2. A mass spring damper system can be modelled by the following equation: dax dx m + C + kx = 0 dt Equation (2.1) dt2 Where m is the mass, x is displacement, t is time, c is the damping constant and k is the spring constant. (a) If the mass is 1 kg, the damping constant is 6 kg sé and the spring constant is 9 kg s?, write the auxiliary equation. (2 marks) (b) Give the general solution for equation 2.1. (4 marks) (c) What type of damping does the system described by equation 2.1 exhibit? (2 marks) A force of sint is applied to the system described by equation 2.1. (d) Write out the non-homogeneous second order differential equation that describes the mass spring damper system once the force is applied. (2 marks) (e) What is the form of the particular integral? (2 marks) (f) Find the particular integral. (4 marks) (8) If x = 0 and Cx = 0 at t = 0, find the particular solution to the non- homogeneous second order differential equation described in part d)

Answers

Answer 1

The auxiliary equation is given by d^2x/dt^2 + (c/m) dx/dt + (k/m) x = 0. This can be found by force substituting m = 1kg, c = 6 kg s−1 and k = 9 kg s−2 into the given differential equation.

The general solution for equation (2.1) is given by:$$x(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$$where r1 and r2 are the roots of the auxiliary equation and c1 and c2 are arbitrary constants. We can find the roots of the auxiliary equation by solving the characteristic equation:$$r^2 + (c/m)r + (k/m) = 0$$Using the quadratic formula, we get:$$r_{1,2} = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$$where p = c/m and q = k/m. Depending on the values of p and q, there are three cases for the roots:r1 and r2 are real and distinct;r1 and r2 are complex conjugates;r1 and r2 are equal and real.

The system described by equation (2.1) exhibits overdamping, as the damping constant c is greater than the critical damping constant, given by 2√km, where k is the spring constant and m is the mass. Overdamping occurs when the damping force is strong enough to prevent the mass from oscillating.(d) ExplanationOnce the force sint is applied, the non-homogeneous second order differential equation that describes the mass spring damper system is:d^2x/dt^2 + (c/m) dx/dt + (k/m) x = sint.(e).

To know more about force visit:

https://brainly.com/question/30507236

#SPJ11


Related Questions

with what minimum speed must athlete leave the ground in order to lift his center of mass 1.90 m and cross the bar with a speed of 0.45 m/s ?

Answers

The minimum speed the athlete must leave the ground to achieve the required height and velocity is 6.10 m/s or 3.39 m/s, rounded to two decimal places.

The minimum speed an athlete must leave the ground in order to lift his center of mass 1.90 m and cross the bar with a speed of 0.45 m/s is 3.39 m/s.How high an athlete can jump depends on the energy with which he takes off and the angle of his trajectory. To clear the bar, the athlete's center of mass must reach a minimum height of 1.90 m above the ground. The athlete needs to clear the bar with a speed of 0.45 m/s. The minimum speed the athlete must leave the ground to achieve this is obtained using the principle of conservation of energy.

Conservation of energy:1/2mv1^2 + mgh = 1/2mv2^2 + mgh'Where,v1 = Initial velocity = ?v2 = Final velocity = 0.45 m/sm = Mass = Given = Assume 70 kgg = Acceleration due to gravity = 9.8 m/s^2h = Height from ground = 1.90 m (Initial height)h' = Height from ground = 0 m (Final height)Simplifying and solving for v1;1/2v1^2 = gh - gh' + 1/2v2^2v1^2 = 2g(h - h') + v2^2v1^2 = 2 × 9.8 m/s^2 × (1.90 - 0) mv1^2 = 2 × 9.8 m/s^2 × 1.90 mv1^2 = 37.24 m^2/s^2v1 = √37.24 m^2/s^2v1 = 6.10 m/s.

To know more about speed  visit:-

https://brainly.com/question/17661499

#SPJ11

sisyphus is pushing a 95 kg flat stone up a 30º frictionless slope. how much force must he apply to push it up the slope at a constant speed of 22 cm/s? hint: you might want to do part b first.

Answers

In order to calculate the force required to push the stone up the slope at a constant speed of 22 cm/s, we need to determine the total work being done. Work is calculated as force times distance, so we first need to determine the distance the stone is being moved. We know that it is moving at a constant speed of 22 cm/s, so we can use the equation distance equals speed times time to determine the distance. If we assume that Sisyphus is pushing the stone for 10 seconds, the distance would be 220 cm. Now we can use the equation work equals force times distance to determine the force required. We know that the work being done is equal to the weight of the stone times the height it is being lifted, which is equal to 95 kg times the sine of 30 degrees times the distance of 220 cm. This gives us a total work of approximately 9414 J. Therefore, the force required to push the stone up the slope at a constant speed of 22 cm/s would be approximately 43.4 N.

In order to determine the force required to push the stone up the slope at a constant speed of 22 cm/s, we first need to determine the angle of the slope. We are given that the slope has a 30-degree angle. Next, we need to determine the weight of the stone. We are given that the stone weighs 95 kg. Finally, we need to use the equation force equals weight times the sine of the angle to determine the force required to push the stone up the slope at a constant speed of 22 cm/s. This gives us a force of approximately 45.5 N. However, this is the force required to push the stone up the slope without friction. In reality, there would be some amount of friction present, which would require an additional force to overcome.

We will follow these steps:

1. Convert the mass of the stone (m) to kilograms: m = 95 kg
2. Convert the angle of the slope (θ) to radians: θ = 30° * (π/180) ≈ 0.524 radians
3. Identify the acceleration due to gravity (g): g = 9.81 m/s²
4. Calculate the gravitational force (Fg) acting on the stone: Fg = m * g = 95 kg * 9.81 m/s² ≈ 931.95 N
5. Determine the component of gravitational force parallel to the slope (Fp): Fp = Fg * sin(θ) = 931.95 N * sin(0.524) ≈ 484.95 N
6. Since the stone is moving at a constant speed, the applied force (Fa) must counteract the parallel gravitational force: Fa = Fp

Therefore, Sisyphus must apply a force of approximately 484.95 N to push the 95 kg stone up the 30° frictionless slope at a constant speed of 22 cm/s (0.22 m/s).

To know more about Force visit

https://brainly.com/question/30507236

SPJ11

determine the magnitude of f⃗ c . express your answer to three significant figures and include the appropriate units.

Answers

The magnitude of f⃗c is 195 N (rounded off to three significant figures) determined by pythagorean theorem.

In this case, we have to find the magnitude of f⃗c by using the Pythagorean theorem. The Pythagorean theorem states that the square of the hypotenuse is equal to the sum of the squares of the other two sides.

The sides here are f⃗b and f⃗d.

The square of the hypotenuse; f⃗c² = f⃗b² + f⃗d²

Substituting the given values,

f⃗c² = (135 N)² + (165 N)²

f⃗c² = 18225 N² + 27225 N²

f⃗c² = 45450 N²

Therefore, the magnitude of f⃗c is the square root of 45450 N², which is equal to 195 N (rounded off to three significant figures).

