A boy walks from point C to point D which is 50 m apart. Then, he walks back to point C. what is his displacement of his whole journey ?
A.25 m
B.75 m
C.50 m
D.0 m

Answers

Answer 1

Answer: D. 0 m

Explanation:

Concept:

Here, we need to know the concept of displacement.

Displacement is defined to be the change in position of an object.

The difference between displacement and distance is the total movement of an object without any regard to direction, while displacement is the pure change of position.

If you are still confused, please refer to the attachment below for a graphical explanation.

Solve:

STEP ONE: the boy walks from point C to point D (a distance of 50 m)

C ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ D

                                              50 m

STEP TWO: the boy walks from point D to point C (a distance of 50 m)

D ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ C

                                               50 m

STEP THREE: find the displacement

The boy started with point C

The boy ended with point C

He did not change his position throughout the journey.

Therefore, his displacement is 0 m.

Hope this helps!! :)

Please let me know if you have any questions

A Boy Walks From Point C To Point D Which Is 50 M Apart. Then, He Walks Back To Point C. What Is His

Related Questions

Rachel has good distant vision but has a touch of presbyopia. Her near point is 0.60 m. Part A When she wears 2.0 D reading glasses, what is her near point

Answers

Answer:

The right answer is "0.273 m".

Explanation:

Given:

Power (P),

[tex]\frac{1}{f} = 2D[/tex]

Near point,

u = 0.6 m

As we know,

⇒ [tex]\frac{1}{v} -\frac{1}{u}=\frac{1}{f} = 2[/tex]

By substituting the values, we get

⇒ [tex]\frac{1}{v} -\frac{1}{0.6} =2[/tex]

            [tex]\frac{1}{v}=2+\frac{1}{0.6}[/tex]

            [tex]\frac{1}{v} =\frac{1.2+1}{0.6}[/tex]

            [tex]\frac{1}{v}=\frac{2.2}{0.6}[/tex]    

By applying cross-multiplication, we get

          [tex]0.6=2.2 \ v[/tex]

            [tex]v = \frac{0.6}{2.2}[/tex]

      [tex]S_{near} = 0.273 \ m[/tex]

A charged particle having mass 6.64 x 10-27 kg (that of a helium atom) moving at 8.70 x 105 m/s perpendicular to a 1.30-T magnetic field travels in a circular path of radius 18.0 mm. What is the charge of the particle

Answers

Answer:

the charge of the particle is 2.47 x 10⁻¹⁹ C

Explanation:

Given;

mass of the particle, m = 6.64 x 10⁻²⁷ kg

velocity of the particle, v = 8.7 x 10⁵ m/s

strength of the magnetic field, B = 1.3 T

radius of the circle, r = 18 mm = 1.8 x 10⁻³ m

The magnetic force experienced by the charge is calculated as;

F = ma = qvB

where;

q is the charge of the particle

a is the acceleration of the charge in the circular path

[tex]a = \frac{v^2}{r} \\\\ma = qvB\\\\q = \frac{ma}{vB} \\\\q = \frac{mv^2}{rvB} = \frac{mv}{rB} \\\\q = \frac{(6.64\times 10^{-27} ) \times (8.7\times 10^5)}{(1.8\times 10^{-2}) \times (1.3)} \\\\q = 2.47 \ \times 10^{-19} \ C[/tex]

Therefore, the charge of the particle is 2.47 x 10⁻¹⁹ C

Two horizontal pipes have the same diameter, but pipe B is twice as long as pipe A. Water undergoes viscous flow in both pipes, subject to the same pressure difference across the lengths of the pipes. If the flow rate in pipe B is Q=ΔV/Δt what is the flow rate in pipe A? Viscosity: Two horizontal pipes have the same diameter, but pipe B is twice as long as pipe A. Water undergoes viscous flow in both pipes, subject to the same pressure difference across the lengths of the pipes. If the flow rate in pipe B is what is the flow rate in pipe A?
a) Q√2
b) 16Q
c) 2Q
d) 4Q
e) 8Q

Answers

Answer:

c) 2Q

Explanation:

From the given information:

The pressure inside a pipe can be expressed by using the formula:

[tex]\Delta P = \dfrac{128 \mu L Q}{\pi D^4}[/tex]

Since the diameter in both pipes is the same, we can say:

