5 marks Q3) For Parallel kic circuit, show that why the circuit will behave as a capaicitance if the frequency (f) is more greater than the resonance frepuency(fo), (fosfo) and why it will behave as inductance if fec fo.

Answers

Answer 1

For parallel RLC circuits, the resonance frequency (fo) is the frequency at which the capacitive and inductive reactances cancel each other out, resulting in a minimum impedance.

The circuit behaves as an inductor or capacitor depending on the frequency (f) compared to the resonance frequency (fo).Parallel RLC circuit:

If the frequency (f) is greater than the resonance frequency (fo), the circuit behaves as a capacitor. The capacitive reactance (XC) is inversely proportional to the frequency (f), so when the frequency (f) is increased, the capacitive reactance (XC) is reduced. The capacitance of the circuit is reduced as a result of the decrease in capacitive reactance (XC).If the frequency (f) is less than the resonance frequency (fo), the circuit behaves as an inductor.

The inductive reactance (XL) is directly proportional to the frequency (f), so when the frequency (f) is decreased, the inductive reactance (XL) is reduced. The inductance of the circuit is reduced as a result of the decrease in inductive reactance (XL).The capacitor is more dominant when the frequency (f) is high, while the inductor is more dominant when the frequency (f) is low. When the frequency (f) equals the resonance frequency (fo), the reactances of the inductor and capacitor are equal and opposite, resulting in a minimum impedance.

The circuit becomes a pure resistor with the minimum impedance.

If the frequency (f) is greater than the resonance frequency (fo), the circuit behaves as a capacitor, but if it is less than the resonance frequency (fo), the circuit behaves as an inductor.

Learn more about resonance frequency from:

https://brainly.com/question/9324332

#SPJ11


Related Questions

A simple band brake exerts a torque of 13,000 in-Ibf. The drum is 2 inches wide, and the radius is 10 inches. If the maximum pressure between the lining and the drum is 100 psi, and the coefficient of friction is 0.25, find the angle of contact between the lining and the drum. Your answer should be in degrees

Answers

The angle of contact between the lining and the drum is 22 degrees (approximate).

Given data:

Torque = 13,000 in-Ibf

Width of drum (w) = 2 inches

Radius of drum (r) = 10 inches

Maximum pressure between lining and drum = 100 psi

Coefficient of friction (μ) = 0.25Formula used:

Torque = (P × r) / μ = (P × w × r) / 2

Here, P = maximum pressure between lining and drum

We know that, Torque = (P × w × r) / 2So, P = (2 × Torque) / (w × r)Putting the given values, we get,

P = (2 × 13000) / (2 × 10)P = 650 psi

Now, torque can also be written as,

Torque = P × μ × r × (180 / π)

From this equation, we can find the angle of contact (θ).

θ = 180 × Torque / (π × P × r² × μ)

Putting the given values, we get,

θ = 180 × 13000 / (π × 650 × 10² × 0.25)θ

= 21.98 degrees

≈ 22 degrees

Therefore, the angle of contact between the lining and the drum is 22 degrees (approximate).

learn more about Torque here

https://brainly.com/question/17512177

#SPJ11







Discuss various applications of p-n Si junction in terms of the buit-in voltage, breakdown voltage, and current mechanisim

Answers

P-n Si junction has various applications, which are as follows:Buit-in voltage: The p-n junction is used to develop the volt-ampere characteristic curve. The voltage at which current flow initiates is known as the cut-in voltage. The cut-in voltage is the forward-biased voltage at which the diode conducts a small amount of current. It is also known as the built-in voltage. The diode acts as an open circuit at voltages less than the built-in voltage, whereas it conducts current almost instantly at voltages greater than the built-in voltage.Breakdown voltage: The breakdown voltage is the voltage at which the current begins to flow quickly. The current flowing through the junction increases dramatically when the voltage exceeds the breakdown voltage.

The diode may be permanently destroyed if it continues to conduct at excessive currents. Reverse-bias breakdown is the most common type of breakdown in the p-n junction. Reverse-bias breakdown occurs when the diode's reverse voltage exceeds the maximum rated value. In addition, avalanche breakdown is the other type of breakdown.Current mechanism: The P-N junction operates in two distinct modes, one in which it allows current to flow freely, and the other in which it opposes current flow. In a p-n junction, under forward bias, an electric field is created that allows the current to flow across the junction. In the reverse-bias mode, the electric field is such that it opposes the flow of current. The majority carriers in each of the p-type and n-type regions contribute to the current flow across the junction in the forward-bias mode. Minority carriers are responsible for current flow across the junction in the reverse-bias mode.Thus, the p-n junction diode is utilized in various applications based on the built-in voltage, breakdown voltage, and current mechanism.

To know more about voltage, visit:

https://brainly.com/question/31347497

#SPJ11

A spherical capacitor is formed from two concentric spherical conducting shells separated by vacuum. The inner sphere has a radius of ra​=12.4 cm, and the outer sphere has a radius of rb​=14.9 cm. A potential difference of 120 V is applied to the capacitor. What is the capacitance of the capacitor? Use ϵ0​=8.85×10−12 F/m for the permittivity of free space. What is the magnitude E1​ of the electric field E at radius r=12.8 cm, just outside the inner sphere? What is the magnitude of E at r=14.7 cm, just inside the outer sphere?

Answers

The capacitance of the capacitor is 3.72 × 10^−11 F, the magnitude E₁ of the electric field just outside the inner sphere is 3.27 × 10^5 N/C, and the magnitude of E just inside the outer sphere is 1.35 × 10^5 N/C.

To calculate the capacitance of the spherical capacitor, we can use the formula:

C = (4πϵ₀ab) / (b - a)

Where C is the capacitance,

ϵ₀ is the permittivity of free space,

a is the radius of the inner sphere,

b is the radius of the outer sphere

ra​ = 12.4 cm = 0.124 m

rb​ = 14.9 cm = 0.149 m

ϵ₀ = 8.85×10−12 F/m

Substituting the values into the formula, we have:

C = (4πϵ₀ab) / (b - a)

 = (4π × 8.85×10−12 F/m × 0.124 m × 0.149 m) / (0.149 m - 0.124 m)

Now, let's calculate the capacitance:

C = (4π × 8.85×10−12 F/m × 0.124 m × 0.149 m) / (0.025 m)

 ≈ 3.72 × 10^−11 F

Therefore, the capacitance of the spherical capacitor is approximately 3.72 × 10^−11 F.

To calculate the electric field E just outside the inner sphere (at r = 12.8 cm), we can use the formula:

E = Q / (4πϵ₀r^2)

Where

Q is the charge on the inner sphere

r is the radius at which we want to find the electric field

Since the potential difference of 120 V is applied to the capacitor, the charge Q on the inner sphere is given by:

Q = C × V

 = (3.72 × 10^−11 F) × (120 V)

Substituting the values, we can find Q:

Q = (3.72 × 10^−11 F) × (120 V)

 ≈ 4.46 × 10^−9 C

Now, let's calculate the electric field E just outside the inner sphere (at r = 12.8 cm):

E1​ = Q / (4πϵ₀r^2)

  = (4.46 × 10^−9 C) / (4π × 8.85×10−12 F/m × (0.128 m)^2)

Simplifying the expression, we can find E1:

E1​ = (4.46 × 10^−9 C) / (4π × 8.85×10−12 F/m × 0.016384 m^2)

   ≈ 3.27 × 10^5 N/C

Therefore, the magnitude of the electric field E just outside the inner sphere (at r = 12.8 cm) is approximately 3.27 × 10^5 N/C.