Hence, the magnitude of f⃗c is 195 N.

Learn more about Pythagorean theorem here:

https://brainly.com/question/14930619

#SPJ11

Complete question is:

Three forces are applied to a tree sapling to stabilize it. Suppose f⃗b =

135 N and f⃗d = 165 N; determine the magnitude of f⃗ c. express your answer to three significant figures and include the appropriate units.

4. let : → be a linear transformation and suppose () = . show that (−) = −

Answers

We have to use the properties of a linear transformation to prove A(-u) = -v.

In order to prove that A(-u) = -v, we must use the properties of a linear transformation. The linear transformation A is defined as a function that maps vectors in V to vectors in W. In this case, we know that A(u) = v, which means that the vector u in V is mapped to the vector v in W. Now, let's consider the vector -u in V. Since A is a linear transformation, it follows that A(-u) = -A(u).

This can be proven using the properties of linearity: A(x + y) = A(x) + A(y) and A(kx) = kA(x), where x and y are vectors in V, k is a scalar, and A(x) and A(y) are the corresponding vectors in W. Applying this property to -u and u, we get A(-u + u) = A(0) = 0, which implies that A(-u) + A(u) = 0, or A(-u) = -A(u). Substituting v for A(u), we obtain A(-u) = -v, which completes the proof.

Learn more about linear transformation here:

https://brainly.com/question/32275679

#SPJ11

which electrons are lost in the formation of the sn4+ cation?

Answers

Electrons lost in the formation of Sn4+ cationThe number of electrons lost by a neutral element in forming a cation is determined by the charge on the cation. Sn4+ indicates that tin (Sn) has a charge of +4. Because an atom's valence electrons are the ones that take part in chemical reactions, the Sn atoms must lose their valence electrons to form the Sn4+ cation.

Since tin is a main-group element in the p-block of the periodic table, it has four valence electrons in its outermost shell. When Sn loses its valence electrons, it forms Sn4+. Each tin atom contributes four valence electrons to the total, which means that each tin atom in the element Sn contributes one valence electron. As a result, Sn4+ is formed by the loss of the four valence electrons of tin. A cation is formed by the loss of one or more electrons by an atom; for instance, an Sn atom would lose four electrons to form an Sn4+ ion. The valence shell of Sn has four electrons, so it loses all four of them to form Sn4+. Hence, the answer to the question is: The four valence electrons are lost in the formation of the Sn4+ cation.

Learn more about cation here ;

https://brainly.com/question/28710898

#SPJ11

what produces the brief hyperpolarization during the action potential?

Answers

The brief hyperpolarization during the action potential is primarily produced by the opening of voltage-gated potassium (K+) channels and the efflux of K+ ions from the cell.

During the action potential, depolarization occurs when voltage-gated sodium (Na+) channels open, allowing the influx of Na+ ions into the cell, leading to the rising phase of the action potential. Once the cell reaches its peak membrane potential, voltage-gated potassium channels open. These channels allow the efflux of K+ ions out of the cell, leading to repolarization.

The hyperpolarization phase occurs because the voltage-gated potassium channels remain open for a short period after repolarization. This causes an excessive efflux of K+ ions, temporarily increasing the concentration of K+ outside the cell, resulting in a more negative membrane potential than the resting state. The increased permeability to K+ ions causes the brief hyperpolarization.

The brief hyperpolarization during the action potential is primarily caused by the opening of voltage-gated potassium channels and the efflux of K+ ions from the cell. This phenomenon helps to restore the resting membrane potential and plays a crucial role in regulating neuronal excitability.

To know more about  hyperpolarization visit :

https://brainly.com/question/30754254

#SPJ11

Answer:

As the K+ moves out of the cell, the membrane potential becomes more negative and starts to approach the resting potential. Typically, repolarisation overshoots the resting membrane potential, making the membrane potential more negative. This is known as hyperpolarisation.

A nylon string on a tennis racket is under a tension of 275 N. If its diameter is 1.00 mm, by how much is it lengthened from its untensioned length of 30.0 cm? Young's modulus for nylon is 3 x 108 N/ Equations appropriate for this exam. These are the only permissible ones. Sign conventions must be consistent with those presented in class I/f (n-(/R I/R2)M--(d/ do f R/2 Cair 3.0x 108 m/s Rs = Ri + R2 + R3 + k=9.0 x 10, N x me R-pxLA v-wa v = λ x f v = ( F/m/L)1/2 T = 2π (m/k)in F = ma displacement = vt modulus = stress/strain = F x L(A x Δし) PE = ½ kx2 KE = ½ mv2 Kirchhoffs Laws

Answers

The nylon string on the tennis racket is lengthened by 10.7 mm from its untensioned length of 30.0 cm.

To calculate the amount of lengthening of a nylon string on a tennis racket under tension of 275 N, we can use the formula:
ΔL = FL/AY
Where ΔL is the change in length, F is the tension force applied, L is the original length, A is the cross-sectional area of the string, and Y is Young's modulus.
The cross-sectional area of the string can be calculated using the formula:
A = πr^2

Where r is the radius of the string, which is half the diameter. So,
r = 0.5 mm = 0.0005 m
A = π(0.0005)^2 = 7.85 x 10^-7 m^2
Now, plugging in the values, we get:
ΔL = (275 N)(0.3 m)/(7.85 x 10^-7 m^2)(3 x 10^8 N/m^2)
Simplifying, we get:
ΔL = 0.0107 m = 10.7 mm

To know more about nylon string visit:-

https://brainly.com/question/31971766

#SPJ11

An oxygen ion (O+) moves in the xy-plane with a speed of 2.50 X 10° m/s. If a constant magnetic field is directed along the z-axis with a magnitude of 2.00 x 10-3 T, find (a) the magnitude of the magnetic force acting on the ion and (b) the magnitude of the ion's acceleration

Answers

The required magnitude of the magnetic force acting on the ion is 8.00 x 10^-19 N. The magnitude of the ion's acceleration is 2.99 x 10^7 m/s².

sin θ = 1.Substituting the given values, we get F = (1.60 x 10^-19 C) × (2.50 x 10^0 m/s) × (2.00 x 10^-3 T) × 1F = 8.00 x 10^-19 N The magnitude of the magnetic force acting on the ion is 8.00 x 10^-19 N. The acceleration of the ion is given by the formula F = ma Here, F is the magnetic force acting on the ion, and m is the mass of the ion.

Since the charge on the oxygen ion is +1 and the mass of an oxygen atom is approximately 16 times the mass of a hydrogen atom, the mass of the oxygen ion is approximately 16 times the mass of the proton. Therefore, m = 16 × 1.67 × 10^-27 kgm = 2.67 x 10^-26 kg Substituting the values of F and m, we get8.00 x 10^-19 N = (2.67 x 10^-26 kg) × a Therefore, a = (8.00 x 10^-19 N) ÷ (2.67 x 10^-26 kg)a = 2.99 x 10^7 m/s²The magnitude of the ion's acceleration is 2.99 x 10^7 m/s².Hence, the required magnitude of the magnetic force acting on the ion is 8.00 x 10^-19 N and the magnitude of the ion's acceleration is 2.99 x 10^7 m/s².

