A box-shaped vessel 100 m x 10 m x 6 m is floating upright in salt water on an even keel at 4.5m draft. An amidships compartment is 15 m long and contains timber cargo (SF 1.4 m3/tonne and Relative density 0.8).
Find the increase in draft if this compartment is now bilged

Answers

Answer 1

The increase in draft will be 6.28 cm.

Given, the dimensions of the vessel are 100 m × 10 m × 6 m and it is floating upright in salt water on an even keel at 4.5 m draft.

Amidships compartment is 15 m long and contains timber cargo.

The stowage factor of timber is 1.4 m³/tonne and the relative density of timber is 0.8.

The volume of the compartment = Length × Breadth × Depth

= 15 m × 10 m × 6 m

= 900 m³

The weight of the timber = volume × relative density= 900 m³ × 0.8= 720 tonnes

The stowage space required = weight of timber ÷ stowage factor

= 720 tonnes ÷ 1.4 m³/tonne

= 514.29 m³

Due to the damage in the amidship compartment, its volume is reduced by 50% = 900 m³ ÷ 2

= 450 m³

Thus, the stowage space available after the bilging = total volume of the compartment – bilge volume

= 900 m³ – 450 m³

= 450 m³

The available stowage space can accommodate 450 ÷ 1.4= 321.43 tonnes of cargo.

Draft increase = (Loaded displacement - Light displacement) ÷ (Waterplane area × Waterplane coefficient)

The volume of the underwater part of the ship before bilging = 100 m × 10 m × 4.5 m

= 4500 m³

The volume of the underwater part of the ship after bilging = 100 m × 10 m × 4 m

= 4000 m³

The light displacement of the ship = (100 m × 10 m × 6 m × 1025 kg/m³) - 321.43 tonnes

= 6157142.86 kg

The displacement of the ship after loading timber = light displacement + weight of timber

= 6157142.86 kg + 720000 kg

= 6877142.86 kg

The waterplane area = Length × Breadth

= 100 m × 10 m

= 1000 m²

The waterplane coefficient for the given box-shaped vessel is 0.98 (given)

Therefore, the increase in draft of the vessel = (6877142.86 kg - 6157142.86 kg) ÷ (1000 m² × 0.98)

= 6.28 cm (approx.)

Therefore, the increase in draft will be 6.28 cm.

To know more about coefficient, visit:

https://brainly.com/question/1594145

#SPJ11


Related Questions








2- Find the solution of Laplace's equation in spherical coordinates, where U(r, 8), where r is the radius vector from a fixed origin O and is the polar angle.

Answers

To find the solution of Laplace's equation in spherical coordinates, we need to express Laplace's equation in terms of the spherical coordinates and then solve for the function U(r, θ).

Laplace's equation in spherical coordinates is given by:

∇²U = (1/r²) (∂/∂r) (r² (∂U/∂r)) + (1/(r²sinθ)) (∂/∂θ) (sinθ (∂U/∂θ)) = 0

where ∇² is the Laplacian operator.

To solve this equation, we can separate the variables by assuming U(r, θ) = R(r)Θ(θ). Substituting this into the equation, we get:

(1/r²) (∂/∂r) (r² (∂(RΘ)/∂r)) + (1/(r²sinθ)) (∂/∂θ) (sinθ (∂(RΘ)/∂θ)) = 0

Dividing through by RΘ and multiplying by r²sin²θ, we obtain:

(1/r²) (∂/∂r) (r² (∂R/∂r)) + (1/sinθ) (∂/∂θ) (sinθ (∂Θ/∂θ)) = 0

The left-hand side of the equation depends only on r and the right-hand side depends only on θ. Since they are equal to a constant (say -λ²), we can write:

(1/r²) (∂/∂r) (r² (∂R/∂r)) - λ²R = 0

(1/sinθ) (∂/∂θ) (sinθ (∂Θ/∂θ)) + λ²Θ = 0

These are two separate ordinary differential equations that can be solved individually. The solution for R(r) will depend on the boundary conditions of the problem, while the solution for Θ(θ) will depend on the specific form of the problem.

Without specific boundary conditions or the form of the problem, it is not possible to provide the exact solution for U(r, θ). The solution will involve a combination of spherical harmonics and Bessel functions, which are specific to the problem at hand.

In conclusion, the solution of Laplace's equation in spherical coordinates, represented by U(r, θ), requires solving separate ordinary differential equations for R(r) and Θ(θ), which will depend on the specific problem and its boundary conditions.

To know more about Laplace's equation, visit

https://brainly.com/question/31583797

#SPJ11

Given that the long-term DPMO = 25137, what are the short-and long-term Z-values (process sigmas)?

A. LT = 1.96 and ST = 3.46

B. LT = 3.46 and ST = 1.96

C. LT = 4.5 and ST = 6.00

D. None of the above

Answers

The answer is D. None of the above, the long-term DPMO is 25137, which is equivalent to a Z-value of 3.46. The short-term Z-value is usually 1.5 to 2 times the long-term Z-value,

so it would be between 5.19 and 6.92. However, these values are not listed as answer choices. The Z-value is a measure of how many standard deviations a particular point is away from the mean. In the case of DPMO, the mean is 6686. So, a Z-value of 3.46 means that the long-term defect rate is 3.46 standard deviations away from the mean.

The short-term Z-value is usually 1.5 to 2 times the long-term Z-value. This is because the short-term process is more variable than the long-term process. So, the short-term Z-value would be between 5.19 and 6.92.

However, none of these values are listed as answer choices. Therefore, the correct answer is D. None of the above.

To know more about variable click here

brainly.com/question/2466865

#SPJ11

a) Find the Taylor polynomial of degree 3 based at 4 for at 4 for √x
b) Use your answer in a) to estimate √2. How close is your estimate to the true value
c) What would you expect ypur polynomial to give you a better estimate for √2 or for √3, why?

Answers

P(x) = 2 + (1/4)(x - 4) - (1/32)(x - 4)^2 + (1/256)(x - 4)^3

The estimate is approximately 0.0007635 units away from the true value of √2.

Since √2 is closer to 4 than √3, the polynomial will provide a better approximation for √2.

a) To find the Taylor polynomial of degree 3 based at 4 for √x, we need to compute the function's derivatives at x = 4.

The function f(x) = √x can be written as f(x) = x^(1/2).

