, α = 1.2 × 10⁻⁵/°c.
Circumference of the hole = 2πr1= 2 x 3.14 x 1.25= 7.85 cm.
Area of the disk = πr²= 3.14 × (3.75)²= 44.18 cm²
After the temperature is increased by 100°c
The increase in the diameter of the disc is given by = αdΔT
d is the original diameter of the disc.
Δd = (1.2 × 10⁻⁵) × 7.5 × 100= 0.009 cm
increase in radius of the disk = Δd/2= 0.0045 cm
radius of the disk after expansion, r₂= r + Δr= 3.75 + 0.0045= 3.7545 cm
circumference of the disk after expansion = 2πr₂= 2 x 3.14 x 3.7545= 23.56 cm
Area of the disk after expansion = πr₂²= 3.14 × (3.7545)²= 44.29 cm²
The circumference of the hole is 7.85 cm
The area of the disk after the expansion is 44.29 cm².
2. A 250.0 m².The Pyrex glass container is filled with gasoline at 50.0°C.
The formula for the thermal expansion coefficient is given byα = Δl/(lΔT)
Δl is the increase in length, l is the original length and ΔT is the increase in temperature.
Given, the original temperature, T₁ = 50.0°C
The final temperature, T₂ = 35.0°C
Total change in temperature, ΔT = T₂ - T₁= 35.0 - 50.0= -15.0°C (negative because the temperature is decreasing)
The thermal expansion coefficient of the gasoline, α = 9.8 × 10⁻⁴/°c.
The volume of gasoline at 50.0°C, V₁ = 250.0 m³
Let V₂ be the volume of gasoline needed to fill the container at 35.0°C.
The formula for the increase in volume is given byΔV = V₁αΔTΔV = (250 × 9.8 × 10⁻⁴ × (-15.0))= -0.3675 m³
The negative sign indicates a decrease in volume.
The volume of gasoline required to fill the container at 35.0°C, V₂ = V₁ - ΔV= 250 - (-0.3675)= 250.3675 m³,
250.3675 m³ of gasoline is needed to fill the container again if it is cooled to 35°C.
To know more about gasoline please refer to:
https://brainly.com/question/14588017
#SPJ11
If 31,208 J of energy is stored in a 1.5 volt flashlight battery and a current of 3 A flows through the flashlight bulb, how long (in minutes) will the battery be able to deliver power to the flashlight at this level?
The battery will be able to deliver power to the flashlight at this level for approximately 115.6 minutes.
To calculate how long (in minutes) will the battery be able to deliver power to the flashlight, at a current of 3 A and with 31,208 J of energy stored in a 1.5 volt flashlight battery we need to use the equation:
Power = Voltage x Current. Given:
Energy = 31,208 J
Voltage = 1.5 volts
Current = 3 A
Therefore, Power = Voltage x Current
= 1.5 V x 3 A = 4.5 W
Now, we can use the equation:
Energy = Power x Time
Equate this equation and plug in the values:
31,208 J = 4.5 W × time
Therefore,
time = Energy / Power
time = 31,208 J / 4.5 W
time ≈ 6,935 s
= 115.6 min
Thus, the battery will be able to deliver power to the flashlight at this level for approximately 115.6 minutes.
To know more about deliver power visit:
https://brainly.com/question/31108609
#SPJ11
9.1. a. A person has a weight of W =150 lb. What is this in units of Newtons? 1N = 4.45N b. What is the persons mass in units of kg 4 c. Suppose the person was in deep space away from any planets. What would be his weight and mass? Explain your answers in a short sentence. d. What would the persons weight be on Jupiter if the acceleration due to the Jupiter's gravity is 2.5 times that of Earth: 9jupiter = 2.59Earth Give your answer in units of both N and lb.
a. The weight of the person W = 150 lb1 lb = 0.45359237 kg1 N = 1 kg m/s²1 lb = 4.45 N
b. The mass of the person is given as, M = W/g, where g = acceleration due to gravity.
At Earth's surface,
g = 9.8 m/s².W
= 150 lb = 67.5 kg m/s²g
= 9.8 m/s²
c. In deep space, away from any planets, the person's weight will be zero as there is no gravitational force acting on the person's mass. The person's mass will remain the same as in (b).
d. The weight of the person on Jupiter can be calculated as follows:
Weight on Jupiter = mass × acceleration due to gravity on Jupiter The acceleration due to gravity on Jupiter is 2.5 times that of Earth, i.e., 9jupiter = 2.59Earth.