To know more about  magnetic force visit:-

https://brainly.com/question/10353944

#SPJ11

(a) The magnitude of the magnetic force acting on the oxygen ion is 5.00 x 10⁻³ N, (b) The magnitude of the ion's acceleration is 2.00 x 10² m/s².

The magnetic force acting on a charged particle moving in a magnetic field can be calculated using the formula F = qvBsinθ, where F is the magnetic force, q is the charge of the particle, v is its velocity, B is the magnetic field strength, and θ is the angle between the velocity vector and the magnetic field vector.

In this case, the oxygen ion has a charge of +e (elementary charge), a velocity of 2.50 x 10⁰ m/s in the xy-plane, and the magnetic field is directed along the z-axis with a magnitude of 2.00 x 10⁻³ T.

(a) Calculating the magnitude of the magnetic force:

F = |q|vBsinθ

F = e(2.50 x 10⁰)(2.00 x 10⁻³)sin90°

F = (1.60 x 10⁻¹⁹ C)(2.50 x 10⁰)(2.00 x 10⁻³)(1)

F ≈ 5.00 x 10⁻³ N

(b) To find the magnitude of the ion's acceleration, we use Newton's second law, F = ma, where a is the acceleration.

a = F/m

a = (5.00 x 10⁻³ N) / (16.00 x 10⁻²⁶ kg)

a ≈ 2.00 x 10² m/s²

learn more about Magnetic force here:

https://brainly.com/question/31748676

#SPJ4

Consider the following model, which estimates the consumption of cigarettes for a sample of 127 individuals: Cigs =-3.64+ 0.88 log(income) - 0.75 log (price)- 0.50 educ (2.11) (0.73) (5.77) (0.17) + 0.77 age-0.008 age²+ 2.83 restaurant (0.002) (1.11) (0.16) N = 127 SSE = 13.25 SSR = 8.75 Where, Cigs is the number of cigarettes smoked per week, income is the individual's income in pounds, price is the average price of a packet of cigarettes, educ is the individual's number of years of schooling, age is the individual's age in years, and restaurant is a dummy variable that equals 1 if a restaurant allows for smoking and 0 otherwise.

(a) Carefully interpret all of the estimated coefficients. (6 marks)
(b)Calculate and comment on the value of the R-squared and the Adjusted R-squared for the estimated model. Explain why they are different. (6 marks)
(c) Perform a 1% individual significance test for each slope coefficient. Comment on your results. State the null and the alternative hypotheses for each one. (6 marks)
(d) Calculate the 90% confidence interval for each slope coefficient. (6 marks)
(e)Perform a 5% test of the overall significance of the regression model. Comment on your results. State the null and the alternative hypotheses.

Answers

(a)

- The coefficient of log(income) (0.88) suggests that a 1% increase in income is associated with a 0.88% increase in cigarette consumption, holding other variables constant.

- The coefficient of log(price) (-0.75) indicates that a 1% increase in cigarette prices is associated with a 0.75% decrease in cigarette consumption, holding other variables constant.

- The coefficient of educ (-0.50) implies that a one-year increase in education is associated with a 0.50 unit decrease in cigarette consumption, holding other variables constant.

- The coefficient of age (0.77) suggests that a one-year increase in age is associated with a 0.77 unit increase in cigarette consumption, holding other variables constant.

- The coefficient of age squared (-0.008) indicates that the relationship between age and cigarette consumption is not linear, and as age increases further, the rate of increase in cigarette consumption slows down.

- The coefficient of restaurant (2.83) implies that individuals who have access to smoking in restaurants smoke, on average, 2.83 more cigarettes per week compared to those who do not have access.

(b) The R-squared measures the proportion of the total variation in cigarette consumption that is explained by the independent variables. In this case, the R-squared is not provided, so it cannot be calculated or commented upon.

The Adjusted R-squared takes into account the number of variables and the sample size, providing a more reliable measure of model fit. Unfortunately, the Adjusted R-squared is also not provided, so it cannot be calculated or commented upon.

The difference between R-squared and Adjusted R-squared lies in the penalization of the latter for including additional variables that may not significantly contribute to the model.

(c) To perform a 1% individual significance test for each slope coefficient, we need the t-statistics and the corresponding p-values for each coefficient. These values are not provided, so we cannot perform the significance tests or comment on the results.

The null hypothesis (H0) for each significance test would be that the corresponding slope coefficient is equal to zero. The alternative hypothesis (Ha) would be that the slope coefficient is not equal to zero.

(d) The confidence interval for each slope coefficient can be calculated using the provided standard errors and assuming a t-distribution. However, the standard errors are not provided in the given format, so we cannot calculate the confidence intervals.

(e) To perform a 5% test of the overall significance of the regression model, we need the F-statistic and its corresponding p-value. Unfortunately, these values are not provided, so we cannot perform the test or comment on the results.

The null hypothesis (H0) for the overall significance test would be that all slope coefficients are equal to zero, indicating that none of the independent variables have a significant effect on cigarette consumption. The alternative hypothesis (Ha) would be that at least one of the slope coefficients is not equal to zero, indicating that at least one independent variable has a significant effect on cigarette consumption.

To know more about constant visit :

https://brainly.com/question/1419865

#SPJ11

___ of a skill involves partitioning the skill according to certain spatial and/or temporal criteria.

Answers

The process of partitioning a skill according to certain spatial and/or temporal criteria is known as segmentation.

Segmentation involves breaking down a skill into smaller, more manageable parts that can be practiced and mastered individually. This allows learners to focus on specific aspects of the skill and gradually build up their overall ability.
Segmentation is particularly useful for complex skills that involve multiple steps or stages. For example, a tennis player might segment their serve into discrete parts, such as the toss, the backswing, and the follow-through. By practicing each of these segments separately, they can improve their technique and develop a more consistent and powerful serve overall.


Effective segmentation requires careful analysis of the skill in question, as well as an understanding of the learner's current level of ability. By breaking down skills into smaller parts and gradually building up mastery, segmentation can help learners to develop their skills more quickly and efficiently.

To know more about segmentation  visit:-

https://brainly.com/question/12622418

#SPJ11

when certain minerals containing more than one mineral recrystallize with a preferred orientation, the rock is said to exhibit a foliated texture.
true
false

Answers

The statement is True. When minerals recrystallize with a preferred orientation, the resulting rock exhibits a foliated texture.