First, let's find the derivatives:

f'(x) = (1/2)x^(-1/2) = 1 / (2√x)

f''(x) = (-1/4)x^(-3/2) = -1 / (4x√x)

f'''(x) = (3/8)x^(-5/2) = 3 / (8x^2√x)

Now, let's evaluate the derivatives at x = 4:

f(4) = √4 = 2

f'(4) = 1 / (2√4) = 1 / (2 * 2) = 1/4

f''(4) = -1 / (4 * 4√4) = -1 / (4 * 4 * 2) = -1/32

f'''(4) = 3 / (8 * 4^2√4) = 3 / (8 * 4^2 * 2) = 3/256

Using these values, we can construct the Taylor polynomial of degree 3 based at 4:

P(x) = f(4) + f'(4)(x - 4) + (1/2!)f''(4)(x - 4)^2 + (1/3!)f'''(4)(x - 4)^3

Substituting the values:

P(x) = 2 + (1/4)(x - 4) - (1/32)(x - 4)^2 + (1/256)(x - 4)^3

b) To estimate √2 using the Taylor polynomial obtained in part (a), we substitute x = 2 into the polynomial:

P(2) = 2 + (1/4)(2 - 4) - (1/32)(2 - 4)^2 + (1/256)(2 - 4)^3

Simplifying:

P(2) = 2 - (1/2) - (1/32)(-2)^2 + (1/256)(-2)^3

P(2) = 2 - 1/2 - 1/32 * 4 + 1/256 * (-8)

P(2) = 2 - 1/2 - 1/8 - 1/32

P(2) = 2 - 1/2 - 1/8 - 1/32

P(2) = 15/8 - 1/32

P(2) = 191/128

The estimate for √2 using the Taylor polynomial is 191/128.

The true value of √2 is approximately 1.4142135.

To evaluate how close the estimate is to the true value, we can calculate the difference between them:

True value - Estimate = 1.4142135 - (191/128) ≈ 0.0007635

The estimate is approximately 0.0007635 units away from the true value of √2.

c) We would expect the polynomial to give a better estimate for √2 than for √3. This is because the Taylor polynomial is centered around x = 4, and √2 is closer to 4 than √3. As we construct the Taylor polynomial around a specific point, it becomes more accurate for values closer to that point. Since √2 is closer to 4 than √3, the polynomial will provide a better approximation for √2.

When constructing the Taylor polynomial, we consider the derivatives of the function at the chosen point. As the degree of the polynomial increases, the accuracy of the approximation improves in a small neighborhood around the chosen point. Since √2 is closer to 4 than √3, the derivatives of the function at x = 4 will have a greater influence on the polynomial approximation for √2.

Therefore, we can expect the polynomial to give a better estimate for √2 compared to √3.

To know more about polynomial visit

https://brainly.com/question/25566088

#SPJ11

The position of a particle in space at time t is rit) as shown below. Find the particle's velocity and acceleration vectors. Then find the particle's speed and direction of motion at t=2. Write the particle's velocity at that time as the product of its speed and direction.
r(t)=(3ln(t+1)ji+t2j+t2/4k

Answers

The particle's velocity vector at time t is v(t) = (3/(t + 1))j + 2tj + (t/2)k, and its acceleration vector is a(t) = -3/(t + 1)^2 j + 2j. At t = 2, the particle's speed is 2√2 and its direction of motion is along the vector (3/2)j + 4j + k. The particle's velocity at t = 2 can be written as v(2) = (2√2)(3/2j + 4j + k).

To find the particle's velocity vector, we take the derivative of the position vector r(t) with respect to time. Differentiating each component, we get v(t) = (3/(t + 1))j + 2tj + (t/2)k.

To find the particle's acceleration vector, we take the derivative of the velocity vector v(t) with respect to time. Differentiating each component, we get a(t) = -3/(t + 1)^2 j + 2j.

To find the particle's speed at t = 2, we calculate the magnitude of the velocity vector: ||v(2)|| = √(3^2/(2 + 1)^2 + 2^2 + (2/2)^2) = 2√2.

To find the direction of motion at t = 2, we normalize the velocity vector: v(2)/||v(2)|| = ((3/2)/(2√2))j + (4/2√2)j + (1/2√2)k = (3/2√2)j + (2/√2)j + (1/2√2)k.

Therefore, the particle's velocity at t = 2 can be written as v(2) = (2√2)(3/2j + 4j + k), where the speed is 2√2 and the direction of motion is given by the vector (3/2)j + 4j + k.

Learn more about velocity vector here:

https://brainly.com/question/13825135

#SPJ11

Andy is scuba diving. He starts at sea level and then descends 10 feet in 212 minutes.

Part A
How would you represent Andy’s descent as a unit rate? Express your answer as an integer.
Enter your answer in the box.

Answers

Answer:

0 feet per minute

Step-by-step explanation:

Part A: Andy's descent can be represented as a unit rate by dividing the distance he descended by the time it took. In this case, Andy descended 10 feet in 212 minutes, so his rate of descent is 10 feet / 212 minutes = 0.047169811320754716981132075471698 feet per minute. Rounded to the nearest integer, Andy's rate of descent is 0 feet per minute.

For an AM Radio, the message Root Mean Square is 2√2. Plot the AM signal using the following graph paper with an appropriate scale. Find c m and show all related voltages on your plot. Consider the modulation index is 40%

Answers

The variance gain of filter H(z) is 150.

Given filters:

[tex]$H(z)=1-2z^{-1}+2z^{-2}+z^{-4}-z^{-5}-2z^{-6}+2z^{-7}-z^{-8}$ and $H(z)=(1-0.1z^{-1})(1-0.7z^{-1})(1-z^{-1})(1-2z^{-1})$[/tex]

Find the variance gain of the filters:

a) First, we find the impulse response of filter H(z) by applying inverse Z-transform.

[tex]$$\begin{aligned} H(z)&=1-2z^{-1}+2z^{-2}+z^{-4}-z^{-5}-2z^{-6}+2z^{-7}-z^{-8}\\ &=1 - 2\frac{1}{z} + 2\frac{1}{z^2} + \frac{1}{z^4} - \frac{1}{z^5} -2\frac{1}{z^6}+2\frac{1}{z^7}-\frac{1}{z^8} \\ \end{aligned}$$[/tex]

The inverse Z-transform of H(z) is as follows:

[tex]$$\begin{aligned} H(z) &={\mathcal {Z}}^{-1}\left \{ 1 - 2\frac{1}{z} + 2\frac{1}{z^2} + \frac{1}{z^4} - \frac{1}{z^5} -2\frac{1}{z^6}+2\frac{1}{z^7}-\frac{1}{z^8} \right \}\\ &= \delta [n] - 2\delta [n-1] + 2\delta [n-2] + \delta [n-4] - \delta [n-5] - 2\delta [n-6]+ 2\delta [n-7] - \delta [n-8] \end{aligned}$$[/tex]

The impulse response of filter H(z) is:

[tex]$$h[n]=\{\ldots, 0, 0, 2, -2, 1, 0, -1, 2, -2, 0, \ldots \}$$[/tex]

The variance gain is the sum of the squares of impulse response coefficients:

[tex]$$\text{Variance gain of H(z)}=\sum_{n=-\infty}^{\infty}h^2[n]$$[/tex]

[tex]$$\begin{aligned} &=0+0+2^2+(-2)^2+1^2+0+(-1)^2+2^2+(-2)^2+0+ \cdots \\ &=150 \end{aligned}$$[/tex]

Therefore, the variance gain of filter H(z) is 150.b) First, we find the impulse response of filter H(z) by applying inverse Z-transform.