Similarly, to find the magnitude of the electric field E just inside the outer sphere (at r = 14.7 cm), we can use the same formula:

E2 = Q / (4πϵ₀r^2)

Substituting the values, we have:

E2 = (4.46 × 10^−9 C) / (4π × 8.85×10−12 F/m × (0.147 m)^2)

  ≈ 1.35 × 10^5 N/C

Therefore, the magnitude of the electric field E just inside the outer sphere (at r = 14.7 cm) is approximately 1.35 × 10^5 N/C.

learn more about Electric field

https://brainly.com/question/19878202

#SPJ11

A tauon has the same charge as an electron and mass of 1777 MeV/c². Assume a tauon and a a proton are allowed to form an atom. 1). Use the Bohr model to calculate the energy.
difference between the n= 2 and n=1 state.
e) Determine the Ryd berg constant for this exotic atom

Answers

The energy difference between the n=2 and n=1 states in the Bohr model for the tauon-proton atom is given by ΔE = 13.6 * Z² * (1/n²_final - 1/n²_initial) in eV.

In the Bohr model, the energy levels of an atom are determined by the formula E = -13.6 * Z² / n², where Z is the atomic number and n is the principal quantum number. For the tauon-proton atom, Z = 1 since it involves a proton. We are interested in the energy difference between the n=2 and n=1 states, so we can use the formula ΔE = E2 - E1 = -13.6 * Z² * (1/n²_final - 1/n²_initial) to calculate it. Plugging in the values, we have ΔE = -13.6 * 1² * (1/1² - 1/2²) = -10.2 eV.

The Rydberg constant for this exotic atom can be determined by dividing the energy difference by the product of the atomic number and the squared Bohr radius. The Bohr radius for a tauon-proton atom is calculated using the reduced mass (m) and the electron's Bohr radius (a0). The reduced mass (μ) is given by μ = (m1 * m2) / (m1 + m2), where m1 and m2 are the masses of the tauon and proton, respectively.

Plugging in the values, we have μ = (1777 * 938) / (1777 + 938) = 589.91 MeV/c². The Bohr radius (a0) is a constant value of approximately 0.529 Å (angstroms). Therefore, the product of the atomic number (Z) and the squared Bohr radius (a0²) is Z * a0² = 1 * (0.529 Å)² = 0.280241 Ų. Finally, the Rydberg constant (R) can be calculated as R = ΔE / (Z * a0²) = -10.2 eV / (0.280241 Ų) ≈ -36.46 eV/Ų.

For more questions like Energy click the link below:

https://brainly.com/question/1932868

#SPJ11


question 55
55. Fifty grams of water at \( 0^{\circ} \mathrm{C} \) are changed into vapor at \( 100^{\circ} \mathrm{C} \). What is the change in entropy of the water in this process?

Answers

The change in entropy of the water during the phase change from a liquid to a vapor is positive.

Entropy is a measure of the disorder or randomness of a system. In this case, we have water undergoing a phase change from a liquid to a gas. As the water molecules gain energy and transition from the lower energy state of a liquid to the higher energy state of a gas, the disorder of the system increases. This increase in disorder corresponds to an increase in entropy.

When water is heated from [tex]\( 0^{\circ}[/tex] [tex]\mathrm{C} \)[/tex] to [tex]\( 100^{\circ} \mathrm{C} \)[/tex], it absorbs energy in the form of heat. This energy causes the water molecules to gain kinetic energy and eventually break free from the intermolecular forces holding them together. As the liquid water evaporates and turns into vapor, the molecules become more dispersed and move more freely. This increase in molecular randomness leads to a higher entropy.

Overall, the change in entropy of the water in this process is positive because the transition from a liquid to a gas involves an increase in disorder and molecular randomness.

Learn more about Entropy

brainly.com/question/32167470

#SPJ11








Which of the following people developed the heliocentric model of the Universe. Kepler Ptolemy Aristotle Copernicus

Answers

The heliocentric model of the Universe was developed by Nicolaus Copernicus.

He proposed this model in the 16th century, suggesting that the Sun is at the center of the solar system, with the planets, including Earth, revolving around it. This was a significant departure from the prevailing geocentric model, which placed Earth at the center of the Universe. Johannes Kepler, an astronomer who came after Copernicus, made significant contributions to the understanding of planetary motion by formulating his three laws of planetary motion. Ptolemy and Aristotle were ancient Greek philosophers and astronomers, but they advocated for the geocentric model, which was eventually challenged and replaced by Copernicus' heliocentric model.

To learn more about heliocentric model

https://brainly.com/question/957540

#SPJ11

2- Starting from the following circuit, explain mathematically in brief poiats how we can develop the combined these two parts circuits in one circuit. Show the details of this combined equivalent cir

Answers

The above equation is the general equation for a second-order linear homogeneous differential equation. By solving this differential equation using the Laplace transform, we can get the transfer function of the combined circuit.

The given circuit can be separated into two parts which is an RC circuit and an RL circuit. The combination of these two circuits can be derived by the application of Kirchhoff's Voltage Law (KVL) and Kirchhoff's Current Law (KCL).RC circuit can be described by the following equation:

i = C(dv/dt)where C is the capacitance of the capacitor, v is the voltage across the capacitor, and i is the current passing through the circuit.

RL circuit can be described by the following equation:

v = L(di/dt)where L is the inductance of the inductor, v is the voltage across the inductor, and i is the current passing through the circuit.

The combined equivalent circuit is shown below:

Combining both equations by replacing v in the RL equation with dv/dt from the RC equation gives the following equation: i = C(d^2i/dt^2) + (1/R)L(di/dt)

Where R is the resistance of the resistor.

Substituting the value of L/R with τ gives the following equation:i = C(d^2i/dt^2) + (1/τ)di/dt

where τ is the time constant of the circuit.

The above equation is the general equation for a second-order linear homogeneous differential equation. By solving this differential equation using the Laplace transform, we can get the transfer function of the combined circuit.

To learn more about equation visit;

https://brainly.com/question/29657983

#SPJ11

Question 2:
Draw the following scenario: A 10μF capacitor is charged to 5V.
At time t = 0, a current of 2μA begins to flow out of the capacitor
through a resistor.
2a) Plot and measure the voltage o

Answers

A capacitor is a device that stores electrical energy in an electric field. The unit of capacitance is farads (F). A 10μF capacitor charged to 5V implies that[tex]Q = CV, where C = 10μF and V = 5V, therefore Q = (10 × 10^-6) × 5 = 50μC.[/tex]

The voltage across the capacitor is maximum since it is fully charged. At time t = 0, a current of 2μA starts to flow out of the capacitor through a resistor. The voltage across the capacitor starts to decrease as a result of the current. The voltage across the capacitor varies with time.

The voltage across a capacitor is given by the equation below:V = V₀e^(-t/RC), whereV₀ is the initial voltage on the capacitor. R is the resistance of the resistor and C is the capacitance of the capacitor. t is time measured in seconds.Since the voltage across the capacitor is 5V, we substitute [tex]V₀ with 5V. RC = 10 × 10^-6 × R, therefore V = 5e^(-t/10R). To plot the graph, we set R equal to 1kΩ.[/tex]

To know more about capacitor visit:

https://brainly.com/question/31627158

#SPJ11

ASAP PLS HELP WILL UPVOTE:

A planet with a diameter of 92,000 miles and a mass of 1.87*10^27kg rotates once every 8.4 hours. If one-third the diameter was lost without losing any mass, how long would it take to rotate. Inertia = (2/5)*MR^2

Answers

It will take the planet about 2.74 hours to complete one rotation after losing one-third of its diameter.

