The given program implements a method, canBeSortedGeoSeq, that checks if a given integer list can be sorted into a geometric sequence. The program sorts the list in ascending order and calculates the ratio between consecutive terms. It then iterates through the sorted list, comparing the ratio of each pair of consecutive terms with the initial ratio. If any ratio differs, the method returns false, indicating that the list cannot be sorted into a geometric sequence. Otherwise, it returns true.
A.
The complete program after filling the blanks is:
1 public static boolean canBeSortedGeoSeq(int[] list) {
2 Arrays.sort(list);
3 int ratio = list[1] / list[0];
4 int n = list.length;
5 for (int i = 1; i < n - 1; i++) {
6 if ((list[i + 1] / list[i]) != ratio)
7 return false;
8 }
9 return true;
10 }
B.
If the list passed to the method is {2, 4, 3, 6}, the output from the original code will be false. This is because the ratio between consecutive terms is not constant (2/4 = 0.5, 4/3 ≈ 1.33, 3/6 = 0.5).
To make the code work with double-typed ratio, we can revise the code by changing the data type of the ratio variable to double and modifying the comparison in the if statement accordingly:
public static boolean canBeSortedGeoSeq(int[] list) {
Arrays.sort(list);
double ratio = (double) list[1] / list[0];
int n = list.length;
for (int i = 1; i < n - 1; i++) {
if (((double) list[i + 1] / list[i]) != ratio)
return false;
}
return true;
}
After the revision, if the list passed is {2, 4, 3, 6}, the output will be false because the ratio is not constant (2/4 = 0.5, 4/3 ≈ 1.33, 3/6 = 0.5).
The new problem with the revised code is that it may encounter precision errors when performing division operations on floating-point numbers. Due to the limited precision of floating-point arithmetic, small differences in calculations can occur, leading to unexpected results.
In the case of checking geometric sequences, this can cause the program to mistakenly identify a non-geometric sequence as a geometric sequence or vice versa.
To address this issue, it is recommended to use a tolerance or epsilon value when comparing floating-point numbers to account for the precision limitations.
To learn more about geometric sequence: https://brainly.com/question/29632351
#SPJ11
Solve using the compound interest formula FV = PV(1 + i)^n.
a. Find FV, when PV = $2, 248.00, i = 0.065, n = 12/16
$0.00
Round to two decimal places
b. Find PV, when FV = $4, 426.12, i = 0.00375, n = 38
$0.00
Round to two decimal places
The present value (PV) is approximately $3,843.62.
a. To find the future value (FV), we can use the compound interest formula:
FV = PV(1 + i)^n
Given:
PV = $2,248.00
i = 0.065
n = 12/16
Substituting the values into the formula:
FV = $2,248.00(1 + 0.065)^(12/16)
Calculating the expression inside the parentheses:
(1 + 0.065)^(12/16) ≈ 1.044072
Substituting the value back into the formula:
FV ≈ $2,248.00 * 1.044072 ≈ $2,351.43
Therefore, the future value (FV) is approximately $2,351.43.
b. To find the present value (PV), we rearrange the compound interest formula:
PV = FV / (1 + i)^n
Given:
FV = $4,426.12
i = 0.00375
n = 38
Substituting the values into the formula:
PV = $4,426.12 / (1 + 0.00375)^38
Calculating the expression inside the parentheses:
(1 + 0.00375)^38 ≈ 1.152031
Substituting the value back into the formula:
PV ≈ $4,426.12 / 1.152031 ≈ $3,843.62
Learn more about present value here :-
https://brainly.com/question/28304447
#SPJ11
Solve \( 8 \sin \left(\frac{\pi}{6} x\right)=6 \) for the four smallest positive solutions \[ x= \] Give your answers accurate to at least two decimal places; as a list separated by commas
The four smallest positive solutions to the equation \(8 \sin \left(\frac{\pi}{6} x\right) = 6\) are approximately \(x = 0.94, 3.18, 5.46, 6.78\).