[tex]D = D_A = D_B[/tex]

where;

length of the first pipe A [tex]L_A = L[/tex] and the length of the second pipe B [tex]L_B = 2L[/tex]

Since the difference in pressure is equivalent in both pipes:

Then:

[tex]\dfrac{128 \mu L_1Q_1}{\pi D_1^4} = \dfrac{128 \mu L_2Q_2}{\pi D_2^4}[/tex]

[tex]\dfrac{ L_1Q_1}{D_1^4} = \dfrac{ L_2Q_2}{D_2^4}[/tex]

[tex]\dfrac{ LQ_1}{D^4} = \dfrac{ 2LQ}{D^4}[/tex]

[tex]\mathbf{Q_1 = 2Q}[/tex]

The flow rate in pipe B is 2Q of the flow rate of the pipe A

What is flow rate?

The flow rate is defined as the flow of the fluid across the cross section in per unit time.

From the given information:

The pressure inside a pipe can be expressed by using the formula:

[tex]\Delta p=\dfrac{128\mu LQ}{\pi D^4}[/tex]

Since the diameter in both pipes is the same, we can say:

[tex]D=D_A=D_B[/tex]

where;

length of the first pipe A  [tex]L_A=L[/tex] and the length of the second pipe B  

[tex]L_B=2L[/tex]

Since the difference in pressure is equivalent in both pipes:

Then:

[tex]\dfrac{128\mu L_1Q_1}{\pi D_1^4}=\dfrac{128\mu L_2Q_2}{\pi D_2^4}[/tex]

[tex]\dfrac{L_1Q_1}{D_1^4}=\dfrac{L_2Q_2}{D_2^4}[/tex]

[tex]\dfrac{LQ_1}{D_1^4}=\dfrac{2LQ}{D_2^4}[/tex]

[tex]Q_1=2Q[/tex]

Hence the flow rate in pipe B is 2Q of the flow rate of the pipe A

To know more about Flow rate follow

https://brainly.com/question/26061120

A force of 200 N, acting at 60° to the horizontal, accelerates a block of mass 50 kg along a horizontal plane. Calculate the component of the 200N force that accelerates the block horizontally​

Answers

Answer:

Explanation:

a)     Fx = F cos (θ)

           = (200) cos(60)

           = 100 N

b)     FR = ma

       Fx + Ff = ma

      100 + Ff = (50)(1,5)

       Ff     = 75 - 100

               =  -25 N

c)    Fy = F sin θ

           = (200) sin(60)

           = 173,2 N

An AM radio transmitter broadcasts 50.0 kW of power uniformly in all directions. I live 10 km from this station. What is the maximum strength of Electric Field in my house

Answers

Answer:

[tex]E_0=0.173N/C[/tex]

Explanation:

From the question we are told that:

Power [tex]P=50kw=>50*10^3w[/tex]

Distance [tex]d=10km=10000m[/tex]

Generally the equation for Intensity is mathematically given by

[tex]I=\frac{P}{4\pi d^2} w/m^2[/tex]

[tex]I=\frac{50*10^3}{4 \pi 10000^2} w/m^2[/tex]

[tex]I=3.98*10^{-5}w/m^2[/tex]

Generally Intensity is also

[tex]I=\frac{1}{2}cE_0^2e[/tex]

Where

[tex]e=8.854*10^{-12}Nm^2/c^2[/tex]

Therefore

[tex]E_0=\sqrt{\frac{2I}{c *e}}[/tex]

[tex]E_0=\sqrt{\frac{2*3.98*10^{-5}}{3*10^8 *8.854*10^{-12}}}[/tex]

[tex]E_0=0.173N/C[/tex]

Si un resorte de constante elástica 1300 n/m se comprime 12 cm ¿Cuanta energía almacena? Y si estira 12cm ¿Cuanta energía almacena?

Answers

La energía que almacena el resorte cuando se comprime y estira 12 cm es 9,4 J.  

La energía potencial elástica del resorte se puede calcular con la siguiente ecuación:

[tex] E_{p} = \frac{1}{2}kx^{2} [/tex]

En donde:

k: es la constante del resorte = 1300 N/m

x: es la distancia de compresión o de elongación = 12 cm = 0,12 m

Dado que la energía es proporcional al cuadrado de la distancia recorrida por el resorte (x), la energía almacenada por el resorte durante la compresión será la misma que la energía almacenada por la elongación.