Thus, the weight of the person on Jupiter is 175.23 N or 39.31 lb (rounded to two decimal places).
To know more about space visit:
https://brainly.com/question/31130079
#SPJ11
Find the final yield for a five mask-level process in which the density of fatal defects in the first two levels is 0.1 cm-2, 0.2 cm-2 in the next two levels, and 0.25 cm-2 in the final level. The chip area is 1 cm².
The final yield for a five mask-level process in which the density of fatal defects in the first two levels is 0.1 cm-2, 0.2 cm-2 in the next two levels, and 0.25 cm-2 in the final level, with a chip area of 1 cm², is 24.65%.
A five mask-level process has to be implemented. In the first two levels, the density of fatal defects is 0.1 cm-2, 0.2 cm-2 in the next two levels, and 0.25 cm-2 in the final level.
The chip area is 1 cm². The final yield has to be found.
Yield of the process at each stage is calculated as:
Y1 = exp(-A1*D1)
=exp(-0.1) = 0.9048Y
= exp(-A2*D2)
= exp(-0.1)
= 0.8187Y3
= exp(-A3*D3)
= exp(-0.2)
= 0.6703Y4
= exp(-A4*D4)
= exp(-0.2)
= 0.6703Y5
= exp(-A5*D5)
= exp(-0.25)
= 0.7788
The density of the fatal defect is inversely proportional to the yield of the process.
When the density of fatal defects is lower, the yield is higher. The final yield is obtained by multiplying the yield at each level.
The final yield is as follows:
YF = Y1 * Y2 * Y3 * Y4 * Y5YF
= 0.9048 * 0.8187 * 0.6703 * 0.6703 * 0.7788
= 0.2465 or 24.65%.
Therefore, the final yield for a five mask-level process in which the density of fatal defects in the first two levels is 0.1 cm-2, 0.2 cm-2 in the next two levels, and 0.25 cm-2 in the final level, with a chip area of 1 cm², is 24.65%.
Learn more about yield from the given link
https://brainly.com/question/25996347
#SPJ11
Why are circuit breakers and fuses not used to quench
the arc that persists at the secondary side of a CT when it is open
circuited
Therefore, circuit breakers and fuses are not used to quench the arc that persists at the secondary side of a CT when it is open circuited. Instead, a special arc extinguishing device is used, which is designed to extinguish the arc and protect the user and the equipment.
Circuit breakers and fuses are not used to quench the arc that persists at the secondary side of a CT when it is open circuited due to several reasons. Let us have a look at them below:
When we use a current transformer (CT), the open-circuited secondary side creates an electrical arc, and this arc is hazardous to the user and damages the equipment. When the CT is open-circuited, a high voltage across the secondary occurs due to the high impedance of the burden. This voltage creates a spark or an arc across the open contacts of the secondary. This arc can be hazardous for the user and may even damage the equipment.
There are two kinds of current transformers: Bar-type CT and wound-type CT. The winding in the current transformer is the primary winding, which is magnetically coupled to the secondary winding. The voltage on the secondary side of the wound-type CT is typically 5 to 20 volts. When the secondary is open, it can create a spark or an arc.
The high voltage across the secondary side creates an arc that is very difficult to extinguish with a circuit breaker or a fuse. The current flows into the CT, which limits the magnitude of the current, and the CT's impedance increases. As a result, the current that flows through the arc is very low, which makes it difficult for a circuit breaker or a fuse to extinguish the arc.
To know more about circuit breakers visit:
https://brainly.com/question/9774218
#SPJ11
Three moles of an ideal gas are compressed from 5.5x10-2 to 2.5x10-2 m’. During the compression 6.1x103 J of work is done on the gas, and heat is removed to keep the temperature of the gas constant at all times. Find: a. AU b. Q
(a) The change in internal energy (ΔU) of the gas is -6.1 kJ.
(b) The heat transferred (Q) from the gas is -6.1 kJ.
The change in internal energy (ΔU) of an ideal gas can be determined using the first law of thermodynamics, which states that the change in internal energy of a system is equal to the heat transferred (Q) into or out of the system minus the work (W) done by or on the system: ΔU = Q - W.