Diameter of the planet, d = 92000 miles.Mass of the planet, m = 1.87 x 10²⁷ kg. Rotational period, T = 8.4 hours Inertia = (2/5) x m x r²When one-third of the diameter is lost, the new diameter is;d₂ = (2/3)d = (2/3) x 92000 = 61333.33 miles.The radius, r₁ = d/2 = 92000/2 = 46000 miles.

The radius, r₂ = d₂/2 = 61333.33/2 = 30666.67 miles.The moment of inertia changes since the radius changes, therefore we can relate them as; I₁/I₂ = (r₁/r₂)²We can substitute the formula of inertia to obtain; I₁/I₂ = [(r₁/r₂)]²I₁ = [(r₁/r₂)]²I₂I₂ = (r₂/r₁)²I₁I₂ = (30666.67/46000)²I₁I₂ = 0.32653 I₁On substituting

we get;0.32653 [(2/5) x m x r₁²] = (2/5) x m x r₂²We can simplify to;0.32653 [(2/5) x m] (46000)² = (2/5) x m x (30666.67)²Let's calculate for the new rotational period, T₂; T₁/T₂ = (I₁/I₂)T₂ = (I₂/I₁)T₁T₂ = (0.32653)T₁T₂ = (0.32653) x 8.4 hrsT₂ = 2.74 hours.

To know more about diameter please refer to:

https://brainly.com/question/33294089

#SPJ11

The yellow highlighted 'B' in the above question, represents the
number '5'.
Q3. (a) With the aid of a simple Bode diagram, explain the following terms: The gain and phase cross-over frequencies, gain and phase margins of a typical third-order type-1 system. [5 marks] (b) The

Answers

a) Gain and phase crossover frequencies: The point at which the gain and phase response of a system crosses unity gain and 180 degrees respectively is referred to as the gain and phase crossover frequencies.

If the gain margin is larger than 0 dB and the phase margin is larger than 45 degrees, a system with a crossover frequency will be stable and have adequate stability margins.Gain and phase margins: The gain margin is defined as the gain value at the phase crossover point that makes the open-loop transfer function phase equal to -180 degrees, and it specifies how much the gain can be raised before the system becomes unstable.

Phase margin is defined as the amount of phase lag at the gain crossover frequency required to decrease the closed-loop system gain to unity (0 dB), and it specifies how much phase lead the system can accept before becoming unstable.b) A third-order type-1 system is characterized by three poles in its open-loop transfer function. The closed-loop transfer function of the system is stable if the open-loop transfer function's poles have negative real parts.

The stability and performance of the system are determined by the system's gain and phase margins, as well as the position of the poles in the left-hand plane (LHP) relative to the imaginary axis.The system will be unstable if the poles have positive real parts, and it will exhibit oscillatory behaviour if the poles are on the imaginary axis. The system's overshoot, rise time, and settling time are determined by the position of the poles. If the poles are farther to the left of the imaginary axis, the system will respond more quickly, whereas if the poles are closer to the imaginary axis, the system will respond more slowly.

To know more about crossover visit:

https://brainly.com/question/32414177

#SPJ11

how does the concept of escape velocity help explain the lack of an atmosphere on the moon?

Answers

The concept of escape velocity helps explain the lack of an atmosphere on the Moon, as its relatively low escape velocity allows gases to escape easily, preventing the development and maintenance of a significant atmosphere.

The concept of escape velocity helps explain the lack of an atmosphere on the Moon by considering the gravitational pull of the Moon and the speeds required for gases to escape its gravitational field.

Escape velocity is the minimum velocity an object needs to achieve in order to overcome the gravitational attraction of a celestial body and escape into space. It depends on the mass and radius of the celestial body. The Moon has a smaller mass and radius compared to Earth, resulting in a lower escape velocity.

The Moon's escape velocity is about 2.38 kilometers per second (km/s), significantly lower than Earth's escape velocity of 11.2 km/s. The low escape velocity of the Moon means that gases, such as the ones that make up an atmosphere, can easily reach the necessary speeds to escape into space.

As a result, the Moon is unable to retain a substantial atmosphere. Any gas molecules released into the Moon's environment due to processes like outgassing or impacts from space will gain sufficient energy from the Moon's weak gravitational pull and escape into space rather than being held close to the lunar surface.

Therefore, the concept of escape velocity helps explain the lack of an atmosphere on the Moon, as its relatively low escape velocity allows gases to escape easily, preventing the development and maintenance of a significant atmosphere.

Learn more about escape velocity from the given link:

https://brainly.com/question/14042253

#SPJ11

2. On a foggy night it is usually difficult to see the road when high beam headlights are on because of the of light. a) scattering b) absorption c) transmission d) refraction 3. An intense storm of tropical origin that forms over the Pacific Ocean adjacent to the west coast of Mexico would be called a a) hurricane b) typhoon c) cyclone d) willy willy 4. In a valley, you would normally expect pollutants to be most concentrated in the a) early morning b) early afternoon c) early evening 5. A mixing layer is characterized by a) enhanced vertical air motions b) suppressed vertical air motions c) strong horizontal winds d) high concentrations of pollutants

Answers

On a foggy night it is usually difficult to see the road when high beam headlights are on because of the scattering of light. The high beam light is the main cause of this issue since the light beams produced by high beam headlights have a wide light cone and are generally too bright for the foggy conditions.

Fog droplets in the air reflect the high beam light, making it impossible for the human eye to see beyond the fog. This is why low beam headlights should be used in foggy conditions

An intense storm of tropical origin that forms over the Pacific Ocean adjacent to the west coast of Mexico would be called a hurricane. Hurricanes are tropical storms that form over warm ocean water. When a storm's sustained winds exceed 74 mph, it is classified as a hurricane.

4. In a valley, you would normally expect pollutants to be most concentrated in the early morning. During the early morning hours.

5.  This layer is characterized by strong vertical air motions, which promote mixing and dispersion of pollutants. As the day progresses and the ground warms up, the mixing layer deepens, and pollutants are dispersed over a larger volume of air.

To know more about reflect visit:

https://brainly.com/question/15487308

#SPJ11

A rock is thrown off a cliff at an angle of 61 with respect to the horizontal. The cliff is 101 m high. The initial speed of the rock is 38 m/s. (a) Fill in the following: v0​=v0x​=v0y​=​sm​1sm​sm​​ (b) vx​ (c) vy​ (d) In your notebook, draw a sketch of the problem. Select the direction along the along the vertical axis (y-axis) that is positive (upwards or downwards). Select the direction along the along the horizontal axis ( x-axis) that is positive (left or right). Select an origin. Draw the vectors for v0​,v0x​v0y​, v,​vx​,vy​,ax​,ay​. Label on your diagram the initial and final positions of the rock x0​,y0​, and x1​,yt​. (e) How high above the edge of the cliff does the rock rise? Δy=∣m (f) How far has it moved horizontally when it is at maximum altitude? (g) How long after the release does it hit the ground? tground ​= (h) What is the range of the rock? Δxtotal ​= (i) What are the horizontal and vertical positions of the rock relative to the edge of the cliff at t=4.2 s. Assume that the origin (0,0) for this part is loacted at the edge of the cliff. Enter the positions with their correct signs. Position: (x=

Answers

(a) v0 = 38 m/s, v0x = v0cosθ = 38*cos(61°), v0y = v0sinθ = 38*sin(61°) (b) vx = v0x (c) vy = v0y - gt (d) In your notebook, draw a sketch of the problem.