Por lo tanto, la energía almacenada es:

[tex]E_{p} = \frac{1}{2}kx^{2} = \frac{1}{2}1300 N/m*(0,12 m)^{2} = 9,4 J[/tex]                                                            

Entonces, la energía del resorte cuando se comprime y cuando se estira es la misma, a saber 9,4 J.                

Para saber más sobre energía potencial visita este link: https://brainly.com/question/156316?referrer=searchResults

Espero que te sea de utilidad!

Answer:

Al comprimirse o estirarse 12 centímetros desde su posición sin deformar, el resorte almacena 9,360 joules.

Explanation:

La Energía Potencial Elástica almacenada por el resorte ([tex]U_{e}[/tex]), en joules, se calcula a partir de la Ley de Hooke, la definición de Trabajo y el Teorema del Trabajo y la Energía, cuya expresión se presenta abajo:

[tex]U_{e} = \frac{1}{2}\cdot k\cdot (x_{f}^{2}-x_{o}^{2})[/tex] (1)

Donde:

[tex]k[/tex] - Constante elástica del resorte, en newtons por metro.

[tex]x_{o}[/tex] - Posición inicial del resorte, en metros.

[tex]x_{f}[/tex] - Posición final del resorte, en metros.

Nótese que el resorte sin deformar tiene una posición de cero, la tensión tiene un valor positivo y la compresión, negativo.

Asumiendo que en ambos casos el resorte se encuentra inicialmente sin deformar, se reduce (1) a una forma de función par, es decir, una función que cumple con la propiedad de que [tex]f(x) = f(-x)[/tex], se encuentra que al comprimirse o estirarse en la misma medida almacena la misma cantidad de energía.

La cantidad de energía a almacenar es:

[tex]U_{e} = \frac{1}{2}\cdot \left(1300\,\frac{N}{m} \right)\cdot (0,12\,m)^{2}[/tex]

[tex]U_{e} = 9,360\,J[/tex]

Al comprimirse o estirarse 12 centímetros desde su posición sin deformar, el resorte almacena 9,360 joules.

A 5.85-mm-high firefly sits on the axis of, and 13.7 cm in front of, the thin lens A, whose focal length is 5.01 cm. Behind lens A there is another thin lens, lens B, with focal length 25.9 cm. The two lenses share a common axis and are 62.5 cm apart. 1. Is the image of the firefly that lens B forms real or virtual?
a. Real
b. Vrtual
2. How far from lens B is this image located (expressed as a positive number)?
3. What is the height of this image (as a positive number)?
4. Is this image upright or inverted with respect to the firefly?
a. Upright
b. Inverted

Answers

Answer:

1. The image is real

2. 5.85

3. h' = 3.05 mm

4. The image is upright

Explanation:

1. Start with the first lens and apply 1/f = 1/p + 1/q

1/5.01 = 1/13.7 + 1/q

q = 7.90 cm

Since that distance is behind the first lens, and the second lens is 62.5 cm behind the first lens, that distance is 62.5 - 7.90 = 54.6 cm in front of the second lens, and becomes the object for that lens, thus,

1/25.9 = 1/54.6 + 1/q

q = 49.3 cm behind the second lens

Using that information, since q is positive, the image is real

2. Also, using that information, you have the second answer, which is 49.3 cm

The height can be found from the two magnifications.

m = -q/p

m1 = -7.9/13.7 = -.577

m2 = -49.3/54.6 = -.903

Net m = (-.577)(-.903) = .521

Then, m = h'/h

.521 = h'/5.85

3. h' = 3.05 mm

4. For the fourth answer, since the overall magnification is positive, the final image is upright

A mountain biker takes a jump in a race and goes airborne. The mountain bike is travelling at 10.0 m/s before it goes airborne. If the mass of the front wheel on the bike is 750 g and has radius 35 cm, what is the angular momentum of the spinning wheel in the air the moment the bike leaves the ground?

Answers

Answer:

Explanation:

The formula for angular momentum is

L = mvr where L is the angular momentum, m is the mass of the object, v is the velocity of the object, and r is the radius of the object. The problem we have that prevents us from just throwing those numbers in there is that mass has to be in kg and it's not, and radius has to be in meters and it's not.