In this case, the compression of the gas is done at a constant temperature, which means there is no change in internal energy due to temperature change (ΔU = 0). Therefore, the work done on the gas is equal to the heat transferred: ΔU = Q - W. Since ΔU is zero, we can rewrite the equation as Q = W.
Given that 6.1 kJ of work is done on the gas during compression, the heat transferred (Q) is also equal to -6.1 kJ.
Learn more about:Internal energy
brainly.com/question/11742607?
#SPJ11
why is alternating voltage induced in the rotating armature of a generator
Alternating voltage is induced in the rotating armature of a generator due to the principle of electromagnetic induction.
When a conductor, such as the armature coil, cuts through magnetic field lines, an electric current is induced in the conductor. In the case of a generator, the rotating armature coil cuts through the magnetic field produced by the stationary field magnets.As the armature coil rotates, it constantly changes its position relative to the magnetic field, resulting in a changing magnetic flux linkage. According to Faraday's law of electromagnetic induction, this changing magnetic flux linkage induces an electromotive force (EMF) or voltage in the armature coil. The induced voltage is alternating in nature because the magnetic flux through the coil is continuously changing as the coil rotates.
To know more about coil visit :
https://brainly.com/question/12000391
#SPJ11
Rank these quantites from greatest to least at each point: a) Momentum, b)KE, c)PE, Rank the scale readings from highest to lowest
The ranking from greatest to least at each point, without specific context or values, would be: Momentum - Greatest, Kinetic Energy - Greatest, Potential Energy - Greatest.
When considering the three points: momentum, kinetic energy (KE), and potential energy (PE), and without specific context or values, the ranking from greatest to least for each point would be as follows:
a) Momentum: Greatest, Middle, Least.
b) Kinetic Energy: Greatest, Middle, Least.
c) Potential Energy: Greatest, Middle, Least.
It's important to note that these rankings are based on a general understanding and can vary depending on the specific situation or system being considered.
The precise values and order of these quantities depend on factors such as mass, velocity, height, and other relevant variables, which may alter their relative magnitudes and rankings in a given scenario.
Learn more about Momentum:
https://brainly.com/question/30677308
#SPJ4
One main source of electromagnetic interference is induction due to so-called earth loops. Provide a method to mitigate induction in an earth loop. You may use sketches if necessary.
One method to mitigate induction in an earth loop and reduce electromagnetic interference (EMI) is by implementing a technique called "Grounding and Bonding."
This technique involves proper grounding and bonding of electrical equipment and systems to minimize the effects of induction and eliminate potential earth loops.
Here are the steps involved in mitigating induction in an earth loop through grounding and bonding:
1. Establish a single-point ground: Ensure that all electrical equipment and systems share a common grounding point. This helps prevent the formation of multiple paths for electrical current, which can lead to earth loops. The single-point ground should be connected to a reliable and low impedance grounding system.
2. Properly bond all electrical equipment: Bonding refers to connecting all metal components and enclosures of electrical equipment together. This helps create equipotential bonding, ensuring that all metal parts are at the same electrical potential. By bonding all equipment together, any induced currents or potential differences are minimized.
3. Use low-impedance grounding conductors: Grounding conductors, such as copper wires or grounding straps, should have low impedance to effectively carry electrical currents to the grounding system. Low-impedance grounding conductors help reduce the voltage differences that can occur during induction, limiting the formation of earth loops.
4. Implement shielding techniques: Shielding involves using conductive materials to enclose and isolate sensitive electrical equipment. By using shielding materials, such as metal enclosures or shielding tapes, electromagnetic fields generated by induction can be contained and prevented from interfering with nearby equipment.
5. Separate power and signal cables: Keep power cables and signal cables separated to minimize the coupling of electromagnetic interference. Routing power and signal cables in separate conduits or using shielded cables for sensitive signals can help reduce the effects of induction.
6. Employ filters and surge protection devices: Install appropriate filters and surge protection devices to suppress electrical noise and transient surges caused by induction. These devices can help attenuate high-frequency noise and prevent it from affecting sensitive equipment.
It is important to consult and adhere to local electrical codes and guidelines when implementing grounding and bonding practices. A qualified electrician or electrical engineer should be involved in the design and installation process to ensure compliance and safety.