To solve this equation, we can start by isolating the sine term by dividing both sides of the equation by 8:
\[\sin \left(\frac{\pi}{6} x\right) = \frac{6}{8} = \frac{3}{4}\]
Next, we can take the inverse sine (arcsine) of both sides to cancel out the sine function:
\[\frac{\pi}{6} x = \arcsin \left(\frac{3}{4}\right)\]
Finally, we can solve for \(x\) by multiplying both sides of the equation by \(\frac{6}{\pi}\):
\[x = \frac{6}{\pi} \arcsin \left(\frac{3}{4}\right)\]
Using a calculator or a mathematical software, we can evaluate this expression to find the approximate values for \(x\). The four smallest positive solutions are approximately \(x = 0.94, 3.18, 5.46, 6.78\).
In the given equation, we have \(8 \sin \left(\frac{\pi}{6} x\right) = 6\). To find the solutions, we first divide both sides by 8, yielding \(\sin \left(\frac{\pi}{6} x\right) = \frac{6}{8} = \frac{3}{4}\). This means we are looking for angles whose sine value is \(\frac{3}{4}\). Taking the inverse sine (arcsine) of both sides gives \(\frac{\pi}{6} x = \arcsin \left(\frac{3}{4}\right)\).
To solve for \(x\), we multiply both sides by \(\frac{6}{\pi}\), resulting in \(x = \frac{6}{\pi} \arcsin \left(\frac{3}{4}\right)\). This formula gives us the general solution, but to find the specific solutions, we need to evaluate the arcsine expression.
Using a calculator or mathematical software, we find that \(\arcsin \left(\frac{3}{4}\right) \approx 0.8481\). Substituting this value into the formula, we get \(x \approx \frac{6}{\pi} \cdot 0.8481 \approx 0.94\). This is the first solution.
To find the other three solutions, we add integer multiples of the period of the sine function to the angle \(\frac{\pi}{6} x\). The period of the sine function is \(2\pi\), so we add \(2\pi\) to \(\frac{\pi}{6} x\) to obtain the second solution: \(x \approx \frac{6}{\pi} \cdot 0.8481 + \frac{2\pi}{\pi} \approx 3.18\).
Repeating this process, we obtain the third and fourth solutions by adding \(2\pi\) to the angle each time: \(x \approx 5.46\) and \(x \approx 6.78\).
Therefore, the four smallest positive solutions to the equation are approximately \(x = 0.94, 3.18, 5.46, 6.78\).
Learn more about sine function click here: brainly.com/question/32247762
#SPJ11
2. (14 points) Find a function F(n) with the property that the graph of y- F(x) is the
result of applying the following transformations to the graph of
v=1²+2r. First, stretch the graph horizontally by a factor of 4, then shift the resulting graph 7 units down and 3 units to the left. Leave your answer unsimplified. You don't have to sketch the graph,
Given that, the graph of y - F(x) is the result of applying the following transformations to the graph of v = 1² + 2r.Therefore, the function F(n) can be determined by applying the inverse of these transformations.
The correct option is (C)
The graph of v = 1² + 2r is a parabola.
To stretch it horizontally by a factor of 4, replace r with r/4: v = 1² + 2r/4²
or v = 1 + r/8.
Now, shifting the graph down by 7 units means replacing v with (v - 7): v - 7 = 1 + r/8
or v = r/8 + 8.
Finally, shifting the graph 3 units to the left means replacing r with (r + 3): v = (r + 3)/8 + 8
or v = (r + 24)/8.
The function F(n) is given by F(n) = (n + 24)/8.
We know that the graph of v = 1² + 2r is a parabola. Then the transformations of the graph are as follows: To stretch the graph horizontally by a factor of 4, we replace r with r/4: v = 1² + 2r/4²
or v = 1 + r/8.
Now, shift the resulting graph 7 units down by replacing v with (v - 7): v - 7 = 1 + r/8
or v = r/8 + 8.