Changing the mass to kg:

750 g = .750 kg

Changing the radius to m:

35 cm = .35 m

Now we can fill in the variables with their respective values:

L = .750(10.0)(.35) gives us

[tex]L=2.625\frac{kg*m^2}{s}[/tex]

The position of a particle is given by ~r(t) = (3.0 t2 ˆi + 5.0 ˆj j 6.0 t kˆ) m

Answers

Answer:

[tex]v=(6ti+6k)\ m/s[/tex]

Explanation:

Given that,

The position of a particle is given by :

[tex]r(t) = (3.0 t^2 i + 5.0j+ 6.0 tk) m[/tex]

Let us assume we need to find its velocity.

We know that,

[tex]v=\dfrac{dr}{dt}\\\\=\dfrac{d}{dt}(3.0 t^2 i + 5.0j+ 6.0 tk) \\\\=(6ti+6k)\ m/s[/tex]

So, the velocity of the particle is [tex](6ti+6k)\ m/s[/tex].

Please help, I really need this. Thanks

Answers

Answer

Delta Q = change in thermal energy = c M * change in temperature

change in temperature = Q / (c * M)

change in temperature = -12 J  / (390 J / Kg*deg * .012 kg

change in temp = -12 / (390 * .012) =  - 2.56 deg C

write down the unit of mass ,temperature ,power and density​

Answers

Explanation:

mass=kilogram,temperature=Klevin,power=watt,density=kilogram per cubic metre

Explanation:

the unit of mass is kg , temperature is kelvin ,power is watt and density is kilogram per cubic meter.

Which of these rotational quantities is analogous to mass in a linear system?

a.
Angle in radians

b.
Angular acceleration

c.
Torque

d.
Rotational inertia

Answers

Answer:

d

Explanation:

i think it is rotational inertia

because analogue of mass in rotational motion is moment of inertia. It plays the same role as mass plays in transnational motion.  

hope it's right & helps !!!!!!!!!

Calculate the elastic energy stored up in a wire originally 5 meter​
long and 10^-3 m in diameter which has been stretched by 3×10^-4 m due to a load of 10 kg.

Answers

Answer:

The elastic energy is 245 J.

Explanation:

Length, L = 5 m

Diameter, D = 10^-3 m

Stretch, l = 3 x 10^-4 m

Load, F = 10 x 9.8 = 98 N

Let the elastic energy is U.

[tex]U = \frac{1}{2}\times stress\times strain\times volume\\\\U = 0.5\times \frac{Force}{area}\times \frac{l}{L}\times Area\times L\\\\U = 0.5 \times F\times l\\\\U = 0.5\times 98\times 5\\\\U = 245 J[/tex]

A 1.5kg block slides along a frictionless surface at 1.3m/s . A second block, sliding at a faster 4.3m/s , collides with the first from behind and sticks to it. The final velocity of the combined blocks is 2.0m/s . What was the mass of the second block?

Answers

Answer:

The mass of the second block=0.457 kg

Explanation:

We are given that

m1=1.5 kg

v1=1.3m/s

v2=4.3 m/s

V=2.0 m/s

We have to find the mass of the second block.

[tex]m_1v_1+m_2v_2=(m_1+m_2)V[/tex]

Let m2=m

Substitute the values

[tex]1.5(1.3)+m(4.3)=(1.5+m)(2)[/tex]

[tex]1.95+4.3m=3+2m[/tex]

[tex]4.3m-2m=3-1.95[/tex]

[tex]2.3m=1.05[/tex]

[tex]m=\frac{1.05}{2.3}[/tex]

[tex]m=0.457 kg[/tex]

Hence,  the mass of the second block=0.457 kg

Thorium-232 goes through multiple types of decay in order to reach a stable isotope. What isotope is created after the first two decays if it first goes through an alpha decay and then a beta decay?

A)uranium-236
B)protactinium-232
C)radon-224
D)Astinium-228

Answers

Answer:

The answer would be D), if the decay is beta negative.

Explanation:

Thorium-232 goes through alpha decay:

Thorium-232 --> Helium-4 + Radium-228

Radium-228 then can undergo beta positive or beta negative decay:

Beta positive = Radium-228 --> Electron + Francium-228

Beta negative = Radium-228 --> Positron + Actinium-228

Therefore, the isotope that is created is Actinium-228

Light falling on a metal surface causes electrons to be emitted from the metal by the photoelectric effect.
As we decrease the frequency of this light, but do not vary anything else (there may be more than one correct answer),
A: the number of electrons emitted from the metal increases.
B: the maximum speed of the emitted electrons decreases.
C: the maximum speed of the emitted electrons does not change.
D: the work function of the metal increases.