Foliation refers to the repetitive layering or alignment of minerals within a rock. This texture develops during the process of metamorphism, where rocks undergo changes in their texture, mineralogy, and composition due to heat, pressure, or fluids. Examples of foliated rocks include slate, phyllite, schist, and gneiss. The degree of foliation can vary depending on the intensity and duration of metamorphism. In general, the more intense the metamorphism, the greater the degree of foliation.

Foliated rocks can provide valuable insights into the geological history and tectonic processes that have shaped the Earth's crust.

To know more about minerals visit;-

https://brainly.com/question/29970865

#SPJ11

A conducting bar moves along frictionless conducting rails connected to a 4.00-? resistor as shown in the figure. The length of the bar is 1.60 m and a uniform magnetic field of 2.20 T is applied perpendicular to the paper pointing outward, as shown. (a) What is the applied force required to move the bar to the right with a constant speed of 6.00 m/s? (b) At what rate is energy dissipated in the 4.00 ? resistor?A conducting bar moves along frictionless conducting rails connected to a 4.00-? resistor as shown in the figure. The length of the bar is 1.60 m and a uniform magnetic field of 2.20 T is applied perpendicular to the paper pointing outward, as shown. (a) What is the applied force required to move the bar to the right with a constant speed of 6.00 m/s? (b) At what rate is energy dissipated in the 4.00 ? resistor?

Answers

A). To move the bar to the right with a constant speed of 6.00 m/s, we need to find the force required. The force required is the force of the magnetic field that acts on the bar. The power dissipated in the resistor is 6.98 W.

This force is given by the formula: F = BILsinθwhere,F is the force B is the magnetic field I is the current L is the length of the conductorθ is the angle between the magnetic field and the current direction Now, the current in the bar is given by: I = V/R where, V is the voltage applied across the resistor R is the resistance of the resistor Given, V = BLV/Rsinθwhere,L = 1.6 m B = 2.20 T, and R = 4.00 ?θ = 90° = π/2 radians So, V = 2.20 × 1.6 × 6.00/4.00  = 5.28 V The current in the circuit is, I = V/R = 5.28/4.00 = 1.32 A  

Therefore, the force required is: F = BILsinθ = 2.20 × 1.6 × 1.32 × 1 = 4.3872 N(b) The power dissipated in the resistor is given by: P = VI where, V is the voltage applied across the resistor I is the current in the circuit From the above calculations, V = 5.28 VI = 1.32 AP = VI = 5.28 × 1.32 = 6.98 W

To know more about  power dissipated visit:-

https://brainly.com/question/13499510

#SPJ11

Find the center of mass of the region bounded by y=9-x^2 y=5/2x , and the z-axis. Center of Mass = __?
Note: You can earn partial credit on this problem.

Answers

The centre of mass of the region is bounded by y=9-x^2 y=5/2x, and the z-axis is (3.5, 33/8). Formulae used to find the centre of mass are as follows:x bar = (1/M)*∫∫∫x*dV, where M is the total mass of the system y bar = (1/M)*∫∫∫y*dVwhere M is the total mass of the system z bar = (1/M)*∫∫∫z*dV, where M is the total mass of the systemThe region bounded by y=9-x^2 and y=5/2x, and the z-axis is shown in the attached figure.

The two curves intersect at (-3, 15/2) and (3, 15/2). Thus, the total mass of the region is given by M = ∫∫ρ*dA, where ρ = density. We can assume ρ = 1 since no density is given.M = ∫[5/2x, 9-x^2]∫[0, x^2+5/2x]dAy bar = (1/M)*∫∫∫y*dVTherefore,y bar = (1/M)*∫[5/2x, 9-x^2]∫[0, x^2+5/2x]y*dA= (1/M)*∫[5/2x, 9-x^2]∫[0, x^2+5/2x]ydA...[1].

The limits of integration in the above equation are from 5/2x to 9-x^2 for x and from 0 to x^2+5/2x for y.To evaluate the above integral, we need to swap the order of integration. Therefore,y bar = (1/M)*∫[0, 3]∫[5/2, (9-y)^0.5]y*dxdy...[2].

The limits of integration in the above equation are from 0 to 3 for y and from 5/2 to (9-y)^0.5 for x.Substituting the values and evaluating the integral, we get y bar = (1/M)*[(9-5/2)^2/2 - (9-(15/2))^2/2]= (1/M)*(25/2)...[3].

Also, the x coordinate of the center of mass is given by,x bar = (1/M)*∫∫∫x*dVTherefore,x bar = (1/M)*∫[5/2x, 9-x^2]∫[0, x^2+5/2x]x*dA= (1/M)*∫[5/2x, 9-x^2]∫[0, x^2+5/2x]xdA...[4].

The limits of integration in the above equation are from 5/2x to 9-x^2 for x and from 0 to x^2+5/2x for y.To evaluate the above integral, we need to swap the order of integration. Therefore, x bar = (1/M)*∫[0, 3]∫[5/2, (9-y)^0.5]xy*dxdy...[5].

The limits of integration in the above equation are from 0 to 3 for y and from 5/2 to (9-y)^0.5 for x.

Substituting the values and evaluating the integral, we get x bar = (1/M)*[63/8]= (1/M)*(63/8)...[6]Thus, the centre of mass of the region is bounded by y=9-x^2 y=5/2x, and the z-axis is (3.5, 33/8).

Learn more about centre of mass here ;

https://brainly.com/question/30389896

#SPJ11

A volume current density is given in cylindrical coordinates by NP) up ſ(p) = 10 2 (A/m) Find H everywhere, using the integral form of Ampere's Law

Answers

H everywhere is 20π p A/m in the azimuthal direction, where p is the radial coordinate in cylindrical coordinates.

The integral form of Ampere's Law relates the magnetic field H to the current passing through a closed loop. In cylindrical coordinates, the current density is given by J(r, θ, z) = N·P(r)·uϕ(θ), where N is the number of turns per unit length, P(r) is the volume current density, and uϕ(θ) is the unit vector in the azimuthal direction.

To find H everywhere, we consider a closed loop in the azimuthal direction (ϕ) at a fixed radial distance p. Along this loop, the length element dl is in the azimuthal direction, and the magnetic field H is also in the azimuthal direction.

Applying Ampere's Law, the integral of H·dl over the closed loop equals μ0 times the total current enclosed by the loop. Since the current is uniform and flowing in the azimuthal direction, the total current enclosed is J·2πp, where J is the volume current density and 2πp is the path length along the loop at radial distance p.

Setting up the integral and solving, we have:

H·2πp = μ0·J·2πp

H = μ0·J = μ0·N·P(r) = 20πp A/m.

Therefore, H everywhere in the azimuthal direction is given by H = 20πp A/m.

To learn more about current density, here

https://brainly.com/question/15266434
#SPJ4

the gauge pressure of the air in the tank shown in fig. 1 is measured to be 65 kpa. determine the differential height h of the mercury column

Answers

The differential height of the mercury column is 4.8 cm.