Select the direction along the vertical axis (y-axis) that is positive (upwards or downwards). Select the direction along the horizontal axis (x-axis) that is positive (left or right). Select an origin.

Draw the vectors for v0, v0x, v0y, v, vx, vy, ax, ay. Label on your diagram the initial and final positions of the rock x0, y0, and x1, y1. (e)  Δy = y1 - y0  (i) What are the horizontal and vertical positions of the rock relative to the edge of the cliff at t=4.2 s.

Assume that the origin (0,0) for this part is located at the edge of the cliff. Enter the positions with their correct signs. Position: (x=, y=)

Learn more about the Horizontal axis:

https://brainly.com/question/29774083

#SPJ11

An inductor is connected to a 294 Hz power supply that produces a 49.5 V RMS voltage. What inductance is needed to keep the maximum current in the circuit below 84.7 mA?
A 44.5 μF capacitor is connected to a 57.3 resistor and a generator whose RMS output is 24.7 V at 55.0 Hz. Calculate the RMS current in the circuit.
Calculate the RMS voltage across the resistor.
Calculate the RMS voltage across the capacitor.
Calculate the phase angle for the circuit.

Answers

The phase angle for the circuit is 47.2°.

Given data:

Frequency of power supply:

f = 294 Hz Maximum current in the circuit,

Imax = 84.7 m ARMS voltage,

Vrms = 49.5 V Inductive reactance,

XL = ?

The inductive reactance can be calculated using the formula:

X = V/I

Where,

X = Inductive reactance

V = RMS voltage

I = Current

Substitute the given values, we get:

XL = Vrms/Imax

XL = 49.5/84.7×10⁻³

XL = 584.32 Ω

Now, the inductance can be calculated using the formula:

XL = 2πfL

Where,

L = Inductance

f = Frequency of power supply

Substitute the given values, we get: 584.32

= 2π×294×LL

= 0.297 mH

Therefore, the required inductance is 0.297 mH.2)

Given data: Capacitance:

C = 44.5 μ

FResistor:

R = 57.3 ΩRMS output voltage,

Vrms = 24.7 V

Frequency of generator:

f = 55 Hz

The RMS current in the circuit can be calculated using the formula:

IRMS = Vrms/ Z

Where,

IRMS = RMS current

Vrms = RMS output voltage

Z = Impedance

Substitute the values, we get:

Z = √(R² + Xc²)

Where,

Z = Impedance

R = Resistor

Xc = Capacitive reactance

Capacitive reactance:

Xc = 1/2πfC

Substitute the values, we get:

Xc = 1/2π×55×44.5×10⁻⁶

Xc = 63.11 Ω

Now, calculate impedance:

Z = √(R² + Xc²)

Z = √(57.3² + 63.11²)

Z = 85.4 Ω

Substitute the values in the formula of RMS current,

IRMS = Vrms/ Z

IRMS = 24.7/85.4

IRMS = 0.29 A

Therefore, the RMS current in the circuit is 0.29 A.3)

The RMS voltage across the resistor is the voltage drop across the resistor.

It can be calculated using the formula:

VR = IRMS × R

Substitute the values, we get:

VR = 0.29 × 57.3VR = 16.6 V

Therefore, the RMS voltage across the resistor is 16.6 V.4)

The RMS voltage across the capacitor is the voltage drop across the capacitor.

It can be calculated using the formula:

VC = IRMS × XC

Substitute the values, we get:

VC = 0.29 × 63.11VC = 18.3 V

Therefore, the RMS voltage across the capacitor is 18.3 V.5)

The phase angle can be calculated using the formula:

φ = tan⁻¹(XC/R)

Substitute the values, we get:

φ = tan⁻¹(63.11/57.3)

φ = tan⁻¹(1.1)

φ = 47.2°

Therefore, the phase angle for the circuit is 47.2°.

To know more about circuit visit:

https://brainly.com/question/12608516

#SPJ11








In a thermodynamically sealed container, 20.0 g of 17.0°C water is mixed with 40.0 g of 61.0°C water. Calculate the final equilibrium temperature T of the water. T= 'C

Answers

In a thermodynamically sealed container, 20.0 g of 17.0°C water is mixed with 40.0 g of 61.0°C water, and the final equilibrium temperature T of the water is 41.1°C.

We need to calculate the final equilibrium temperature T of the water. Mixing two different temperatures results in a common temperature where both temperatures get mixed. This final temperature is called an equilibrium temperature. We will use the formula of heat transfer to calculate the temperature of the mixture. It is given by:

mCΔT = mCΔT

where, m = mass of water

C = specific heat capacity of water

ΔT = temperature difference between final and initial temperatures

Substitute the values in the above formula,

m1CΔT1 + m2CΔT2 = (m1 + m2)CΔT20.02 × 4.18 × (T - 17) + 0.04 × 4.18 × (T - 61) = (0.02 + 0.04) × 4.18 × (T - x)0.0836T - 0.7096 + 0.0504T - 12.6096

= 0.25T - 1.045T

= 41.08°C ≈ 41.1°C

You can learn more about equilibrium at: brainly.com/question/30694482

#SPJ11

A uniform rod of length \( L \) and mass \( m \) is supported as shown. If the cable attached at end B suddenly breaks, IMMEDIATELY after the rope is broken Determine: 1. (10 points) Draw the free-bod

Answers

The angular acceleration of the rod immediately after the rope is broken is 0.367g/L in the downward direction.

When the cable attached at end B suddenly breaks, the uniform rod of length \( L \) and mass \( m \) will fall down due to the gravitational force. Immediately after the rope is broken, the free body diagram of the system will be as follows: Free body diagram of the rod:

The forces acting on the rod will be: Gravitational force (mg) applied at the center of the rod

Normal force (N) acting at the pivot point

Torque (τ) acting at the pivot point due to the gravitational force Torque (τ') acting at the center of mass (COM) of the rod due to the gravitational force

Let the acceleration of the rod be a in the downward direction.

Using the principle of moments, we can write,[tex]τ - τ' = Iα[/tex]

where I is the moment of inertia of the rod about the pivot point, α is the angular acceleration of the rod, and τ and τ' are the torques acting on the rod due to the gravitational force.

[tex]I = (1/3)mL² (for a uniform rod)[/tex]

[tex]τ = (mg/2) Lcosθ[/tex]

(since the center of gravity of the rod is at the midpoint and the angle θ is 60°)τ'

= (mg/2) (L/2) cosθ (since the center of mass of the rod is at the midpoint and the angle θ is 60°)

Substituting these values, we get,

[tex](mg/2) Lcosθ - (mg/2) (L/2) cosθ[/tex]

= (1/3)mL²aα

= 3gcosθ/2L

= 3(9.8)m/s² cos60°/2L

= (3/4)g/L

= 0.367g/L

Therefore, the angular acceleration of the rod immediately after the rope is broken is 0.367g/L in the downward direction.

To know more about angular visit-

https://brainly.com/question/19670994

#SPJ11








11. Explain with necessary circuit diagrams and graph, the Forward and Reverse bias characteristics of a Diode. (Write answers in your own words)

Answers

A diode is a two-terminal device that has the ability to conduct current in only one direction, known as the forward direction, while blocking current flow in the reverse direction.

A p-n junction diode is a basic diode that is made up of a p-type semiconductor and an n-type semiconductor that are both joined together. When the diode is reverse-biased, the p-type semiconductor is connected to the negative terminal of the battery, while the n-type semiconductor is connected to the positive terminal. As a result, the diode acts as an open circuit and no current flows through it. The reverse saturation current is the small amount of current that does flow through the diode, however.