Answers

(B)

Explanation:

The speed of the ejected electrons depends on the frequency of the incident radiation. The closer the energy of the incident photons to the work function of the metal, the slower is the speed of the ejected electrons. Intensity of the incident radiation has no effect on the speed of the ejected electrons, only its frequency.

Light falling on a metal surface causes electrons to be emitted from the metal by the photoelectric effect. As we decrease the frequency of this light, but do not vary anything else B: the maximum speed of the emitted electrons decreases.

What is  photoelectric effect?

Photoelectric effect is the phenomenon in which electrically charged particles are released from or within a material when it absorbs electromagnetic radiation. The effect is often defined as the ejection of electrons from a metal plate when light falls on it.

According to Photoelectric effect the kinetic energy of the photo electrons emitted depend on the frequency of incident light , the more is the frequency the more is the kinetic energy of emitted electron and hence high will be the velocity of the emitted electrons and vise versa

since , in question the frequency has been decreased hence , the kinetic energy must be decreased therefore velocity will also get decreased

hence , correct option will be B: the maximum speed of the emitted electrons decreases.

learn more about Photoelectric effect

https://brainly.com/question/9260704?referrer=searchResults

#SPJ2

how to make an uncharged particle positively charged

Answers

Answer:

If a neutral atom gains electrons, then it will become negatively charged. If a neutral atom loses electrons, then it become positively charged.

A car is driving towards an intersection when the light turns red. The brakes apply a constant force of 1,398 newtons to bring the car to a complete stop in 25 meters. If the weight of the car is 4,729 newtons, how fast was the car going initially

Answers

Answer:

the initial velocity of the car is 12.04 m/s

Explanation:

Given;

force applied by the break, f = 1,398 N

distance moved by the car before stopping, d = 25 m

weight of the car, W = 4,729 N

The mass of the car is calculated as;

W = mg

m = W/g

m = (4,729) / (9.81)

m = 482.06 kg

The deceleration of the car when the force was applied;

-F = ma

a = -F/m

a = -1,398 / 482.06

a = -2.9 m/s²

The initial velocity of the car is calculated as;

v² = u² + 2ad

where;

v is the final velocity of the car at the point it stops = 0

u is the initial velocity of the car before the break was applied

0 = u² + 2(-a)d

0 = u² - 2ad

u² = 2ad

u = √2ad

u = √(2 x 2.9 x 25)

u =√(145)

u = 12.04 m/s

Therefore, the initial velocity of the car is 12.04 m/s

A 0.160 kg glider is moving to the right on a frictionless, horizontal air track with a speed of 0.710 m/s. It has a head-on collision with a 0.296 kg glider that is moving to the left with a speed of 2.23 m/s. Suppose the collision is elastic.

Required:
a. Find the magnitude of the final velocity of the 0.157kg glider.
b. Find the magnitude of the final velocity of the 0.306kg glider.

Answers

The masses of the gliders provided in the question differ from the masses mentioned in the "Required" section. I'll use the first masses throughout.

Momentum is conserved, so the total momentum of the system is the same before and after the collision:

m₁ v₁ + m₂ v₂ = m₁ v₁' + m₂ v₂'

==>

(0.160 kg) (0.710 m/s) + (0.296 kg) (-2.23 m/s) = (0.160 kg) v₁' + (0.296 kg) v₂'

==>

-0.546 kg•m/s ≈ (0.160 kg) v₁' + (0.296 kg) v₂'

where v₁' and v₂' are the gliders' respective final velocities. Notice that we take rightward to be positive and leftward to be negative.

Kinetic energy is also conserved, so that

1/2 m₁ v₁² + 1/2 m₂ v₂² = 1/2 m₁ (v₁' + 1/2 m₂ (v₂'

or

m₁ v₁² + m₂ v₂² = m₁ (v₁' + m₂ (v₂'

==>

(0.160 kg) (0.710 m/s)² + (0.296 kg) (-2.23 m/s)² = (0.160 kg) (v₁' + (0.296 kg) (v₂'

==>

1.55 kg•m²/s² ≈ (0.160 kg) (v₁' + (0.296 kg) (v₂'

Solve for v₁' and v₂'. Using a calculator, you would find two solutions, one of which we throw out because it corresponds exactly to the initial velocities. The desired solution is

v₁' ≈ -3.11 m/s

v₂' ≈ -0.167 m/s

and take the absolute values to get the magnitudes.