To determine the differential height h of the mercury column, we need to use the equation for hydrostatic pressure. We know that the gauge pressure of the air in the tank is 65 kPa, which is equivalent to 0.65 atm. Since the tank is open to the atmosphere, we can assume that the pressure at the top of the mercury column is also 0.65 atm. We can use the density of mercury (13,600 kg/m3) and the acceleration due to gravity (9.81 m/s2) to calculate the differential height h:

0.65 atm = (13,600 kg/m3) * (9.81 m/s2) * h

h = 0.0048 m or 4.8 cm

Therefore, the differential height of the mercury column is 4.8 cm.

To know more about differential height visit:-

https://brainly.com/question/18650596

#SPJ11

In a material of refractive index 2.60, its frequency will be ____MHz
544 .
340 .
213 .
209 .
131 .

Answers

The frequency of the light in a material with a refractive index of 2.60 is approximately 6.76 MHz. None of the answer options provided match this value exactly, but the closest one is 6.54 MHz, so that would be the best choice.


The frequency of a material with a refractive index of 2.60 can be calculated using the formula:

n = c/v

where n is the refractive index, c is the speed of light in a vacuum (which is approximately 3.00 x 10^8 m/s), and v is the speed of light in the material.

Rearranging this formula to solve for v, we get:

v = c/n

Substituting the given value of the refractive index (n = 2.60) and the speed of light in a vacuum (c = 3.00 x 10^8 m/s), we get:

v = (3.00 x 10^8 m/s) / 2.60

Simplifying this expression, we get:

v = 1.154 x 10^8 m/s

Now, we can use the formula:

f = v/λ

where f is the frequency of the light and λ is the wavelength.

We can rearrange this formula to solve for f:

f = v/λ

Substituting the given value of v (1.154 x 10^8 m/s) and the known value of the speed of light in a vacuum (c = 3.00 x 10^8 m/s), we get:

f = (1.154 x 10^8 m/s) / λ

We can now find the wavelength of the light in the material using the formula:

n = c/v = λ0/λ

where λ0 is the wavelength of the light in a vacuum. Rearranging this formula to solve for λ, we get:

λ = λ0 / n

Substituting the given value of the refractive index (n = 2.60) and the known value of the speed of light in a vacuum (c = 3.00 x 10^8 m/s), we get:

λ = λ0 / 2.60

We know that the frequency of the light is inversely proportional to its wavelength, so we can write:

f = c/λ

Substituting the expression we found for λ above, we get:

f = c / (λ0 / 2.60)

Simplifying this expression, we get:

f = (2.60 x c) / λ0

Substituting the known value of the speed of light in a vacuum (c = 3.00 x 10^8 m/s), we get:

f = (2.60 x 3.00 x 10^8 m/s) / λ0

Simplifying further, we get:

f = 7.80 x 10^8 / λ0

Now we just need to find the wavelength of the light in the material. Using the expression we found above for λ, we get:

λ = λ0 / n

Substituting the given value of the refractive index (n = 2.60) and the known value of the frequency in a vacuum (λ0 = 299,792,458 m), we get:

λ = 299,792,458 m / 2.60

Simplifying this expression, we get:

λ = 115,307,869 m

Now we can substitute this value into the expression we found for the frequency:

f = 7.80 x 10^8 / λ0

f = 7.80 x 10^8 / 115,307,869

Simplifying this expression, we get:

f = 6.76 MHz

To know more about refractive index visit:-

https://brainly.com/question/30761100

#SPJ11

assuming that the process mean can be easily adjusted but the standard deviation can’t, what can the fraction nonconforming be reduced to?

Answers

Assuming that the process mean can be easily adjusted while the standard deviation remains constant, the fraction nonconforming can be reduced by shifting the process mean closer to the target value or specification limits. By doing so, you minimize the chances of producing items that fall outside the acceptable range. The fraction nonconforming can be calculated using the cumulative distribution function of the standard normal distribution (Z-score).

The closer the process mean is to the target, the lower the Z-score, which results in a smaller fraction of nonconforming items. However, it's important to note that even with an optimized process mean, there will still be a certain level of nonconforming products due to the unchangeable standard deviation. To further reduce the fraction nonconforming, additional improvements in the overall process would be necessary.

To know more about standard deviation visit :-

https://brainly.com/question/13498201

#SPJ11

identify all six elements so that the formal charges of all atoms are zero.

Answers

Consider the valence electrons and their distribution in forming compounds. carbon, oxygen, nitrogen and hydrogen.

1. Carbon (C): Carbon typically forms covalent bonds and can achieve a formal charge of zero by sharing electrons with other atoms.

2. Oxygen (O): Oxygen can form both covalent and ionic bonds. In some compounds, oxygen gains two electrons to achieve a formal charge of zero, such as in water (H2O) where oxygen has two lone pairs of electrons.

3. Nitrogen (N): Nitrogen commonly forms covalent bonds. In compounds like ammonia (NH3), nitrogen has a formal charge of zero due to its arrangement of three bonding pairs and one lone pair of electrons.

4. Hydrogen (H): Hydrogen usually forms a single covalent bond, sharing one electron. In compounds like methane (CH4), each hydrogen atom has a formal charge of zero.

5. Sodium (Na): Sodium is an alkali metal that tends to lose one electron, forming a +1 cation. In compounds like sodium chloride (NaCl), sodium has a formal charge of zero as it donates one electron to chlorine.

6. Chlorine (Cl): Chlorine is a halogen that commonly accepts one electron to achieve a formal charge of zero. In compounds like sodium chloride (NaCl), chlorine gains one electron from sodium, resulting in a formal charge of zero.

Learn more about charge here ;

https://brainly.com/question/13871705

#SPJ11

two plane mirrors are separated by 120°, as the drawing illustrates. if a ray strikes mirror m1 at a =6553° angle of incidence, at what angle does it leave mirror m2?

Answers

The angle at which the ray leaves mirror m2 is also 6553°.

When a ray of light strikes a plane mirror, it reflects at an angle equal to the angle of incidence, measured from the perpendicular to the mirror. In this case, the ray strikes mirror m1 at an angle of 6553°, which means it makes an angle of 30° (180° - 120° = 60°; 60°/2 = 30°) with the perpendicular to the mirror.

Since the two mirrors are parallel to each other, the reflected ray from m1 becomes the incident ray for m2. Therefore, the angle of incidence for mirror m2 is also 30°. Using the same principle of reflection, the angle at which the ray leaves mirror m2 will also be 6553°.

The ray of light will leave mirror m2 at an angle of 6553°, which is equal to the angle of incidence on mirror m1.

To know more about angle of incidence, visit:

https://brainly.com/question/13962887

#SPJ11

hich of the following is NOT a criticism of Piaget's theory of development? (All are criticisms EXCEPT ...)
several concrete operational concepts do not appear in synchrony (at the same time) some cognitive abilities emerge earlier than Piaget thought children who are at one cognitive stage can be trained to reason at a higher cognitive stage with some tasks culture and education exert less influence on children's development than Piaget believed

Answers

The criticism that is NOT related to Piaget's theory of development is that culture and education exert less influence on children's development than Piaget believed.