When the diode is forward-biased, the p-type semiconductor is connected to the positive terminal of the battery, while the n-type semiconductor is connected to the negative terminal. As a result, the diode acts as a closed circuit and current flows through it. The forward current increases as the forward voltage is increased.

The X-axis shows the forward bias voltage, while the Y-axis shows the forward bias current. The graph is divided into three regions:

The forward region, which has a low forward voltage and a high forward current.
The breakdown region, which has a high forward voltage and a low forward current.
The reverse region, which has a low reverse current and a high reverse voltage.

Reverse Bias Characteristics of a Diode:The reverse bias characteristics of a diode can be represented graphically as shown below:Figure 2: Graph of reverse bias characteristics of a diode

The X-axis shows the reverse bias voltage, while the Y-axis shows the reverse bias current. The graph is divided into three regions:

The reverse saturation current region, which has a small reverse voltage and a very small reverse current.
The breakdown region, which has a high reverse voltage and a low reverse current.
The cut-off region, which has a large reverse voltage and no current flow.

To know more about diode, refer

https://brainly.com/question/24182272

#SPJ11

Question 3: A cam is to give the following motion to a knife-edge follower: 1. Dwell during \( 30^{\circ} \) of cam rotation; 2 Outstroke for the next \( 60^{\circ} \) of cam rotation: 3. Return strok

Answers

A cam is used to provide motion to a knife-edge follower. It has to provide the following motion: 1. Dwell during 30° of cam rotation, 2. Outstroke for the next 60° of cam rotation, and 3. Return stroke to its initial position during the remaining cam rotation.



A cam is a rotating component of a machine that is used to provide motion to other machine components. It is generally in the shape of an eccentric or a cylinder with an irregular shape. A knife-edge follower is one type of follower that is used to transfer the motion of a cam to other machine components.

To provide the required motion to the knife-edge follower, the cam has to undergo three stages. During the first stage, the cam has to remain stationary and dwell in a fixed position. This is achieved by designing the cam so that it has a circular or elliptical base with a flat portion on one side.

During the second stage, the cam has to provide an outstroke to the follower for the next 60° of cam rotation. This is achieved by designing the cam with a slope that rises and falls over this range. The slope of the cam determines the rate at which the follower moves away from the cam.

During the third stage, the cam has to provide a return stroke to its initial position during the remaining cam rotation. This is achieved by designing the cam with a slope that falls rapidly over the last 30° of cam rotation. The slope of the cam determines the rate at which the follower returns to its initial position.

Thus, a cam is used to provide a specific motion to a knife-edge follower by designing it with the required slopes and angles. It is an important component in the design of many machines and is used in a variety of applications.

To learn more about motion visit;

https://brainly.com/question/33317467

#SPJ11

A proton, which is the nucleus of a hydrogen atom, can be modeled as a sphere with a diameter of 2.4 fm and a mass of 1.67 x 10-27 kg. Iron Densities of Some Common Substances at Standard Temperature (0°C) and Pressure (Atmospheric) Substance p (kg/m3) Substance Air 1.29 Air (at 20°C and Lead atmospheric pressure) 1.20 Mercury Aluminum 2.70 X 10% Nitrogen gas Benzene 0.879 X 103 Oak Brass 8.4 X 10 Osmium Copper 8.92 x 108 Oxygen gas Ethyl alcohol 0.806 x 10 Pine Fresh water 1.00 X 10% Platinum Glycerin 1.26 X 10% Seawater Gold 19.3 X 10 Silver Helium gas 1.79 X 10-1 Hydrogen gas 8.99 X 10-2 Uranium Ice 0.917 X 109 p (kg/m) 7.86 X 10 11.3 X 10% 13.6 X 103 1.25 0.710 X 10% 22.6 X 105 1.43 0.373 X 10% 21.4 X 105 1.03 X 10 10.5 X 108 7.30 X 103 19.1 x 103 Tin (a) Determine the density of the proton. kg/m3 (b) State how your answer to part (a) compares with the density of aluminum, given the table above. o less than aluminum O equal to aluminum greater than aluminum

Answers

The density of a proton is greater than that of aluminum.

The density of a substance is defined as its mass per unit volume. To determine the density of the proton, we need to divide its mass by its volume. The given information tells us that the proton has a mass of 1.67 x 10^-27 kg. However, we need to find the volume of the proton to calculate its density.

The proton is modeled as a sphere with a diameter of 2.4 fm (femtometers). To find the volume of the sphere, we can use the formula for the volume of a sphere: V = (4/3)πr^3, where r is the radius of the sphere. The diameter of the proton is 2.4 fm, so the radius is half of that, which is 1.2 fm (since [tex]1 fm = 10^-^1^5 m[/tex]).

Using the radius, we can calculate the volume of the proton as follows:

V = (4/3)π(1.2 fm)^3

Now we have both the mass and the volume of the proton, so we can calculate its density by dividing the mass by the volume:

Density = mass / volume

Substituting the values, we get:

Density = (1.67*[tex]\\10^-^2^7[/tex]kg) / [[tex](4/3)π(1.2 fm)^3[/tex]]

Performing the calculations, we find the density of the proton. Comparing this density to the density of aluminum from the given table, we can conclude that the density of the proton is greater than that of aluminum.

Learn more about proton

brainly.com/question/12535409

#SPJ11

A) Based on the Op-Amp of your choice, discuss advantages and disadvantages of using such an op-amp. Discuss in brief applications used with this op-amp. B) Having a non-inverting amplifier with a gai

Answers

A)Op-Amp is an electronic device used to perform mathematical operations such as addition, subtraction, differentiation, and integration of signals. These devices have high gain and are very versatile. One of the most common op-amps is the 741 op-amp. This op-amp has a very high input impedance, low output impedance, and a gain that can be adjusted.

One of the main advantages of using a 741 op-amp is that it is cheap and easily available. It can be used in a wide range of applications, such as amplifiers, filters, and oscillators. The 741 op-amp has a high gain bandwidth product, which means that it can be used in high-frequency applications. It also has a low input bias current and a low input offset voltage.

However, there are some disadvantages of using the 741 op-amp. One of the main disadvantages is that it has a limited input voltage range. Another disadvantage is that it is not very accurate, which means that it is not suitable for applications that require high precision. Furthermore, it has a limited output voltage swing. This means that it cannot provide a high output voltage. In terms of applications, the 741 op-amp is widely used in audio amplifiers, electronic instruments, and control systems.B)

To know more about electronic visit:

https://brainly.com/question/12001116

#SPJ11


Can someone please explain how to get the 2 separate values?
z = sqrt(R^2 + (XL - XC)^2)
160 = sqrt(81^2 + (XL - 485)^2)
XL = 347 ohms or 623 ohms

Answers

The two separate values for XL are 624.01 ohms or 346.986 ohms.

Given the equation,z = sqrt(R² + (XL - XC)²)160 = sqrt(81² + (XL - 485)²)To find the value of XL,

we will need to square both sides of the equation to get rid of the square root.160² = (81² + (XL - 485)²)2.56 × 10⁴ = 6,561 + (XL - 485)²(XL - 485)² = 2.56 × 10⁴ - 6,561(XL - 485)² = 19339XL - 485 = ± sqrt(19339)XL = 485 ± sqrt

(19339)XL = 485 ± 139.0136XL = 624.01 ohms or 346.986 ohms

To know more about separate please refer to:

https://brainly.com/question/13619907

#SPJ11









Which type of radioactive decay produces particles with the highest energy? Alpha Gamma Beta All produce the same energy particles

Answers

The type of radioactive decay that produces particles with the highest energy is alpha decay.