If you want to instead use the masses from the "Required" section, you would end up with

v₁' ≈ -3.18 m/s

v₂' ≈ -0.236 m/s

Particle A has less mass than particle B. Both are pushed forward across a frictionless surface by equal forces for 1 s. Both start from rest. Which is true? A. A has more momentum. B. B has more momentum. C. A and B have the same momentum D. Not enough information.

Answers

Answer:

Both will have the same momentum.

P = M v     momentum

v = a t   for uniform acceleration

P = M a t

But a = F / M

P = M (F / M) t = F t    so both have the same momentum

27. The part of the Earth where life exists .

Mesosphere
Stratosphere
Troposphere
Biosphere

Answers

Answer:

Biosphere is the part of the earth where life exists.

A standard bathroom scale is placed on an elevator. A 28 kg boy enters the elevator on the first floor and steps on the scale. What will the scale read (in newtons) when the elevator begins to accelerate upward at 0.5 m/s2

Answers

Answer:

Explanation:

Newton's Second Law is pretty much the standard for all motion that involves a force. It applies to gravitational force and torque and friction and weight on an elevator. The main formula for force is

F = ma. We have to adjust that to take into account that when the elevator is moving up, that "surge" of acceleration weighs down a bit on the scale, causing it to read higher than the actual weight until the acceleration evens out and there is no acceleration at all (no acceleration simply means that the velocity is constant; acceleration by definition is a change in velocity, and if there is no change in velocity, there is 0 acceleration). The force equation then becomes

[tex]F_n-w=ma[/tex]  where [tex]F_n[/tex] is normal force. This is what the scale will read, which is what we are looking for in this problem (our unknown). Since we are looking for [tex]F_n[/tex], that is what we will solve this literal equation for:

[tex]F_n=ma+w[/tex] .  m is the mass of the boy, a is the acceleration of the elevator (which is going up so we will call that acceleration positive), and w is weight. We have everything but the unknown and the weight of the boy. We find the weight:

w = mg so

w = 28(9.8) and

w = 274.4 N BUT rounding to the correct number of significance we have that the weight is actually

w = 270 N.

Filling in the elevator equation:

[tex]F_n=28(.50)+270[/tex] and according to the rules of significant digits, we have to multiply the 28(.50) {notice that I did add a 0 there for greater significance; if not that added 0 we are only looking at 1 significant digit which is pretty much useless}, round that to 2 sig fig's, and then add to 170:

[tex]F_n=14+270[/tex] and adding, by the rules, requires that we round to the tens place to get, finally:

[tex]F_n=280N[/tex]  So you see that the surge in acceleration did in fact add a tiny bit to the weight read by the scale; conversely, if he were to have moved down at that same rate, the scale would have read a bit less than his actual weight). Isn't physics like the coolest thing ever!?

A strontium vapor laser beam is reflected from the surface of a CD onto a wall. The brightest spot is the reflected beam at an angle equal to the angle of incidence. However, fringes are also observed. If the wall is 1.2 m from the CD, and the second bright fringe is 0.803 m from the central maximum, what is the spacing (in m) of grooves on the CD

Answers

Answer:

[tex]d=1.29*10^{-6}m[/tex]

Explanation:

From the question we are told that:

Distance of wall from CD [tex]D=1.4[/tex]

Second bright fringe [tex]y_2= 0.803 m[/tex]

Let

Strontium vapor laser has a wavelength \lambda= 431 nm=>431 *10^{-9}m

Generally the equation for Interference is mathematically given by

[tex]y=frac{n*\lambda*D}{d}[/tex]

Where

[tex]d=\frac{n*\lambda*D}{y}[/tex]

[tex]d=\frac{2*431 *10^{-9}m*1.4}{0.803}[/tex]

[tex]d=1.29*10^{-6}m[/tex]

Calculate the potential energy stored in a metal ball of a mass of 80 kg kept at a height of 15m from the earth surface.What will be the potential energy when the metal ball is kept on the earth surface.​