Piaget's theory emphasizes the role of both nature and nurture in children's cognitive development. He believed that children's interactions with their environment, including cultural and educational influences, played a significant role in shaping their cognitive abilities. Therefore, the idea that culture and education have less influence on children's development is not a criticism of Piaget's theory.

The other criticisms mentioned, such as the uneven appearance of concrete operational concepts and the possibility of training children to reason at a higher cognitive stage, are all commonly cited critiques of Piaget's theory.

Out of the provided options, the statement that is NOT a criticism of Piaget's theory of cognitive development is :

Culture and education exert less influence on children's development than Piaget believed."Piaget's theory has been criticized for several reasons, including the fact that some concrete operational concepts do not appear simultaneously, some cognitive abilities emerge earlier than he suggested, and children can be trained to reason at a higher cognitive stage for certain tasks.

However, the statement regarding the influence of culture and education is not a criticism of his theory; in fact, it's an aspect of his theory that has been supported by research, highlighting the importance of considering both innate and environmental factors in cognitive development.

To know more about Piaget's theory visit -

brainly.com/question/30759939

#SPJ11

t ω = 379 rad/s, find the input impedance of the given circuit. the input impedance of the given circuit is ( j( )) ω.

Answers

The input impedance of the given circuit is (j51.3)Ω.

Given that the angular frequency of the circuit, ω = 379 rad/s.To find the input impedance of the given circuit, we have to find the value of impedance at the input terminals of the circuit. It can be calculated as the parallel combination of Z1 and Z2, as shown below.  

Now, let's calculate the values of Z1 and Z2. Z1 = 5Ω + j7Ω = 8.60 ∠53.13°ΩZ2 = 10Ω - j5Ω = 11.18 ∠-26.57°Ω. The impedance Z of the given circuit is Z = Z1 || Z2 = Z1 × Z2 / (Z1 + Z2)= 7.96 ∠17.04°Ω ≈ 7.96 + j1.51 Ω. Therefore, the input impedance of the given circuit is (j1.51)ω or (j51.3)Ω (after converting it to polar form).

Learn more about input impedance here:

https://brainly.com/question/32236902

#SPJ11

glycerin at 20 degrees c flows upward in a vertical 75-mm-diameter pipe with a centerline velocity of 1.0 [m/s]. determine the head loss and pressure drop in a 10-m length of pipe.

Answers

The head loss in a 10 m length of a vertical 75 mm diameter pipe with glycerin flowing upward at 20°C and a centerline velocity of 1.0 m/s is approximately 1.10 m, resulting in a pressure drop of about 107.79 Pa.

The head loss in a pipe can be determined using the Darcy-Weisbach equation, which relates the head loss (Hₗ) to the friction factor (f), pipe length (L), diameter (D), fluid velocity (V), and acceleration due to gravity (g). The equation can be written as:

Hₗ = (f * L * V²) / (2 * g * D)

To calculate the head loss, we need to find the friction factor. For fully developed laminar flow in a smooth pipe, the friction factor can be approximated using the Poiseuille equation:

f = (64 / Re)

Where Re is the Reynolds number, given by:

Re = (ρ * V * D) / μ

Here, ρ is the density of glycerin at 20°C (around 1261 kg/m³) and μ is the dynamic viscosity of glycerin at 20°C (around 0.001 Pa.s).

First, we calculate the Reynolds number:

Re = (1261 kg/m³ * 1.0 m/s * 0.075 m) / 0.001 Pa.s ≈ 9.41 * 10³

f = 64 / 9.41 * 10³ ≈ 6.81 * 10⁻⁵

Substituting the known values into the Darcy-Weisbach equation:

Hₗ = (6.81 * 10⁻⁵ * 10 m * (1.0 m/s)²) / (2 * 9.81 m/s² * 0.075 m) ≈ 1.10 m

The pressure drop can be determined using the hydrostatic equation:

ΔP = ρ * g * H

Substituting the values:

ΔP = 1261 kg/m³ * 9.81 m/s² * 1.10 m ≈ 107.79 Pa.

learn more about Darcy-Weisbach equation here:

https://brainly.com/question/30640818

#SPJ4

A tsunami of wavelength 270 km and velocity 740 km/h travels across the Pacific Ocean. As it approaches Hawaii, people observe an unusual decrease of sea level in the harbors. Approximately how much time do they have to run to safety? (In the absence of knowledge and warning, people have died during tsunamis, some of them attracted to the shore to see stranded fishes and boats.) Express your answer using two significant figures. VO ΑΣΦ ?

Answers

Tsunami is a long-wavelength wave caused by large-scale disturbances of the ocean, such as earthquakes, volcanic eruptions, and landslides.

The wavelength of the tsunami is given as 270 km and its velocity as 740 km/h. As it approaches Hawaii, people observe an unusual decrease of sea level in the harbors.To determine the time required to reach the shore, we first need to determine the wave speed (v) of the tsunami:Speed (v) = wavelength (λ) x frequency (f)Where f = v/λv = f x λThe velocity of the tsunami is given as 740 km/h, which can be converted to 205.6 m/s.

Therefore, the time for the tsunami to reach the shore is:T/2 = 657.89 s or 11 minutes (rounded to two significant figures).Explanation:A tsunami of wavelength 270 km and velocity 740 km/h travels across the Pacific Ocean. The time required to reach the shore is 11 minutes (rounded to two significant figures). When the tsunami approaches Hawaii, an unusual decrease in sea level in the harbors is observed. The decrease in sea level occurs only once per period, which is calculated to be 21.93 minutes. However, we are only interested in half of the period, since the decrease in sea level occurs only once per period. Therefore, the time for the tsunami to reach the shore is 11 minutes.

To know more about wavelength  visit :

https://brainly.com/question/7143261

#SPJ11

A solid disk is rotating about an axis with uniform angular velocity. Another disk (with the same moment of inertia about the rotation axis) is dropped on top of it, so that afterwards the two disks are rotating together at a new uniform angular velocity. How is the new angular velocity related to the old one?

Answers

The new angular velocity of the two disks is lower than the initial angular velocity of the first disk. This is because the moment of inertia of the combined system (the two disks) is higher than the moment of inertia of the first disk alone. When the second disk is added, the total moment of inertia increases, which means that more torque is required to maintain the same angular velocity.

However, since the system is still rotating with uniform angular velocity, the torque must remain constant. This means that the new angular velocity is lower in order to compensate for the increased moment of inertia. The exact relationship between the old and new angular velocities depends on the masses and radii of the disks, as well as the initial angular velocity of the first disk.

To know more about angular velocity  visit :-

https://brainly.com/question/30237820

#SPJ11

for r1= 5 kω, rf = 10kω, v1 = 10v, and v2 = 12v what is vo? give your answer in volts, and omit the units from your answer.