Radioactive decay, also known as nuclear decay or radioactivity, is the process by which unstable atomic nuclei lose energy or subatomic particles. This happens in a spontaneous manner, and it is a natural process. When a radioactive substance undergoes decay, it transforms into a new substance, which is generally more stable and nonradioactive .In this process, different types of subatomic particles are emitted with varying energies. The types of radioactive decay are alpha decay, beta decay, and gamma decay. Among these types, alpha decay produces particles with the highest energy.

More on radioactive decay: https://brainly.com/question/1770619

#SPJ11

A nyicin rope (Y=2.909 Pa) has a length of 35:0 m and diameter of 22.0 mm, What force is needed to stretch this rope a length of 23.0 mm. 14

Answers

The force needed to stretch the nylon rope by 23.0 mm can be calculated using the formula:

Force = 2.909 Pa x Area x 0.023 m / 35.0 m

The force needed to stretch a nylon rope can be calculated using the formula:

Force = Young's modulus x Area x Change in length / Original length

In this case, the Young's modulus of nylon is given as 2.909 Pa, the original length is 35.0 m, and the change in length is 23.0 mm.

First, we need to convert the change in length from millimeters to meters. 23.0 mm is equal to 0.023 m.

Next, we need to calculate the area of the rope. The diameter is given as 22.0 mm, so the radius is half of that, which is 11.0 mm or 0.011 m. The area of the rope is then calculated using the formula for the area of a circle:

Area = [tex]\pi  radius^2[/tex]

Once we have the area and the change in length in meters, we can substitute the values into the formula to calculate the force.

Learn more about Young's modulus here:

https://brainly.com/question/30139811

#SPJ11


An aluminium kettle contains water at 25.2°C. When the
water is heated to 90.6°C, the volume of the kettle expands by
9.16×10-6 m3. Determine the volume of the kettle at
25.2°C.
Take
α
αaluminiu

Answers

The problem is related to Thermal expansion. According to this, the volume of the kettle at 25.2°C is 9.07×10⁻⁶ m3.

When a substance, such as aluminum, is heated, it undergoes thermal expansion, resulting in a change in its volume. To determine the volume of the kettle at 25.2°C, we need to consider the expansion coefficient of aluminum and the temperature difference between 25.2°C and 90.6°C.

The expansion coefficient, denoted by α, is a measure of how much a material expands per degree Celsius increase in temperature. Given that the volume of the kettle expands by 9.16×10⁻⁶ m3 when heated from 25.2°C to 90.6°C, we can use this information to find the volume change per degree Celsius.

The volume change ΔV can be calculated using the formula:

ΔV = α * V₀ * ΔT

Where ΔV is the change in volume, α is the expansion coefficient, V₀ is the initial volume, and ΔT is the change in temperature.

Rearranging the formula to solve for α, we have:

α = ΔV / (V₀ * ΔT)

Plugging in the given values, we get:

α = 9.16×10⁻⁶ m3 / (V₀ * (90.6°C - 25.2°C))

Now we can solve for the initial volume V₀ by rearranging the formula again:

V₀ = ΔV / (α * ΔT)

Substituting the known values, we have:

V₀  = 9.16×10⁻⁶ m3 / (α * (90.6°C - 25.2°C))

By calculating the value of α and plugging it into the formula, we can determine that the volume of the kettle at 25.2°C is 9.07×10⁻⁶ m3.

Learn more about Thermal expansion

brainly.com/question/14092908

#SPJ11

Question 4: A cam is to give the following motion to a roller follower: 1. Dwell during \( 30^{\circ} \) of cam rotation: 2. Outstroke for the next \( 60^{\circ} \) of cam rotation: 3. Return stroke d

Answers

The cam must be designed to ensure that the desired motion is achieved while maintaining proper clearances between the cam and follower.

A cam is an important component in machines that are designed to give a predetermined motion to the other moving parts of the machine. In this question, a cam is required to give the following motion to a roller follower:

1. Dwell during 30 degrees of cam rotation

2. Outstroke for the next 60 degrees of cam rotation

3. Return stroke during the remaining portion of the cam rotation

The outstroke and return stroke refer to the linear displacement of the roller follower.

During the outstroke, the roller follower moves away from the cam whereas, during the return stroke, the roller follower returns to its initial position. In this case, the roller follower will have a dwell of 30 degrees, an outstroke of 60 degrees and a return stroke of 270 degrees (which is the remaining portion of the cam rotation).

This type of cam motion can be designed using a translating follower mechanism with a flat-faced follower. The base circle diameter of the cam will be such that it allows for the desired dwell, outstroke, and return stroke values.

Overall, the cam must be designed to ensure that the desired motion is achieved while maintaining proper clearances between the cam and follower.

To know more about motion visit-

https://brainly.com/question/2748259

#SPJ11

Part A Find the separation of the 14N and 15N isotopes at the detector. The amount of meat in prehistoric diets can be determined by measuring the ratio of the isotopes nitrogen-15 to nitrogen-14 in bone from human remains. Carnivores concentrate 15N, so this ratio tells archaeologists how much meat was consumed by ancient people. Suppose you use a velocity selector (Figure 1) to obtain singly ionized (missing one electron) atoms of speed 513 km/s and want to bend them within a uniform magnetic field of 0.510 T. The measured masses of these isotopes are 2.29 x 10-26 kg (14N) and 2.46 x 10-26 kg (15N). Express your answer with the appropriate units. al uA ? S= Value Units Submit Previous Answers Request Answer X Incorrect; Try Again; 5 attempts remaining

Answers

The separation between the 14N and 15N isotopes at the detector is 5.38 mm.

The mass of 14N and 15N isotopes and the velocity of the ions are given. The charge of singly ionized atoms can be found by using Q = 1.602 × 10-19 C. The magnetic field strength B = 0.510 T is given. The radius of curvature of an ion in a magnetic field can be given by r = mv / BQ.

Therefore, the radius of the path of the two isotopes in the magnetic field is found. The separation of two isotopes is found by subtracting the radius of the path of one isotope from the radius of the path of another. Thus, the separation between the 14N and 15N isotopes at the detector is 5.38 mm.

Learn more about magnetic field here:

https://brainly.com/question/19542022

#SPJ11

A plane wave propagates in free space as Ē(z, t) = (2î + 3ŷ)Ecos (wt – 10z) V/m. (a) Express Ē(z) in phasor form. (b) Find wavenumber k, propagation constant and attenuation constant a. (c) Find radian frequency w. (d) Find direction of wave propagation. (e) How is this wave polarized? (f) Find magnetic field intensity (z,t). (g) Find average power density (S). Linear / Circular / Elliptical

Answers

(a) Ē(z) = (2î + 3ŷ)Ecos(-10z)

(b) k = 10, β = 10, α = 0

(c) ω = w

(d) Wave propagates in the negative z-direction

(e) The wave is linearly polarized

(f) H(z, t) = (2î + 3ŷ)Ecos(wt - 10z)/377

(g) Average power density P = 188.5 * E² W/m²

(a) To express Ē(z) in phasor form, we can ignore the time-dependent factor and consider only the spatial variation. Ē(z) = (2î + 3ŷ)Ecos(-10z), where E represents the magnitude of the electric field.

(b) The wavenumber k can be obtained by comparing the spatial variation with the standard plane wave equation: k = 10. The propagation constant β is also equal to 10. The attenuation constant α is zero since there is no exponential decay term present.

(c) The radian frequency ω can be found from the time-dependent factor as ω = w.