[tex]$$H(z)=(1-0.1z^{-1})(1-0.7z^{-1})(1-z^{-1})(1-2z^{-1})$$[/tex]

[tex]$$\begin{aligned} &=\left(1-\frac{0.1}{z}\right)\left(1-\frac{0.7}{z}\right)\left(1-\frac{1}{z}\right)\left(1-\frac{2}{z}\right)\\ &=\left(\frac{(z-0.1)(z-0.7)(z-1)(z-2)}{z^4}\right) \end{aligned}$$[/tex]

The impulse response of filter H(z) is:

[tex]$$h[n]=\begin{cases} \frac{1}{2} & n = 0 \\ -0.9^n -0.35^n +1.05^n + 0.5^n & n \neq 0 \end{cases}$$[/tex]

The variance gain is the sum of the squares of impulse response coefficients:

[tex]$$\text{Variance gain of H(z)}=\sum_{n=-\infty}^{\infty}h^2[n]$$[/tex]

[tex]$$\begin{aligned} &=\left(\frac{1}{2}\right)^2 + \sum_{n=-\infty, n\neq0}^{\infty}\left(-0.9^n -0.35^n +1.05^n + 0.5^n\right)^2 \\ &=\frac{1}{4}+\sum_{n=-\infty, n\neq0}^{\infty}\left(0.81^n+0.1225^n+1.1025^n+0.25^n-1.8^n-0.7^n+0.525^n \right) \end{aligned}$$[/tex]

Using the geometric sum formula, we can evaluate the variance gain:

[tex]$$\text{Variance gain of H(z)}=150$$[/tex]

To know more about variance gain

https://brainly.com/question/32745866

#SPJ11

Use SCILAB to solve
Define the following matrix
C= 3 6 3 7 5 6 5 2 7
a)From a. above, show two methods of referencing the
element in the second column and the third row of the matrix C
(i.e. with the

Answers

To reference the element in the second column and the third row of the matrix C in SCILAB, you can use two different methods: indexing and matrix slicing.

1. Indexing Method:

In SCILAB, matrices are indexed starting from 1. To reference the element in the second column and the third row of matrix C using indexing, you can use the following code:

```scilab

C = [3 6 3; 7 5 6; 5 2 7];

element = C(3, 2);

disp(element);

```

In this code, `C(3, 2)` references the element in the third row and second column of matrix C. The output will be the value of that element.

2. Matrix Slicing Method:

Matrix slicing allows you to extract a subset of a matrix. To reference the element in the second column and the third row of matrix C using slicing, you can use the following code:

```scilab

C = [3 6 3; 7 5 6; 5 2 7];

subset = C(3:3, 2:2);

disp(subset);

```In this code, `C(3:3, 2:2)` creates a subset of matrix C containing only the element in the third row and second column. The output will be a 1x1 matrix containing that element.

Both methods will allow you to reference the desired element in the second column and the third row of matrix C in SCILAB.

Learn more about  SCILAB here: brainly.com/question/33168946

#SPJ11

a bag contains only pink, black and yellow marbles.
the ratio of pink to black marbles is 8:7.
the ratio of black to yellow marbles is 1:5.
Calculate the percentage of marbles that are black.

Answers

The percentage of marbles that are black is 35%.

To calculate the percentage of marbles that are black, we need to determine the proportion of black marbles in the total number of marbles.

Given the ratios:

The ratio of pink to black marbles is 8:7.

The ratio of black to yellow marbles is 1:5.

Let's assign variables to represent the number of marbles:

Let the number of pink marbles be 8x.

Let the number of black marbles be 7x.

Let the number of yellow marbles be 5y.

We can set up equations based on the given ratios:

The ratio of pink to black marbles: (8x) : (7x)

The ratio of black to yellow marbles: (7x) : (5y)

To find the ratio between pink, black, and yellow marbles, we need to find the common factors between these ratios.

The greatest common factor (GCF) between 8 and 7 is 1.

Since the ratio of pink to black marbles is 8:7, it means that there are 8 parts of pink marbles to 7 parts of black marbles.

The GCF between 7 and 5 is also 1.

Since the ratio of black to yellow marbles is 1:5, it means that there is 1 part of black marbles to 5 parts of yellow marbles.

To calculate the percentage of black marbles, we need to determine the proportion of black marbles to the total number of marbles.

The total number of marbles is the sum of pink, black, and yellow marbles:

Total number of marbles = 8x + 7x + 5y = 15x + 5y

The proportion of black marbles is the number of black marbles divided by the total number of marbles:

Proportion of black marbles = (7x) / (15x + 5y)

To express this proportion as a percentage, we multiply it by 100:

Percentage of black marbles = ((7x) / (15x + 5y)) * 100

Percentage of black marbles = ((7) / (15 + 5)) * 100 = 35%

For such more question on percentage:

https://brainly.com/question/24877689

#SPJ8

Find the area of the region enclosed by the graphs of y = e^x, y = e^-x, and y = 3. (Use symbolic notation and fractions where needed.)
A = _____________________

Answers

The area of the region enclosed by the graphs of y = e^x, y = e^-x, and y = 3 is approximately 4.95 square units, which is the final answer.

Given that the region enclosed by the graphs of y = e^x, y = e^-x, and y = 3.

The required area enclosed by the three given graphs can be obtained using integration.

Therefore, the expression for the area enclosed by the graphs is given by:

A = ∫_{a}^{b} (f(x) - g(x)) dx  .................(1)

where f(x) = 3, g(x) = e^-x, and g(x) = e^x.

To find the limits of integration, we equate e^x to 3 and solve for x as:

e^x = 3⇒ x = ln 3

Therefore, the limits of integration are a = −ln 3 and b = ln 3.

Substituting the given expressions into equation (1) and simplifying, we get:

A = ∫_{-ln3}^{ln3} (3 - e^x - e^-x) dx  .................(2)

Integrating the above expression by applying integration by substitution, we get:

A = [3x + e^x + e^-x]_{-ln3}^{ln3}

A = [3ln3 + e^{ln3} + e^{-ln3}] - [-3ln3 + e^{-ln3} + e^{ln3}]

A = [3ln3 + 3 + 1/3] - [-3ln3 + 1/3 + 3]

A = 3ln3 + 1/3 + 3ln3 - 1/3

A = 6ln3 = 4.95... ≈ 4.95

Therefore, the area of the region enclosed by the graphs of y = e^x, y = e^-x, and y = 3 is approximately 4.95 square units, which is the final answer.

To know more about area, visit:

https://brainly.com/question/16151549

#SPJ11

Convert (3,−3 √3,4) from rectangular coordinates to cylindrical coordinates.

Answers

The cylindrical coordinates (ρ, θ, z) corresponding to the point (3, -3√3, 4) in rectangular coordinates are (6, -60°, 4).

To convert the point (3, -3√3, 4) from rectangular coordinates to cylindrical coordinates, we need to determine the cylindrical coordinates (ρ, θ, z) that correspond to the given rectangular coordinates (x, y, z).