Below is a simplified sketch illustrating the concept of grounding and bonding to mitigate induction in an earth loop:
```
Earth Loop Earth
┌───────────────┐ ┌───────────────┐
│ Equipment 1 ────┐ ┌─────┤ Grounding │
└───────────────┘ │ │ └───────────────┘
│
┌───────────────┐ │ │ ┌───────────────┐
│ Equipment 2 ────┼───────┼─────┤ Grounding │
└───────────────┘ │ │ └───────────────┘
│
┌───────────────┐ │ │ ┌───────────────┐
│ Equipment 3 ────┘ └─────┤ Grounding │
└───────────────┘ └───────────────┘
```
In this sketch, each equipment is bonded together, and all the bonding connections are connected to a single-point grounding system, which leads to the earth. This setup helps prevent the formation of earth loops and reduces the potential for induction-induced electromagnetic interference.
To know more about electromagnetic interference, visit:
https://brainly.com/question/32635415#
#SPJ11
5 marks Q3) For Parallel kic circuit, show that why the circuit will behave as a capaicitance if the frequency (f) is more greater than the resonance frepuency(fo), (fosfo) and why it will behave as inductance if fec fo.
For parallel RLC circuits, the resonance frequency (fo) is the frequency at which the capacitive and inductive reactances cancel each other out, resulting in a minimum impedance.
The circuit behaves as an inductor or capacitor depending on the frequency (f) compared to the resonance frequency (fo).Parallel RLC circuit:
If the frequency (f) is greater than the resonance frequency (fo), the circuit behaves as a capacitor. The capacitive reactance (XC) is inversely proportional to the frequency (f), so when the frequency (f) is increased, the capacitive reactance (XC) is reduced. The capacitance of the circuit is reduced as a result of the decrease in capacitive reactance (XC).If the frequency (f) is less than the resonance frequency (fo), the circuit behaves as an inductor.
The inductive reactance (XL) is directly proportional to the frequency (f), so when the frequency (f) is decreased, the inductive reactance (XL) is reduced. The inductance of the circuit is reduced as a result of the decrease in inductive reactance (XL).The capacitor is more dominant when the frequency (f) is high, while the inductor is more dominant when the frequency (f) is low. When the frequency (f) equals the resonance frequency (fo), the reactances of the inductor and capacitor are equal and opposite, resulting in a minimum impedance.
The circuit becomes a pure resistor with the minimum impedance.
If the frequency (f) is greater than the resonance frequency (fo), the circuit behaves as a capacitor, but if it is less than the resonance frequency (fo), the circuit behaves as an inductor.
Learn more about resonance frequency from:
https://brainly.com/question/9324332
#SPJ11
3. [5K Double Slit Experiment] Two narrow slits separated by 1.0 mm are illuminated by 551 THz light. Find the distance between the first bright fringes on either side of the central maxima on a screen 5.0 m from the slits.
In order to find the distance between the first bright fringes on either side of the central maxima on a screen 5.0 m from the slits in the 5K Double Slit Experiment with 551 THz light and two narrow slits separated by 1.0 mm, we can use the equation d sinθ = mλ,
where d is the distance between the two slits, λ is the wavelength of the light, θ is the angle between the central maximum and the mth order bright fringe, and m is the order of the bright fringe. Given that the two narrow slits are separated by 1.0 mm, we have d = 1.0 × 10⁻³ m.
Also given that the light has a frequency of 551 THz, we can use the equation λ = c/f, where c is the speed of light and f is the frequency of the light. Therefore, λ = (3.00 × 10⁸ m/s)/(551 × 10¹² Hz) = 5.44 × 10⁻⁷ m. Since we are looking for the distance between the first bright fringes on either side of the central maxima, we can set m = 1.
Plugging in the values, we get: d[tex]sinθ = mλ ⇒ sinθ = mλ/d = (1 × 5.44 × 10⁻⁷ m)/(1 × 10⁻³ m) = 5.44 × 10⁻⁴.[/tex] To find the angle θ, we can use the inverse sine function: θ = sin⁻¹(5.44 × 10⁻⁴) = 3.11 × 10⁻² rad.
To know more about Experiment visit:
https://brainly.com/question/15088897
#SPJ11