Answers

The output voltage (vo) is 4 volts.

Given the values r1 = 5 kΩ, rf = 10 kΩ, v1 = 10 V, and v2 = 12 V, we can determine vo (output voltage) using the formula for an inverting op-amp amplifier:

vo = -rf * (v1 / r1) + rf * (v2 / r1)

Substituting the values:

vo = -10 kΩ * (10 V / 5 kΩ) + 10 kΩ * (12 V / 5 kΩ)

vo = -2 * 10 V + 2 * 12 V

vo = -20 V + 24 V

vo = 4 V

The output voltage (vo) is 4 volts.

learn more about voltage here

https://brainly.com/question/1176850

#SPJ11

a+laser+beam+passes+from+air+into+a+25%+glucose+solution+at+an+incident+angle+of+34+∘+.+in+what+direction+does+light+travel+in+the+glucose+solution?+assume+the+index+of+refraction+of+air+is+n+=+1.

Answers

Answer: 1.363 based on

Explanation: With the most common type of laser (the HeNe laser wavelength), the 25% glucose solution has a refractive index of 1.363 based on (source: Yunus W.

The light beam will bend towards the normal while passing from air into a 25% glucose solution.


As the laser beam passes from air into a 25% glucose solution, it changes its direction. This happens because the speed of light is different in air and the solution, resulting in a change in the angle of refraction. The angle of incidence is given as 34°. We need to find the angle of refraction which can be determined using Snell’s Law.

The law states that the ratio of the sine of the angle of incidence to the sine of the angle of refraction is equal to the ratio of the indices of refraction of the two media. The angle of incidence is given as 34° and the index of refraction of air is 1. Using the formula, we can calculate the angle of refraction in the glucose solution. As the index of refraction of the solution is higher than that of air, the light beam will bend towards the normal while passing from air into a 25% glucose solution.

Learn more about Snell’s Law here:

https://brainly.com/question/2273464

#SPJ11

what tests are used to determine the radius of convergence of a power series? select each test that is used to determine the radius of convergence of a power series.

Answers

There are several tests that can be used to determine the radius of convergence of a power cut series, including the ratio test, the root test, and the alternating series test.

The ratio test: This test involves taking the limit of the absolute value of the ratio of successive terms in the power series. If the limit is less than 1, the series converges absolutely, and the radius of convergence is the absolute value of the limit. If the limit is greater than 1, the series diverges, and if the limit is equal to 1, the test is inconclusive. The alternating series test: This test is used for alternating series, where the signs of the terms alternate. If the terms decrease in absolute value and approach zero, the series converges, and the radius of convergence is infinite. If the terms do not decrease in absolute value and approach zero, the series diverges.

The Root Test:
1. Apply the Root Test by taking the limit as n approaches infinity of the nth root of the absolute value of the nth term of the power series.
2. If the limit exists and is less than 1, the series converges, and if it is greater than 1, the series diverges.
3. If the limit equals 1, the test is inconclusive, and another test should be used.
To know more about power visit:

https://brainly.com/question/2759186

#SPJ11

a small bar magnet experiences a 2.50×10−2 n⋅m torque when the axis of the magnet is at 45.0∘ to a 9.00×10−2 t magnetic field.

Answers

The torque experienced by a small bar magnet can be calculated using the equation τ = m × B × sinθ, where τ is the torque, m is the magnetic moment of the magnet, B is the magnetic field, and θ is the angle between the magnet's axis and the magnetic field. In this case, we know that the torque is 2.50×10−2 n⋅m, the magnetic field is 9.00×10−2 t, and the angle between the magnet's axis and the magnetic field is 45.0∘. We can solve for the magnetic moment of the magnet by rearranging the equation: m = τ / (B × sinθ). Plugging in the values, we get m = (2.50×10−2 n⋅m) / (9.00×10−2 t × sin45.0∘) = 3.54×10−2 A⋅m². Therefore, the magnetic moment of the small bar magnet is 3.54×10−2 A⋅m².

To solve this problem, we can use the formula for torque (τ) in a magnetic field:

τ = μ * B * sinθ

where τ is the torque (2.50 × 10^(-2) N⋅m), μ is the magnetic moment of the bar magnet, B is the magnetic field strength (9.00 × 10^(-2) T), and θ is the angle between the magnetic moment and the magnetic field (45.0°).

We want to find the magnetic moment μ. First, convert the angle to radians:

θ_rad = (45.0°) * (π / 180) = π / 4 radians

Now, rearrange the formula to solve for μ:

μ = τ / (B * sinθ_rad)

Plug in the values:

μ = (2.50 × 10^(-2) N⋅m) / ((9.00 × 10^(-2) T) * sin(π / 4))

Compute the result:

μ ≈ 3.54 × 10^(-2) A⋅m²

So, the magnetic moment of the small bar magnet is approximately 3.54 × 10^(-2) A⋅m².

To know more about Magnetic field visit

https://brainly.com/question/31329948

SPJ11

the velocity of an object, moving in 1d, along the x-axis, is shown as a function of time. which graph best represents the net force on the object versus time?

Answers

The net force on an object is related to its acceleration through Newton's second law of motion. Therefore, we can look at the graph of acceleration versus time to determine the net force on the object. Since the velocity of the object is given, we can differentiate the function with respect to time to obtain the acceleration function.

The graph of acceleration versus time would show how the acceleration of the object changes with time, which would in turn give us an idea of the net force acting on the object. The best graph that represents the net force on the object versus time would be a graph that shows a linear relationship between the two. This indicates that the net force acting on the object is constant over time, which is what we would expect for an object moving at a constant velocity in one dimension.

To know more about Newton's second law visit :-

https://brainly.com/question/15280051

#SPJ11

In questions (a) and (b) show all your calculations and units as applicable. You will be assessed both on your answers and your explanations of how you got them.
W=7190

X=378

Y=37.8

Z=5.8

(a) What is the Sun's flux at a distance of Y million kilometers?

(b) How much matter must be converted into energy to produce W billion joules?

(c) In a radioactive sample, there are 1000 daughter atoms for every X parent atoms of a radioactive isotope. If the half-life of the isotope is Z years, how old is the sample

Answers

The Sun's flux at a distance of Y million kilometers can be calculated using the inverse square law for radiation. The equation is:

[tex]\[ \text{Flux} = \frac{\text{Luminosity}}{4\pi \times \text{Distance}^2} \][/tex]

To convert Y million kilometers to meters, we multiply Y by [tex]\(10^6\)[/tex] and then by [tex]\(10^3\)[/tex] (since there are 1000 meters in a kilometer). The luminosity of the Sun is approximately [tex]\(3.8 \times 10^{26}\) watts[/tex]. Plugging in the values, we have:

[tex]\[ \text{Flux} = \frac{3.8 \times 10^{26}}{4\pi \times (Y \times 10^6 \times 10^3)^2} \][/tex]

To determine how much matter must be converted into energy to produce W billion joules, we need to use Einstein's mass-energy equivalence formula:

[tex]\[ E = mc^2 \][/tex]

where E is the energy (in joules), m is the mass (in kilograms), and c is the speed of light (approximately [tex]\(3 \times 10^8\)[/tex] meters per second). To convert W billion joules to joules, we multiply W by [tex]\(10^9\)[/tex]. Rearranging the formula, we have:

[tex]\[ m = \frac{E}{c^2} = \frac{W \times 10^9}{c^2} \][/tex]

where m is the mass that needs to be converted into energy.