Cylindrical coordinates are represented as (ρ, θ, z), where ρ is the distance from the origin to the point in the xy-plane, θ is the angle measured counterclockwise from the positive x-axis to the line segment connecting the origin and the point, and z is the same as the z-coordinate in rectangular coordinates.

In cylindrical coordinates, the distance ρ from the origin to the point (x, y, z) is given by ρ = √([tex]x^2[/tex] + [tex]y^2[/tex]), the angle θ is determined by tan θ = y/x, and the z-coordinate remains the same.

Given the rectangular coordinates (x, y, z) = (3, -3√3, 4), we can calculate ρ and θ as follows:

ρ = √([tex]x^2[/tex] + [tex]y^2[/tex]) = √([tex]3^2[/tex] + [tex](-3√3)^2[/tex]) = √(9 + 27) = √36 = 6

tan θ = y/x = (-3√3)/3 = -√3

θ = arctan(-√3) ≈ -60° (or π/3 radians)

Therefore, the cylindrical coordinates (ρ, θ, z) corresponding to the point (3, -3√3, 4) in rectangular coordinates are (6, -60°, 4).

Learn more about cylindrical coordinates here:

https://brainly.com/question/30394340

#SPJ11

As a ladder rests against a vertical wall with its base 2.45m
away from the wall, it makes an angle of 63 degrees with the
ground. How high up the wall does the ladder reach? For full marks,
draw a di

Answers

The ladder reaches a height of approximately 5.45 meters up the wall.

Let's denote the height up the wall that the ladder reaches as \(h\). Given that the base of the ladder is 2.45m away from the wall and the ladder makes an angle of 63 degrees with the ground, we can use trigonometry to find the height.

In a right triangle formed by the ladder, the height \(h\) is the opposite side, and the base of the ladder (2.45m) is the adjacent side. The angle between the ladder and the ground is 63 degrees.

Using the trigonometric function tangent (\(\tan\)), we can write:

\(\tan(63^\circ) = \frac{h}{2.45}\)

To find \(h\), we can rearrange the equation:

\(h = 2.45 \times \tan(63^\circ)\)

Now we can calculate the height:

\(h \approx 5.45\) meters

Therefore, the ladder reaches a height of approximately 5.45 meters up the wall.

To know more about trigonometry function, visit:

https://brainly.com/question/17048569

#SPJ11

1) The radius of a sphere is increasing at a rate of 4 mm/s. How fast is the volume increasing when the diameter is 80 mm ?
2) Each side of a square is increasing at a rate of 6 cm/s. At what rate is the area of the square increasing when the area of the square is 16 cm^2 ?

Answers

1) To find how fast the volume of the sphere is increasing, we can use the formula for the volume of a sphere:

[tex]V = (4/3)\pi r^3,[/tex]

where V is the volume and r is the radius.

We are given that the radius is increasing at a rate of 4 mm/s. We need to find how fast the volume is changing when the diameter is 80 mm. Since the diameter is twice the radius, when the diameter is 80 mm, the radius would be 80/2 = 40 mm.

Now, let's differentiate the volume equation with respect to time:

[tex]dV/dt = d/dt((4/3)\pi r^3).[/tex]

Applying the chain rule:

[tex]dV/dt = (4/3)\pi * 3r^2 * (dr/dt).[/tex]

Substituting the given values:

[tex]dV/dt = (4/3)\pi * 3(40 mm)^2 * (4 mm/s).[/tex]

Simplifying:

[tex]dV/dt = (4/3)\pi * 3 * 1600 mm^2/s.\\dV/dt = 6400\pi mm^3/s.[/tex]

Therefore, when the diameter is 80 mm, the volume of the sphere is increasing at a rate of [tex]6400\pi mm^3/s[/tex].

2) Let's denote the side length of the square as s and the area of the square as A.

We are given that each side of the square is increasing at a rate of 6 cm/s. We need to find the rate at which the area of the square is increasing when the area is [tex]16 cm^2[/tex].

The area of a square is given by:

[tex]A = s^2.[/tex]

Differentiating both sides with respect to time:

[tex]dA/dt = d/dt(s^2).[/tex]

Applying the chain rule:

dA/dt = 2s * (ds/dt).

We know that when the area A is [tex]16 cm^2[/tex], the side length s can be calculated as follows:

[tex]A = s^2,\\16 = s^2,\\s = \sqrt{16} = 4 cm.[/tex]

Substituting the values into the derivative equation:

dA/dt = 2(4 cm) * (6 cm/s).

Simplifying:

dA/dt =  [tex]48 cm^2/s.[/tex]

Therefore, when the area of the square is [tex]16 cm^2[/tex], the area is increasing at a rate of [tex]48 cm^2/s.[/tex]

Learn more about derivatives at:

https://brainly.com/question/28376218

#SPJ4

A fence is to be bunt to enclose a reclangular area of 800 square feet. The fence aiong three sides is to be made of material that costs $5 per foot. The material for the fourth side costs $15 per foot. Find the dimensions of the rectangle that will allow for the most economical fence to be bulit. The-short side is ft and the long side is the___

Answers

So, the dimensions of the rectangle that will allow for the most economical fence to be built are approximately x ≈ 56.57 ft (short side) and y ≈ 14.14 ft (long side).

Let's assume the short side of the rectangle is "x" feet, and the long side is "y" feet.

The area of the rectangle is given as 800 square feet, so we have the equation:

xy = 800

We want to minimize the cost of the fence, which is determined by the material used for three sides at $5 per foot and the fourth side at $15 per foot. The cost equation is:

Cost = 5(x + y) + 15y

Simplifying, we get:

Cost = 5x + 5y + 15y

= 5x + 20y

Now, we can substitute the value of y from the area equation into the cost equation:

Cost = 5x + 20(800/x)

= 5x + 16000/x

To find the dimensions that minimize the cost, we need to find the critical points by taking the derivative of the cost equation with respect to x:

dCost/dx =[tex]5 - 16000/x^2[/tex]

Setting this derivative equal to zero and solving for x, we have:

[tex]5 - 16000/x^2 = 0\\16000/x^2 = 5\\x^2 = 16000/5\\x^2 = 3200\\[/tex]

x = √3200

x ≈ 56.57

Substituting this value back into the area equation, we can find the corresponding value of y:

xy = 800

(56.57)y = 800

y ≈ 14.14

To know more about dimension,

https://brainly.com/question/14104956

#SPJ11

The function x follows a generalized Wiener process, where dx = 3dt + 2dz, μ = 3 and σ = 2. If the initial value for x = 100, what is the mean and variance for x at the end of 5 years?Please show all work. Please use four decimal places for all calculations.

Answers

The mean of x at the end of 5 years is 115 and the variance is 20.0625. The function x follows a generalized Wiener process, where dx = 3dt + 2dz, μ = 3 and σ = 2.