Answers

Answer:

39200 joules

the potential energy will be zero

Explanation:

we know that potential energy is found by multiplying mass, acceleration due to gravity and height from the Earth's surface

so it will be

potential energy= mgh

80x9.8x15

= 39200 joules

the potential energy of the mental ball will be zero when kept on the Earth's surface because the height from the Earth's surface will be zero and zero multiplied to any number is zero only

I have a doubt with the second one, this is what I think it is. Consult your teacher if you think my answer for the second one is wrong

Answer:

392000 joules

Explanation:

hope it helpsss

In order to test an intentionally weak adhesive, the bottom of the small 0.15-lb block is coated with adhesive and then the block is pressed onto the turntable with a known force. The turntable starts from rest at t = 0 and uniformly accelerates with a = 2 rad/s^2. If the adhesive fails at exactly t = 3 s, then determine:

a. the magnitude of the ultimate shear force that the adhesive supports
b. the angular displacement of the turntable at the time of failure

Answers

Answer:

answer

Explanation:

it is the answer which was presented in the year

A student of mass 50kg takes 15seconds to run up a flight of 50 steps. If each step is 20cm, calculate the potential energy of the student at the maximum height

Answers

Answer:

the answer is 49000 joules at the maximum height

Explanation:

we know the mass (50kg)

we know the acceleration due to gravity(9.8m/s²)

we know the height too(maximum height meaning the 50th step so we multiply 50 with 20cm as each step is 20 cm and we get 1000 cm, convert to m it is 100 m

the formula is potential energy=mgh

m for mass

g for acceleration due to gravity

h for height

multiply them

50x9.8x100

we get 49000

the unit of potential energy is joules so the answer is

49000 joules

Answer:

49000 joules

Explanation:

hope it helpss

Which of the following has a negative acceleration?
A. A car increases its speed moving forward.
B. A car sits at rest at a stop sign.
C. A car is slowing down as it approaches a traffic light.
D. A car is in cruise control at a constant speed.

Answers

Answer:

B. A car sits at rest at a stop sign.

A wire, 0.60 m in length, is carrying a current of 2.0 A and is placed at a certain angle with respect to the magnetic field of strength 0.30 T. If the wire experiences a force of 0.18 N, what angle does the wire make with respect to the magnetic field

Answers

Answer:

[tex]\theta=30 \textdegree[/tex]

Explanation:

From the question we are told that:

Current [tex]I=2.0A[/tex]

Length [tex]L=0.60m[/tex]

Magnetic field [tex]B=0.30T[/tex]

Force [tex]F=0.18N[/tex]

Generally the equation for Force is mathematically given by

[tex]F = BIL sin\theta[/tex]

[tex]sin\theta=\frac{F}{BIL}[/tex]

[tex]\theta=sin^{-1}\frac{0.18}{0.3*2*0.6}[/tex]

[tex]\theta=30 \textdegree[/tex]

The instrument includes a light source, which is passed through a Choose... , which isolates a single wavelength to pass through an aperture to reach the Choose... . Then, the light travels to the Choose... , which measures the intensity of light reaching it.

Answers

Answer:

Following are the response to the given question:

Explanation:

It's being used to measure the amount of light absorbed after traveling through a test tube (the amount of solar radiation received). For several quantitative estimations, this technique is widely employed. Spectrometer and Spectrometer were two devices that are used together to light intensity and light intensity.

It creates and diffuses phosphorescent light into the selected frequency, while the Spectrometer measures the strength of attenuation by the sample solution.

Diffraction beams or prisms are being used to convert polychromatic illumination into monochrome light.

Afterward, the sunlight has a certain hue. Once it reaches the specimen cuvette, it begins absorption. It falls on a sensor that transforms its intensity into such an electronic current.

Here are some ways to fill in such gaps:

In order to reach the specimen cuvette, the light from the light source must be routed via an aperture in order to be isolated by either a diffraction pattern. Light travels to the detector, which detects its intensity.

A simple pendulum consists of a ball of mass 3 kg hanging from a uniform string of mass 0.05 kg and length L. If the period of oscillation of the pendulum is 2 s, determine the speed of a transverse wave in the string when the pendulum hangs vertically.