(d) The direction of wave propagation is determined by the sign of the coefficient in front of the z term. In this case, it is negative (-10z), indicating that the wave propagates in the negative z-direction.

(e) This wave is linearly polarized since the electric field vector remains constant in both magnitude and direction.

(f) The magnetic field intensity (H) can be obtained using the relationship H = E/η, where η is the intrinsic impedance of free space. For electromagnetic waves in free space, η = sqrt(μ/ε) = sqrt(μ₀/ε₀) ≈ 377 Ω. Therefore, H(z, t) = (2î + 3ŷ)Ecos(wt - 10z)/377.

(g) The average power density can be calculated using the formula P = 0.5 * Re(η * E * H*), where Re denotes the real part. Substituting the values, we get P = 0.5 * Re(377 * E²) = 0.5 * 377 * E² = 188.5 * E² W/m².

Learn more about power density here

https://brainly.com/question/14830360

#SPJ11

Magnification is ______ if the body part is moved ________ the image receptor.

a. decreased, closer to

b. decreased, farther from

c. increased, at an angle to

d. increased, closer to

Answers

Magnification is increased if the body part is moved closer to the image receptor. When the body part is placed closer to the image receptor, the object's magnification increases.

This increase in magnification happens since the image receptor's distance is reduced from the object, causing a smaller field of view for the given image receptor area.Since the image receptor is reduced, magnification occurs and an image is enlarged. The body part's distance from the image receptor may be altered by modifying the tube head's angulation. If the angulation of the tube head is increased, the body part is placed closer to the image receptor, causing an increase in magnification.

Magnification also varies depending on the size of the object. Magnification can be reduced by increasing the distance between the object and the image receptor. Similarly, decreasing the object's size or increasing the image receptor size may help reduce magnification in the imaging process. Hence, option D (increased, closer to) is the correct answer.

To know more about distance visit:

https://brainly.com/question/13034462

#SPJ11


7. A transformer has 80 turns in the primary wire and 600 turns in
the secondary. Determine the ratio of the voltages and currents,
Vs/Vp and Is/Ip, respectively.

Answers

In a transformer, the ratio of voltages and currents between the primary (P) and secondary (S) windings is determined by the ratio of the number of turns in each winding.

The automotive industry plays a significant role in the global economy, with numerous manufacturers, suppliers, and service providers involved in the design, production, and maintenance of automobiles. It is a dynamic and competitive industry that continually evolves to meet changing consumer preferences, government regulations, and environmental concerns.Overall, automobiles have revolutionized transportation and have a profound impact on society, economy, and individual lifestyles. They have greatly facilitated personal and commercial mobility, shaping the way we live, work, and interact with our surroundings.

To know more about mobility visit :

https://brainly.com/question/1232319

#SPJ11

An electron in a television tube is accelerated uniformly from rest to a speed of 8.6×107 m/s over a distance of 4.0 cm. What is the power (in W) delivered to the electron at the instant that its displacement is 2.5 cm ? (Ignore relativistic effects.) W

Answers

Power delivered to the electron at the instant that its displacement is 2.5 cm is approximately 2.85 × 10^-9 W.

To find the power delivered to the electron, we can use the formula:

power = work / time.

First, let's find the work done on the electron. Work is equal to the force applied multiplied by the displacement. In this case, the force is the electric force acting on the electron, and the displacement is the distance it traveled.

Since the electron is accelerated uniformly, we can use the equation of motion:

v^2 = u^2 + 2as,

where v is the final velocity,

           u is the initial velocity (0 m/s in this case),

           a is the acceleration, and

           s is the displacement.

Rearranging the equation, we can solve for acceleration: a = (v^2 - u^2) / (2s).

Plugging in the given values, we get: a = (8.6×10^7 m/s)^2 / (2 * 4.0 cm) = 3.28 × 10^14 m/s^2.

Next, we need to find the force applied. The force acting on the electron is given by Newton's second law: F = ma, where m is the mass of the electron and a is the acceleration.

The mass of an electron is approximately 9.11 × 10^-31 kg. Plugging in the values, we get: F = (9.11 × 10^-31 kg)(3.28 × 10^14 m/s^2) = 2.99 × 10^-16 N.

Now we can find the work done. The work is equal to the force multiplied by the displacement: work = F * s.

Plugging in the values, we get: work = (2.99 × 10^-16 N)(2.5 cm) = 7.48 × 10^-16 J.

Finally, we can find the power delivered to the electron. The power is equal to the work divided by the time taken. Since the time is not given, we can assume it is the time taken to reach the final speed.

Using the formula v = u + at, we can solve for time: t = (v - u) / a.

Plugging in the values, we get: t = (8.6×10^7 m/s - 0 m/s) / (3.28 × 10^14 m/s^2) = 2.62 × 10^-7 s.

Now we can calculate the power: power = work / time = (7.48 × 10^-16 J) / (2.62 × 10^-7 s) ≈ 2.85 × 10^-9 W.

Therefore, the power delivered to the electron at the instant that its displacement is 2.5 cm is approximately 2.85 × 10^-9 W.

To know more about power and work done calculation:

https://brainly.com/question/32299786

#SPJ11

Other Questions
19. A method that uses low temperature heat-treating that imparts toughness without reduction in hardness is called: A) annealing B) quenching) tempering D) soaking 20. What is the purpose of tempering after quench hardening? 21. A heating treating process that consist of heating a steel to a specific temperatue & then cooling at a slow rate in a controlled environment to prevent the formation of a har den structure is called? a 22. Brass containing what % of Zinc is resistance to dezincification? 23. Which one of the attributes listed below do not apply to Aluminum. A) Easily cast & machined B) High strength to weight ratio C) low cost D) high reflectivity E) none 1 24. Which non-ferrous material can be made stronger than steel? 25. The difference between Brass & Bronze is that Brassis made of copper with Zinc and Bronze is made of copper with Tin Tor F 26. Aluminum is not attacked by A) Saltwater B) Alkaline Solutions C) Water Containing heavy metals D) Gasoline 27. Which one of the following is NOT a characteristic of martensitic stainless steel? A) has a high C than Ferrite B] has no nickel C] can contain Carbide Dj Can have a BCC structure E] Contain signa phase F] is ferromagnetic 28. Stainless steels must contain which elements? (Select all that apply) A] Fe B] Ni C] N D] CuE] Cr F]A1 Find solutions for your homeworkFind solutions for your homeworkbusinessoperations managementoperations management questions and answerscellmall , a cellphone company located in vanderbijlpark, is planning to sell two new model of cellphones. they have acquired the mokia-n12 at r 1500 each and they plan to sell then at r2999 each. the sumsang-s99 can be acquired at r 3000 each and sold at a profit of r2000 each. their total budget for purchasing is r1500000 per month. storage costs areQuestion: CellMall , A Cellphone Company Located In Vanderbijlpark, Is Planning To Sell Two New Model Of Cellphones. They Have Acquired The Mokia-N12 At R 1500 Each And They Plan To Sell Then At R2999 Each. The SumSang-S99 Can Be Acquired At R 3000 Each And Sold At A Profit Of R2000 Each. Their Total Budget For Purchasing Is R1500000 Per Month. Storage Costs Arestudent submitted image, transcription available belowShow transcribed image textExpert Answer100% 1st stepAll stepsFinal answerStep 1/1Answer a) Formulate the LP problem (5)The LP problem is to maximize profit from the sale of cellphones, subject to the constraints of budget, storage, and supplier capacity.b) Use Ms Excel Solver to find the maximum profit that the company can make from the sale of their cellphones, taking into consideration all the constraints. (20)The maximum profit that the company can make is R1,499,000.c) Use the ISO-profit line method to find the optimum solution (15)The optimum solution is to sell 150 Mokia-N12 and 200 SumSang-S99.d) Use the corner-point method to find the maximum profit. (10)The maximum profit is R1,499,000.Explanation:View the full answeranswer image blurFinal answerTranscribed image text:CellMall , a cellphone company located in Vanderbijlpark, is planning to sell two new model of cellphones. They have acquired the Mokia-N12 at R 1500 each and they plan to sell then at R2999 each. The SumSang-S99 can be acquired at R 3000 each and sold at a profit of R2000 each. Their total budget for purchasing is R1500000 per month. Storage costs are estimated to be R10 each per month for Mokia-N12 and R 15 each per month for SumSang-S99. The storage budget is R25000 per month. Suppliers are capable of supplying Mokia-N12 in lot sizes of 150 units, with a maximum 10 lots per month. They can also supply SumSang-S99 in lot sizes of 200 units with a maximum of 8 lots per month. CellMall must order at least one lot per month. a) Formulate the LP problem (5) b) Use Ms Excel Solver to find the maximum profit that the company can make from the sale of their cellphones, taking into consideration all the constraints. (20) c) Use the ISO-profit line method to find the optimum solution d) Use the corner-point method to find the maximum profit. Graphs for c) can be drawn by hand and either scanned or a picture taken. Ethan purchased an annuity that had an interest rate of 3.25% compounded semiannually. It provided him with payments of $3,000 at the end of every month for 6 years. If the first withdrawal is to be made in 4 years and 1 month, how much did he pay for it? Round to the nearest cent what are the grain angularity,grain matrix , permability , grain starting of shale sedemintry rocks? Let h(n) be the unit sample response of an LSI system. Find the frequency response when (a) h(n) = 8(n) + 38 (n - 2) + 48 (n-3) (b) h(n) = (-)- u(n-3). Why is it important to document things before the disasteroccurs in disaster and recoverability plan in cyber securitypolicy?What are some of the things we need to document?*Cyber Security Policy what is the primary windows 7 tool for managing files? art that has recognizable style, form, and subject, matter is Explain why IRR is biased in favor of short-term projects. Or What is the implicit assumption about the reinvestment rate when calculating the IRR? How does this assumption induce a bias in the evaluation of mutually exclusive projects? Apocalyptica Corporation is expected to pay the following dividends over the next four years: $6.40, $17.40, $22.40, and $4.20. Afterwards, the company pledges to maintain a constant 6.00 percent growth rate in dividends, forever. If the required return on the stock is 10 percent, what is the current share price? The actual age of the volcanic rock on Midway is about 27.7 million years. Suggest a reason why your answer for problem 3 above differs noticeably from this. O The estimate of the mean distance between the two locations causes a difference in measurement. O Perhaps the rate of plate motion has changed over the past few million years and/or the location of the hotspot has changed. O Different hotspots in the past have created new islands that drifted with the plates. Colourful Graphics is considering acquiring a state-of-the-art printing machine and is trying to decide whether to purchase the machine or lease it from the manufacturer. Royal Bank has offered to lend the company the $80,000 required to purchase the machine over 6 years at 8% per annum. The salvage value of the equipment is estimated at $25,000. The manufacturer, on the other hand is proposing an operating lease over 6 years with annual lease payments of $16,000. If the equipment is owned it is expected that annual maintenance costs for the machine would amount to $600. Colourful Graphics tax rate is 20 percent and its cost of capital is 12 percent. The printing machine has a CCA rate of 20%Required: Advise Colourful Graphics which alternative they should choose, providing them with calculations to support your recommendation. For the following ordinary annuity, determine the size of theperiodic payment.Future value: -Present value: $11,500.00Payment Period: 1 monthTerm of annuity: 16 years 9 monthsInterest rate: 8.6% Raymond nas purchased a participating whole life policy in the amount of 5250,000 . He likes the fact that it is a limited payment policy. He will be paying premiums for 20 years, after which his policy will be fully paid up. He aso likes the idea that his participating policy will also pay "dividends" and that he has dividend payment optiors. Which of the following are the most common dividend options offered by insurance companies? Select one: a. Premium reduction, term insurance, accumulation, cash, paid up additions, impact on death benefit and cash values. b. Cash, premium reduction, paid up additions, term insurance. c. Premium reduction, paid up additions, term insurance, impact on death benefit and cash values. d. Impact on death benefit and cash values, accumulation, paid up additions, premium reduction, cash. ____ adults may also be slower than ____ adults to respond to a driving situation that requires an immediate reaction, such as braking quickly when another driver stops unexpectedly.Middle; younger An ATMega chip needs to generate a 5 kHz waveform with an 50% duty cycle from the OCOB pin using Timer 0 assuming that Fclk = 16 MHz, using the fast-PWM non-inverting mode, with a prescale ratio of 16. What would be the TOP register OCROA value? What would be the Duty Cycle register OCROB value? 2 points Despite possible risks, Chandler throws his child, Erica, straight up into the air and catches her, while his wife, Monica, was not around. Erica has the greatest energy at her highest peak. Your answer Another of the 79 moons of Jupiter is named Europa. Europa accelerates* 2 points faster than Jupiter. Your answer True or False 2 points Sisyphus pushes a rock up a hill at a constant speed. As the block rock up the hill, its potential energy increases and its kinetic energy remains the same. Your answer 2 points Sisyphus' rock rolls down a hill at a constant speed. Its kinetic energy increases and its potential energy remains the same. Your answer Radium 228145 has a half-life of 5.76 years. How long does it take for the activity of radium 228 to decrease from 7.0010 3 Bq to 5.0010 2 Bq ? 5. Fermium 253 has a half-life of 3.00 days. A sample currently contains 4.50 kg of fermium 253 . What mass of fermium 253 was present in this sample 23.0 days ago? Answer the following questions about the function whose derivative isf(x)=(x5)2(x+7)a. What are the critical points of f? b. On what open intervals isfincreasing or decreasing? c. At what points, if any, doesfassume local maximum and minimum values? 24 points) Bicycle production consists of two steps: components production, and assembly. Both steps require skilled and unskilled labor. Until now, bikes were produced entirely in Santa Cruz to serve the consumers in Santa Cruz. Unskilled workers earn $15 an hour, while skilled workers earn $30 an hour in Santa Cruz. With technological advances, manufacturers are now able to relocate their production process in Kona where the wages are lower: unskilled workers earn $7 an hour, while skilled workers earn $15 an hour. The following summarizes the unit labor requirements: Suppose that shipping components between Santa Cruz and Kona costs $16 per stock, while shipping assembled bikes costs $30 per bike. The firm's expected demand for bike in Santa Cruz (Q SC ) is 1.2 million. (a) (6 points) Assume that there is no fixed cost of building a factory in Kona. Where will you manufacture components and assemble bikes for consumers in Santa Cruz? What will be the production cost of a bike? (b) (6 points) Now assume that relocating the production process to Kona, in fact, involves a fixed cost of setting up a plant, which is $15 million. Is it better to move (a part or all of) the production process to Kona? (c) (6 points) Kona is a big market for bicylces. While the expected demand Q KONA is unknown, you know that you can charge P KONA =$510 per bike in Kona. What is the minimum level of Q KONA that would justify your operations in Kona? (d) (6 points) Now suppose that both countries decide on imposing import tariffs: a specific tariff of $9 per bike components and $45 per assembled bike. How does your answer in part (c) change?