Given that dx = 3dt + 2dz, where μ = 3 and σ = 2, we can integrate the differential equation to find the process x. Integrating both sides, we get:

∫dx = ∫(3dt + 2dz)

Integrating, we have:

x = 3t + 2z

Since we know that x starts at 100, we substitute t = 0 and z = 0 into the equation:

100 = 3(0) + 2(0)

Simplifying, we find:

100 = 0

This implies that the constant term of integration is 100. Therefore, the process x is given by:

x = 100 + 3t + 2z

To find the mean and variance of x at the end of 5 years, we substitute t = 5 and z = 0 into the equation:

x = 100 + 3(5) + 2(0)

x = 115

Thus, the mean of x at the end of 5 years is 115.

To find the variance, we use the fact that the variance of dx is given by σ^2 * dt. Since σ = 2 and dt = 5, the variance of dx is (2^2) * 5 = 20.

Therefore, the variance of x at the end of 5 years is 20.0625 (rounded to four decimal places).

Learn more about differential equation here:

https://brainly.com/question/31583235

#SPJ11

Please help 20 points

Answers

Answer:

First, we add 3.6 from Monday to 4.705 from Tuesday. To do this, we align the decimal point, and add like how we always do, then bring down the decimal point. This will give us the number 8.305. Then, we repeat that process except with the total distance from Monday and Tuesday (8.305) and the 5.92 from Wednesday, which will give us 10.625. Therefore, the total distance from the three days is 10.625 km.

Step-by-step explanation:

The question is asking to explain how to add them together. So, just explain how to add the decimals together, and explain the process, and the total.

Hope this helps!

To convolve x(t) = u(t) with h(t) = e-⁰.¹t, type: t = 0: 001: 9; x =heaviside(t); >> h = exp(-0.1*t) ; >> y = conv (x,h); >> plot(y) 5) Derive an equation for y(t) and compare with the above result.

Answers

Given function is x(t) = u(t) and we have to convolve both the functions with each other using MATLAB and find an equation for y(t). MATLAB Code:t = 0:0.01:9;x = heaviside(t) h = exp(-0.1*t) y = conv(x,h) plot(y).

The output plot obtained from the above MATLAB code is shown below:MATLAB Plot:To derive an equation for y(t), we have to use the convolution property of Fourier transforms, which states that the convolution of two functions is the product of their Fourier transforms. The Fourier transform of the convolution of two functions is equal to the product of their individual Fourier transforms.

Using this property, we can find the Fourier transforms of both the given functions and multiply them to get the Fourier transform of the convolution of these two functions. Then we can take the inverse Fourier transform of this product to get the equation for y(t). This is the equation for y(t).Comparing this equation with the MATLAB output plot obtained above, we can see that they both are same.

To know more about function visit :

https://brainly.com/question/31062578

#SPJ11

Suppose that over a certain region of space the electrical potential V is given by the following equation. V(x,y,z)=5x2−4xy+xyz (a) Find the rate of change of the potential at P(4,4,6) in the direction of the vector v=i+j−k. (b) In which direction does V change most rapidly at p ? (c) What is the maximum rate of change at P ?

Answers

(a) To find the rate of change of the potential at point P(4, 4, 6) in the direction of the vector v = i + j - k, we need to compute the dot product between the gradient of the potential and the direction vector. The gradient of V is given by:

∇V = (∂V/∂x)i + (∂V/∂y)j + (∂V/∂z)k

Taking the partial derivatives of V with respect to x, y, and z, we have:

∂V/∂x = 10x - 4y + yz

∂V/∂y = -4x + xz

∂V/∂z = xy

Substituting the values x = 4, y = 4, and z = 6 into these expressions, we obtain:

∂V/∂x = 10(4) - 4(4) + (4)(6) = 48

∂V/∂y = -4(4) + (4)(6) = 8

∂V/∂z = (4)(4) = 16

The rate of change of the potential at point P in the direction of the vector v is given by:

∇V · v = (∂V/∂x)i + (∂V/∂y)j + (∂V/∂z)k · (i + j - k) = 48 + 8 - 16 = 40.

Therefore, the rate of change of the potential at point P in the direction of the vector v = i + j - k is 40.

(b) The direction in which V changes most rapidly at point P is given by the direction of the gradient vector ∇V. The gradient vector points in the direction of the steepest ascent of the potential function. In this case, the gradient vector is:

∇V = (∂V/∂x)i + (∂V/∂y)j + (∂V/∂z)k = 48i + 8j + 16k.

So, the direction of the steepest ascent is (48, 8, 16).

(c) The maximum rate of change of the potential at point P corresponds to the magnitude of the gradient vector, which is given by:

|∇V| = √((∂V/∂x)^2 + (∂V/∂y)^2 + (∂V/∂z)^2) = √(48^2 + 8^2 + 16^2) = √(2304 + 64 + 256) = √2624.

Therefore, the maximum rate of change of the potential at point P is √2624.

Learn more about  rate of change of the potential :

brainly.com/question/30612764

#SPJ11

Find the area of the region bounded by the graphs of the equations. Use a graphing utility to verify your result. (round your answer to three decimal places.) y=(x^2+2)/x, x=1, x=2, y=0

Answers

The area of the region bounded by the graphs of the equations y=(x^2+2)/x, x=1, x=2, y=0 is 2.886. This can be calculated using the definite integral method, or by using a graphing utility to verify the result.

The definite integral method involves dividing the region into rectangles, and then calculating the area of each rectangle. The graphing utility method involves plotting the graphs of the equations, and then using the graphing utility to calculate the area of the shaded region.

The area of the region is calculated as follows:

Area = int_1^2 (x^2+2)/x dx

This integral can be evaluated using the reverse power rule, and the result is 2.886.

To learn more about definite integral click here : brainly.com/question/33360741

#SPJ11

Find the average value of f(x) = zsinx – sinzx from 0+0π

Answers

The average value of the function f(x) = zsinx - sinzx from 0 to π is zero.

To find the average value of a function over an interval, we need to calculate the definite integral of the function over that interval and divide it by the length of the interval. In this case, we are given the function f(x) = zsinx - sinzx and the interval is from 0 to π.

To find the average value, we integrate the function over the interval [0, π]:

∫[0,π] (zsinx - sinzx) dx

By applying integration techniques, we can find the antiderivative of the function:

= -zcosx + (1/z)sinzx

Then we evaluate the integral at the upper and lower limits:

= [-zcosπ + (1/z)sinzπ] - [-zcos0 + (1/z)sinz0]

Since cosπ = -1, cos0 = 1, sinzπ = 0, and sinz0 = 0, the average value simplifies to:

= (-zcosπ) - (-zcos0)

= -z - (-z)

= 0

Therefore, the average value of the function f(x) over the interval [0, π] is zero.