Answers

Answer:

v = 3.12 m/s

Explanation:

First, we will find the length of the string by using the formula of the time period:

[tex]T = 2\pi \sqrt{\frac{l}{g}}\\\\l = \frac{T^2g}{4\pi^2}\\\\[/tex]

where,

l = length of string = ?

T = time period = 2 s

g = acceleration due to gravity = 9.81 m/s²

Therefore,

[tex]l = \frac{(2\ s)^2(9.81\ m/s^2)}{4\pi^2}\\\\l = 0.99\ m[/tex]

Now, we will find tension in the string in the vertical position through the weight of the ball:

T = W = mg = (3 kg)(9.81 m/s²)

T = 29.43 N

Now, the speed of the transverse wave is given as follows:

[tex]v=\sqrt{\frac{Tl}{m}}\\\\v=\sqrt{\frac{(29.43\ N)(0.99\ m)}{3\ kg}}\\\\[/tex]

v = 3.12 m/s

Other Questions
Find the amount and the compound interest on rupees 5000 for 2 years at 6% per annum, Interest payable yearly. Answer with full steps and formula NO BAD ANSWERS REQUIRED :D WILL GIVE BRAINLIEST!! Name the 10 Native American cultural groups found in North America. Why did each Native American cultural group develop a distinct culture? Choose any two of these groups and provide a brief description of their cultures. Be certain to include an example or explanation telling how and why the cultures developed as they did. What is protection scheme? describe the role of jigme namgyal trongsa zimpoen? someone help me with this please!!!! (a) Write [tex] {2}^{5} \div {2}^{5} [/tex]as a single power if 2. wo large tanks A and B are each partially filled with 100 gallons of salt water. Initially,80 pounds of salt is dissolved in the solution in tank A, and 30pounds of salt is dissolvedin the solution in tank B. The system is closed so that the wellstirred saline solution ispumped only between tanks A and B. The saline solution in tankA travels to tank Balong a pipe at the rate of 3 gallons per minute, and the salinesolution in B travels totank A at the rate of 2 gallons per minute. Write a system of IVPs that will describe theamount of salt,x1, in tank A at timetand the amount of salt,x2in tank B at timet. Jessica has 28 coins. One fourth of them are quarters. Two thirds of the rest of the coins are dimes. The remaining ones are nickels. How many quarters, dimes, and nickels does he have? How much money does he have in coins? If he wants to buy 2 packs of cards, with each pack $1.35, how much money would he have left? Please help mee read this and summarize the story pleaseee read the whole thing How can you use what you know about 5(2) to find 5(-2)?Please help Choose the CORRECT word which can REPLACE the CAPITILIZED word in this sentence. The movie CLOSED with the death of both the hero and the heroine. The impeller shaft of a fluid agitator transmits 20 kW at 430 rpm. If the allowable shear stress in the impeller shaft must be limited to 65 MPa, determine (a) the minimum diameter required for a solid impeller shaft. (b) the maximum inside diameter permitted for a hollow impeller shaft if the outside diameter is 36 mm. (c) the percent savings in weight realized if the hollow shaft is used instead of the solid shaft. (Hint: The weight of a shaft is proportional to its cross-sectional area.) How many 4-digit passcodes can be created if each digit can be any number, 0-9?6,56110,000405,040 asap help ------------------- Balance the following equations Ag (s) + H S(g) + 0 (g) Ag S() + H0 Why should a democratic constitution represent the will and the aspiration of the people?How can you say that the will of people represented well in the current constitution of Nepal? what is the least common multiple between 25 and 8 Mary wants to buy a mobile phone; the least expensive one she's spotted so far is $15. Mary has $4.25 saved for a mobile phone. If Mary works at a rate of $2.15 per hour, how many hours (H) will she have to work in order to afford a mobile phone? Luca is thinking about joining a game because of a challenge in his family environment which situation most likely his decision decision For each of the five transactions described below, indicate which account should be debited and which account should be credited:Cost of Goods Sold Direct LaborFinished Goods Manufacturing OverheadRaw Materials Salaries and Wages PavableTransaction Debit Credit1. Direct materials are issued into production for a specific job 2. Salary of the Production Supervisor is payable 3. Lubricating oil, waste cotton, and solder are used in the factory 4. The wages of direct laborers who worked on a particular job are payable 5. Manufacturing overhead is applied to jobs using a predetermined overhead rate