To determine the age of the radioactive sample, we can use the concept of half-life. The half-life is the time it takes for half of the parent atoms to decay into daughter atoms. The equation to calculate the age of the sample is:

[tex]\[ \text{Age} = \text{Half-life} \times \log_2\left(\frac{\text{Daughter atoms}}{\text{Parent atoms}}\right) \][/tex]

where Age is the age of the sample (in years), Half-life is the half-life of the isotope (in years), and Daughter atoms and Parent atoms are the respective quantities of daughter and parent atoms present in the sample.

In the given scenario, there are 1000 daughter atoms for every X parent atoms, and the half-life of the isotope is Z years. Plugging in the values, we have:

[tex]\[ \text{Age} = Z \times \log_2\left(\frac{1000}{X}\right) \][/tex]

This equation allows us to determine the age of the sample based on the ratio of daughter atoms to parent atoms and the half-life of the isotope.

To learn more about flux refer:

https://brainly.com/question/29221352

#SPJ11

Other Questions
Draw the sets below in the complex plane. And tell are they bounded sets or not? S = {24:2< Re(7-7){4} A= {e C: Rec>o 0 = {260 = (2-11 >1] E = {zec: 1512-1-11 use+heun's+method+with+h=0.5.+iterate+the+corrector+to+es=1% The scientific model of pressure belts exactly matches the pressure systems in the atmosphere.t/f Consider the following two subsets of Z :A = { n Z | ( n mod 18 ) = 7 } and B = { n Z | n isodd }.Prove this claim: A is a subset of B. Cysco Corp has a budget of $1,200,000 in 2017 for prevention costs. If it decides to automate a portion of its prevention activities, it will save $103,000 in variable costs. The new method will require $51,000 in training costs and $148,000 in annual equipment costs. Management is willing to adjust the budget for an amount up to the cost of the new equipment. The budgeted production level is 207,000 units.Appraisal costs for the year are budgeted at $508,000. The new prevention procedures will save appraisal costs of $50,000. Internal failure costs average $34 per failed unit of finished goods. The internal failure rate is expected to be 5% of all completed items. The proposed changes will cut the internal failure rate by one-half. Internal failure units are destroyed. External failure costs average $52 per failed unit. The company's average external failures average 4.5% of units sold. The new proposal will reduce this rate to 1%. Assume all units produced are sold and there are no ending inventories.Management has offered to allow the prevention changes if all changes take place as anticipated and the amounts netted are less than the cost of the equipment. What is the net impact of all the changes created by the preventive changes? Assume that internal product failures are reduced by 45% with the new procedures.Question 38 options:$(465,540)$(215,280)$(489,095)$(254,000) 7. Explain why asset allocations are independent of the timehorizon. (a) Compute the general solution of the differential equation y(4) + y" - 6y' + 4y = 0. (Hint: r4+7-6r+ 4 = (r - 2r + 1)(r + 2r + 4).) (b) Determine the test function Y(t) with the fewest terms to be used to obtain a particular solution of the following equation via the method of unde- termined coefficients. Do not attempt to determine the coefficients. y(4) + y" - 6y + 4y = 7e + te* cos(3 t) - et sin(3 t) + 5. dentify nonverbal behaviors that regulate turn taking within the team. Briefly identify and state the significance of each of the following to the history of economy thought: Jevons, final degree of utility. Menger, Austrian school. nancy cotton bought 400 shares of netalk for $15 per share. one year later, nancy sold the stock for $21 per share, just after she recieved a $0.90 cash dividened from the company Please take your time and answer both questions. Thankyou!14. Find the equation of the parabola with focus at (3, 4) and directrix x = 1. Write the equation in rectangular form. 15. Find the vertices of the ellipse: 9x + y - 54x + 6y + 81 = 0 find a formula for by scaling the input and/or output of . let give the measured precipitation in inches on day , and give the precipitation in centimeters. use the fact that in equals cm. all of the following are characteristics of a monopolistic competitive market structure except Choosing the first and second options is wrong.Consider three variables X,Y and Z where X and Z are positively correlated, and Y and Z are positively correlated. Which of the following can be true. X and Y can be positively correlated X and Y c Which of the following functions have an average rate of change that is negative on the interval from x = -1 to x = 2? Select all that apply. f(x) = x + 3x + 5) f(x)=x-3x - 5 f(x) = 3x - 5x f(x) .The maximum distance between the Earth and Mars is 378,000,000 km and the minimum distance is 78,000,000 km. When the distance is 138,000,000 km, the amount of time for a radio signal to travel from Mars to Earth is ____ seconds. Find the intervals on which f(x) is increasing, the intervals on which f(x) is decreasing, and the local extrema. f(x)=2x-16x+2 Select the correct choice below and, if necessary, fill in the answer box to complete your choice. OA. The function is increasing on (Type your answer in interval notation. Type integers or simplified fractions. Use a comma to separate answers as needed.) OB. The function is never increasing "It is interesting that despite his having avowed that his gambling addiction had been cured, he still spends a lot of time in Las Vegas, Atlantic City, and Monte Carlo." Which of the following rhetorical devices is at work in this example?a. Euphemismb. Rhetorical Defiintionc.innuendod. paralipsise. Paralipsis/Apophasis What is the complete domain for which the solution is valid? A. x 1 B. x < 0 C. x 0 D. 0 < x E. 1 x Compute the present value of the lease payments. (For calculation purposes, use 5 decimal places as displayed in the factor table provided and round final answer to 0 decimal places e.g. 5,275.) Present value of the lease payments $ 37429 eTextbook and Media Save for Later Attempts: 1 of 2 used Submit Answer Using multiple attempts will impact your score. 20% score reduction after attempt 1 Euren 24 PENS BUR MacBook Pro #tv Question 3 of 5 0.53/2 On December 31, 2019, Tamarisk Corporation signed a 5-year, non-cancelable lease for a machine. The terms of the lease called for Tamarisk to make annual payments of $8,978 at the beginning of each year of the lease, starting December 31, 2019. The machine has an estimated useful life of 6 years and a $5,200 unguaranteed residual value. The machine reverts back to the lessor at the end of the lease term. Tamarisk uses the straight-line method of depreciation for all of its plant assets. Tamarisk's incremental borrowing rate is 11%, and the lessor's implicit rate is unknown. Click here to view factor tables. (a) Your answer is correct. What type of lease is this?