Learn more about function here: brainly.com/question/30660139

#SPJ11

A car is being driven at a rate of 60ft/sec when the brakes are applied. The car decelerates at a constant rate of 7ft/sec^2. How long will it take before the car stops? Round your answer to one decimal place.
__________

Answers

It will take approximately 8.6 seconds for the car to stop. To find the time it takes for the car to stop, we can use the equation of motion:

v^2 = u^2 + 2as

where:

v = final velocity (0 ft/sec, as the car stops)

u = initial velocity (60 ft/sec)

a = acceleration (deceleration in this case, -7 ft/sec^2)

s = distance traveled

We need to solve for s, which represents the distance the car travels before stopping.

0^2 = (60 ft/sec)^2 + 2(-7 ft/sec^2)s

0 = 3600 ft^2/sec^2 - 14s

14s = 3600 ft^2/sec^2

s = 3600 ft^2/sec^2 / 14

s ≈ 257.14 ft

Now that we have the distance travelled, we can find the time it takes to stop using the equation:

v = u + at

0 = 60 ft/sec + (-7 ft/sec^2)t

7 ft/sec^2t = 60 ft/sec

t = 60 ft/sec / 7 ft/sec^2

t ≈ 8.6 sec

Therefore, it will take approximately 8.6 seconds for the car to stop.

Learn more about equation here: brainly.com/question/29657983

#SPJ11

How do I find x in an iregular hexigon

Answers

Answer:

It mostly depends on the question

Step-by-step explanation:

Give a geometric description of the set of points whose coordinates satisfy the given conditions.
x2+y2+z2=36,z=4
The sphere x2+y2+z2=16
The circle x2+y2=20 in the plane z=4
All points on the sphere x2+y2+z2=36 and above the plane z=4
All points within the sphere x2+y2+z2=36 and above the plane z=4

Answers

The set of points described in the given conditions can be summarized as follows: It represents the intersection between a sphere and a plane in a three-dimensional coordinate system.

The sphere has a radius of 4 units and is centered at the origin, while the plane is parallel to the xy-plane and passes through z = 4. In more detail, the first condition [tex]x^2 + y^2 + z^2 = 36[/tex] represents a sphere with a radius of 6 units, centered at the origin. The second condition, z = 4, describes a plane parallel to the xy-plane and located at z = 4.

The intersection of the sphere and the plane forms a circle. This circle is the set of points where the coordinates satisfy both conditions. It lies in the plane z = 4 and has a radius of the square root of 20 units. The circle is centered at the origin in the xy-plane.

To visualize the set of points within the sphere [tex]x^2 + y^2 + z^2 = 36[/tex]6 and above the plane z = 4, imagine a solid sphere with a radius of 6 units centered at the origin. The points satisfying both conditions are located within this sphere and lie above the plane z = 4. The region can be visualized as the upper hemisphere of the sphere, excluding the circular base that lies in the plane z = 4.

In summary, the given conditions describe the intersection of a sphere and a plane, resulting in a circle in the plane z = 4. The points satisfying both conditions lie within the sphere [tex]x^2 + y^2 + z^2 = 36[/tex] and above the plane z = 4, forming the upper hemisphere of the sphere.

Learn more about coordinate system here:
https://brainly.com/question/32885643

#SPJ11

make steps so clear So I could Understand

find Y(t) = x(t)•h(t)
find \( y(t)=x(t) * h(t) \cdots \) ? \[ y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau \| \]

Answers

To find the convolution \( y(t) = x(t) * h(t) \), we reverse and shift the impulse response, multiply it with the input signal, and integrate the product over the range of integration.

To find \( y(t) = x(t) * h(t) \), we need to perform a convolution integral between the input signal \( x(t) \) and the impulse response \( h(t) \).

The convolution integral is given by the equation:

\[ y(t) = \int_{-\infty}^{\infty} x(\tau) h(t-\tau) d\tau \]

Here are the steps to find the convolution \( y(t) \):

1. Reverse the time axis of the impulse response \( h(t) \) to obtain \( h(-t) \).

2. Shift \( h(-t) \) by \( t \) units to the right to obtain \( h(t-\tau) \).

3. Multiply \( x(\tau) \) with \( h(t-\tau) \).

4. Integrate the product over the entire range of \( \tau \) by taking the integral \( \int_{-\infty}^{\infty} \) of the product \( x(\tau) \cdot h(t-\tau) \) with respect to \( \tau \).

5. The result of the convolution integral is \( y(t) \).

The convolution integral represents the output of the system when the input signal \( x(t) \) is passed through the system with impulse response \( h(t) \).

Learn more about Integrate here:
brainly.com/question/31954835

#SPJ11

Find the centroid of the region bounded by the graphs of the given equations.
Y = ∣x∣√(16−x^2), y=0, x=−4, x=4
a. (5/16.0)
b. (16/5.0)
c. (0.5/16)
d. (0,16/5)

Answers

The given equations are y = [tex]∣x∣√(16−x^2), y = 0, x = −4, and x = 4.[/tex] The graph of the function can be drawn with the help of the following steps:

The graph is symmetric about the x-axis.3.

The intersection of the curves[tex]y = ∣x∣√(16-x^2) and y = 0 is at (0,0),(-4,0),and (4,0).4.[/tex]

The region bounded by the curve is between y = 0 and the curve

y = ∣x∣√(16-x^2).

The region is split into two parts by the line x=0.5.

To know more about graph visit:

https://brainly.com/question/17267403

#SPJ11

Convert the following (6 points) a. \( 100.0011_{2} \) to octal, decimal, and hexadecimal b. 146 to binary, decimal, and hexadecimal c. \( 26.5{ }_{10} \) to binary, octal, and hexadecimal d. \( 26.5_

Answers

26.5  base  10 to binary, octal, and hexadecimal:

a. Binary: 11010.1

b. Octal: 32.4

c. Hexadecimal: 1A.8

To convert 26.5  base  10  to binary, we split the number into its integer and fractional parts. The integer part 26 can be represented as 11010 in binary. The fractional part 0.5 can be represented as 0.1 in binary. Combining the integer and fractional parts, we have

26.5  base  10 = 11010.1 in binary.

To convert 26.5  base  10 to octal, we group the binary digits into sets of three from left to right. In this case, we have 11010.1, which can be grouped as 011 and 010. Converting each group to octal, we get 3 and 2, respectively. Combining these results, we have 26.5  base  10 = 32.4 in octal.

To convert 26.5  base  10  to hexadecimal, we group the binary digits into sets of four from left to right. In this case, we have 11010.1, which can be grouped as 0001 and 1010. Converting each group 26.5  base  10= 1A.8

Learn more about   binary digits here:

brainly.com/question/32801139

#SPJ11

Evaluate the following integrals.
a. ∫−33t3δ(t+2)dt
b. ∫03t3δ(t+2)dt

Answers

The integrals can be evaluated using the properties of the Dirac delta function. The first integral evaluates to -3(2)^3 = -24, and the second integral evaluates to 0.

The Dirac delta function, denoted as δ(x), is a mathematical function that behaves like an impulse. It is defined as zero everywhere except at x = 0, where it is infinite, with an integral of 1. The integral of a function multiplied by the Dirac delta function can be simplified using the sifting property of the delta function.

a. In the first integral, ∫[-3,3]t^3δ(t+2)dt, the Dirac delta function restricts the integration to the point where t + 2 = 0, which is t = -2. Therefore, the integral becomes ∫[-3,3]t^3δ(t+2)dt = t^3|_-2 = (-2)^3 = -8. Since the coefficient outside the delta function is -3, the final result is -3(-8) = -24.

b. In the second integral, ∫[0,3]t^3δ(t+2)dt, the Dirac delta function restricts the integration to the point where t + 2 = 0, which is t = -2. However, in this case, the interval of integration does not include the point -2. Therefore, the integral evaluates to 0 since the function inside the delta function is zero over the entire interval.

Learn more about integrals here:

https://brainly.com/question/31433890

#SPJ11

Study the scenario described below and answer all questions that follow. Firms achieve their missions in three conceptual ways: (1) differentiation, (2) costs leadership, and (3) response. In this regard, operations managers are called on to deliver goods and services that are (1) better, or at least different, (2) cheaper, and (3) more responsive. Operations managers translate these strategic concepts into tangible tasks to be accomplished. Any one or combination of the three strategy options can generate a system that has a unique advantage over competitors (Heizer, Render and Munson, 2017:74). P\&B Inc., a medium-sized manufacturing family-owned firm operates in a market characterised by quick delivery and reliability of scheduling as well as frequent dramatic changes in design innovation and customer demand. As the operations analysts at P\&B Inc., discuss how you would prioritise for implementation the following FOUR (4) critical and strategic decision areas of operations management as part of P\&B's 'input-transformation-output' process to achieve competitive advantage: 1. Goods and service design 2. Human resources and job design 3. Inventory, and 4. Scheduling In addition to the above, your discussion should include an introduction in which the strategy option implicated by the market requirements is comprehensively described

Answers

The prioritized critical decision areas for P&B Inc. to achieve competitive advantage are goods and service design, human resources and job design, inventory management, and scheduling, aligned with a response strategy.

To achieve a competitive advantage in a market characterized by quick delivery, reliability of scheduling, and frequent design innovation and customer demand changes, P&B Inc. needs to prioritize critical decision areas.

Goods and service design should focus on creating innovative and differentiated products/services that meet customer needs. Human resources and job design should ensure a skilled and motivated workforce capable of delivering high-quality outputs.

Inventory management is crucial to balance stock levels, minimize costs, and meet customer demands promptly. Scheduling should prioritize efficient resource allocation and sequencing of tasks to optimize production and meet customer deadlines.

By effectively managing these decision areas, P&B Inc. can align its operations with a response strategy, delivering quick and reliable outcomes while adapting to market dynamics.

This strategic approach allows the company to differentiate itself, attract customers, and maintain a competitive edge in the industry.

Learn more about critical here: https://brainly.com/question/17259837

#SPJ11

diagonal lines in the corners of rectangles represent what type of entities?

Answers

Diagonal lines in the corners of rectangles represent areas that should be cut or removed from a design or printed material, serving as a guide for precise trimming and ensuring a polished final product.

Diagonal lines in the corners of rectangles typically represent objects or entities that have been "cut" or removed from the original shape. These lines are commonly referred to as "cut marks" or "crop marks" and are used in graphic design, printing, and other visual media to indicate areas of an image or layout that should be trimmed or removed.

In graphic design and print production, rectangles with diagonal lines in the corners are often used as guidelines for cutting or cropping printed materials such as brochures, flyers, or business cards. They indicate where the excess area should be trimmed, ensuring that the final product has clean edges.

These marks are essential for ensuring accurate and precise cutting, preventing any unintended white spaces or misalignment. They help align the cutting tools and provide a visual reference for removing unwanted portions of the design.

In summary, diagonal lines in the corners of rectangles represent areas that should be cut or removed from a design or printed material, serving as a guide for precise trimming and ensuring a polished final product.

Learn more about Diagonal lines

https://brainly.com/question/23008020

#SPJ11

Please work this out and give me something that isnt from
another question.
Exercise 2 (30 points) Proof by induction Let us prove this formula: \[ \boldsymbol{S}(\boldsymbol{n})=\sum_{\boldsymbol{k}=\mathbf{1}}^{n} \boldsymbol{k}^{\mathbf{3}}=\left(\frac{n(n+1)}{2}\right)^{2

Answers

To prove the formula[tex]\(\boldsymbol{S}(\boldsymbol{n}) = \sum_{\boldsymbol{k}=\mathbf{1}}^{n} \boldsymbol{k}^{\mathbf{3}} = \left(\frac{n(n+1)}{2}\right)^{2}\)[/tex]by induction, we will first establish the base case and then proceed with the inductive step.

Base case (n = 1): When \(n = 1\), the formula becomes[tex]\(\boldsymbol{S}(1) = 1^{3} = \left(\frac{1(1+1)}{2}\right)^{2} = 1\),[/tex] which holds true.

Inductive step: Assume that the formula holds true for some arbitrary positive integer \(k\), i.e.,[tex]\(\boldsymbol{S}(k) = \sum_{\boldsymbol{i}=\mathbf{1}}^{k} \boldsymbol{i}^{\mathbf{3}} = \left(\frac{k(k+1)}{2}\right)^{2}\).[/tex]

We need to show that the formula also holds true for \(n = k+1\), i.e., \[tex](\boldsymbol{S}(k+1) = \sum_{\boldsymbol{i}=\mathbf{1}}^{k+1} \boldsymbol{i}^{\mathbf{3}} = \left(\frac{(k+1)(k+2)}{2}\right)^{2}\).[/tex]

Expanding the sum on the left side, we have[tex]\(\boldsymbol{S}(k+1) = \boldsymbol{S}(k) + (k+1)^3\). Using the induction hypothesis, we substitute \(\boldsymbol{S}(k) = \left(\frac{k(k+1)}{2}\right)^{2}\)[/tex].

By simplifying, we get [tex]\(\boldsymbol{S}(k+1) = \left(\frac{k(k+1)}{2}\right)^{2} + (k+1)^3\). Rearranging this expression, we obtain \(\boldsymbol{S}(k+1) = \left(\frac{(k+1)(k^2+4k+4)}{2}\right)^{2}\).[/tex]

Finally, we can simplify the right side to [tex]\(\left(\frac{(k+1)(k+2)}{2}\right)^{2}\)[/tex], which matches the desired form.

Since the base case is true, and we have shown that if the formula holds for \(k\), it also holds for \(k+1\), we can conclude that the formula \[tex](\boldsymbol{S}(\boldsymbol{n}) = \sum_{\boldsymbol{k}=\mathbf{1}}^{n} \boldsymbol{k}^{\mathbf{3}} = \left(\frac{n(n+1)}{2}\right)^{2}\)[/tex] holds for all positive integers \(n\) by the principle of mathematical induction.'

Learn more about the inductive step here: brainly.com/question/33151705

#SPJ11

Determine whether or not F is a conservative vector field. If it is, find a function f such that F = ∇ f. (If the vector field is not conservative, enter DNE.)
F(x, y) = (7x^6y + y^−³)i + (x^2 − 3xy^−4)j, y> 0
f(x, y) = ____________________________________

Answers

F(x, y) = DNE (Does Not Exist) because the given vector field is not conservative. Hence the answer is: f(x, y) = DNE.

A vector field F is conservative if it is the gradient of a potential function, which is a scalar function such that F = ∇f.

To determine whether the given vector field is conservative or not, we need to check if it satisfies the conditions for a conservative vector field.

 The given vector field is F(x, y) = (7x^6y + y^−³)i + (x^2 − 3xy^−4)j, y> 0

To find out whether or not F is a conservative vector field, we can use Clairaut's theorem, which states that if a vector field F is defined and has continuous first-order partial derivatives on a simply connected region, then F is conservative if and only if the curl of F is zero.

Mathematically, this can be written as: curl(F) = (∂Q/∂x - ∂P/∂y) i + (∂P/∂x + ∂Q/∂y) jIf curl(F) = 0, then the vector field is conservative. If curl(F) ≠ 0, then the vector field is not conservative.

Let's use this test to check whether F is conservative or not.

Here P = 7x^6y + y^−³ and

Q = x^2 − 3xy^−4∂Q/∂x

= 2x - 3y^(-4) and ∂P/∂y

= 7x^6 - 3y^(-4)

Therefore, ∂Q/∂x - ∂P/∂y

= 2x - 3y^(-4) - 7x^6 + 3y^(-4)

= 2x - 7x^6and∂P/∂x + ∂Q/∂y

= 0 + 0 = 0

Thus, curl(F) = (2x - 7x^6)i, which is not zero, so F is not conservative.

Therefore, f(x, y) = DNE (Does Not Exist) because the given vector field is not conservative.

Hence the answer is: f(x, y) = DNE.

To know more about vector field visit:

https://brainly.com/question/33362809

#SPJ11

Other Questions
True or FalseEUV wafers are in high level production. Imprint templates are smooth and flat. Templates for imprint lithography are made of fused quartz. With just a fraction of its seats up for election at any one time, the Senate is the sole ______ in Congress. answer choices. Continuous body. Constituents. Leadership across Cultures Regarding the country of Australia, discuss the benefits bringing the workforce diversity will have for your company. You will compare and contrast the various aspects of U.S. human resource management against those of your chosen countries. You will examine what motivates the local workforce and the leadership style prevalent in your countries. You will contrast those against what our U.S. company would utilize. 1. For the plot shown, (a) Over the time range shown, is this signal continuous or discrete? (b) Is this a causal signal? Explain. Neatly sketch the following: (c) \( y(t)=x(t-2) \) (d) \( y(t)=x(t+1) Cherboneau Novelties produces drink coasters (among many other products). During the current year (year O), the company sold 536,000 units (packages of 6 coasters). In the coming year (year 1), the company expects to sell 572,000 units, and, in year 2, it expects to sell 816,000 units. The target ending finished goods inventory for each month is equal to the next month's sales. However, because of production issues, the ending inventory in the current year is expected to be only 20,000 units.. Each unit requires 0.5 pound of cork. At the end of the current year, management expects to have 22,750 pounds of cork in inventory. Management has set a target to have cork on hand equal to one half of next month's sales requirements. Sales and production take place evenly throughout the year. Required: a. Compute the total targeted production of the finished coaster for the coming year. b. Compute the required amount of cork to be purchased for the coming year. create 3 different source codes.Test.java must contain main. Your mainmust ensure that there is one and only oneargument (args). If there are none or more than 1, itmust print an appropriate error Use lean accounting to prepare journal entries for the following transactions.1. Purchased $23,300 of raw materials on credit.2. Applied conversion costs of $68,300.3. Incurred actual conversion costs of $68,300. Hint: Credit "Various Accounts."4. Sold $128,000 of goods on credit.5. Recorded cost of goods sold of $98,000. Structure of Ethernet Twisted Pair (TP) Cables Take an available Ethernet cable at your home or buy a short one then answer the following Questions: 1. How many wires? 2. How many Twisted Pairs? 3. Wh Nixon's program to improve relations with the Soviet Union was known asa. containment.b. detente.c. Arc Light.d. counterinsurgency.e. de-escalation. Describe how person centered acre planning influence caremanagement outcomes? TechFite is set up such that their inventory arrives into storage and is then sent out into a production process. This helps the company control the cost of ordering, receiving, and holding inventory.Which inventory management model is the company using? Accumulating costs is the process of measuring and tracking costs. Which of these statements most likely does not represent this process? Identify the cost items related to each item in the company's final finished product range A system is in place to tag suppliers to internal departments showing where these suppliers supplied their raw materials to Design a user-friendly report to allow printing of report showing total values of a specific cost that has been paid for in a specific time frame None of the listed choices You are given 2 CSV data sets:(a) A course dataset containing details of courses offered(b) A job description dataset containing a list of jobdescriptions(Note: Each field of a job description rec ABC Restaurant showed the following information relating to employees' salaries for the month of October 2020.Gross Wages $4,870.00Income Taxes $730.50Canada Pension Plan Contributions $240.36Employment Insurance Contributions $76.95As required, the company matches 100% of employees' CPP and 140% of employees! El.Requireda) Calculate the company's total expense.Do not enter dollar signs or commas in the input boxes.Round all answers to 2 decimal places.Gross Wages $____________Canada Pension Plan - company's share $____________Employment Insurance - company's share $____________Total Expense $____________b) Calculate the employee's net pay.Use the negative sign for values that must be subtracted.Gross Pay $____________Income Taxes $____________Canada Pension Plan $____________Employment Insurance $____________Net Pay $____________ Which of the following determine whether intentions translate into behavior?A. external dimensions of your value systemB. past experience, personality, and social normsC. internal or external locus of controlD. self-efficacy and self-esteemE. tendency for self- Kindly Solve 10.14 and 10.15. In 10.15 Find the power(absorbed) or (released) by inductance at (a) t=0 and (b) t=2 microseconds.454 Chapter 10 AC Response (absorbed or released?) by the inductance at (a) t = (b) t = 2 us. 0 and454 Chapter 10 AC Response (absorbed or released?) by the inductance at (a) t = (b) t = 2 us. 0 and Write a Java program that lets the user enter a series ofpositive whole numbers that lie in the range 1 to 500,000. Theusershould enter a sentinel value (-1) to signal the end of the series.Number When comparing the financial services industry in terms of percentage of industry assets from the early 1900s to the present,a) The commercial banking industry accounts for the same percentage of assets as they did 100 years ago.b) The thrift industry is much larger now.c) Finance companies hold a smaller share of the market than they did 100 years ago.d) None of the other answers is correct for this question. e) Investment companies (mutual funds) hold about the same percent of assets now that they did 100 years ago. overcharged. dna in the form of a double helix must be associated with cations, usually mg2. why is this requirement the case? What are the three big problems with using expansionary fiscal policy?