Finally, shift the resulting graph 3 units to the left by replacing r with (r + 3): v = (r + 3)/8 + 8
or v = (r + 24)/8.
Thus, the function F(n) is given by F(n) = (n + 24)/8. To determine the function F(n) with the given graph, we need to apply the inverse transformations of the graph. First, we stretch the graph horizontally by a factor of 4. This can be done by replacing r with r/4, which gives v = 1² + 2r/4²
or v = 1 + r/8.
Next, we shift the resulting graph down 7 units by replacing v with (v - 7), which gives v - 7 = 1 + r/8
or v = r/8 + 8.
Finally, we shift the resulting graph 3 units to the left by replacing r with (r + 3), which gives v = (r + 3)/8 + 8
or v = (r + 24)/8.
Therefore, the function F(n) is given by F(n) = (n + 24)/8.
To know more about graph visit:
https://brainly.com/question/17267403
#SPJ11
Find the volume of the solid whose base is the region in the first quadrant bounded by y = x², y = 1, and the y-axis and whose cross-sections perpendicular to the x axis are semicircles. Volume =
The volume of the solid whose base is the region in the first quadrant bounded by y = x², y = 1, and the y-axis and whose cross-sections perpendicular to the x axis are semicircles is π/4 cubic units.
To find the volume of the solid, we'll use the method of slicing and integration.
The base of the solid is the region in the first quadrant bounded by the curves y = x^2, y = 1, and the y-axis.
First, let's find the limits of integration. Since the solid is bounded by y = 1 and the y-axis, the limits of integration for y will be from 0 to 1.
Next, we'll consider a small slice of thickness Δy at a given y-value. The length of this slice will be the difference between the x-coordinates of the two curves: x = √y and x = 0.
The cross-section of the solid at this y-value is a semicircle. The radius of this semicircle is given by the x-coordinate, which is √y.
The volume of each slice is the area of the corresponding semicircle multiplied by the thickness Δy. The formula for the area of a semicircle is (π/2) * r^2, where r is the radius.
Using these considerations, we can set up the integral to find the volume:
V = ∫[from 0 to 1] [(π/2) * (√y)^2] dy
Simplifying the expression:
V = (π/2) * ∫[from 0 to 1] y dy
Integrating:
V = (π/2) * [y^2/2] [from 0 to 1]
V = (π/2) * [(1^2/2) - (0^2/2)]
V = (π/2) * (1/2)
V = π/4
Therefore, the volume of the solid is π/4 cubic units.
Learn more about integration here:
brainly.com/question/33371580
#SPJ11
22: Based on Data Encryption Standard (DES), if the input of Round 2 is "846623 20 2 \( 2889120 " \) ", and the input of S-Box of the same round is "45 1266 C5 9855 ". Find the required key for Round
Data Encryption Standard (DES) is one of the most widely-used encryption algorithms in the world. The algorithm is symmetric-key encryption, meaning that the same key is used to encrypt and decrypt data.
The algorithm itself is comprised of 16 rounds of encryption.
The input of Round 2 is given as:
[tex]"846623 20 2 \( 2889120 \)"[/tex]
The input of S-Box of the same round is given as:
[tex]"45 1266 C5 9855"[/tex].
Now, the question requires us to find the required key for Round 2.
We can start by understanding the algorithm used in DES.
DES works by first performing an initial permutation (IP) on the plaintext.
The IP is just a rearrangement of the bits of the plaintext, and its purpose is to spread the bits around so that they can be more easily processed.
The IP is followed by 16 rounds of encryption.
Each round consists of four steps:
Expansion, Substitution, Permutation, and XOR with the Round Key.
Finally, after the 16th round, the ciphertext is passed through a final permutation (FP) to produce the final output.
Each round in DES uses a different 48-bit key.
These keys are derived from a 64-bit master key using a process called key schedule.
The key schedule generates 16 round keys, one for each round of encryption.
Therefore, to find the key for Round 2, we need to know the master key and the key schedule.
To know more about decrypt data visit:
https://brainly.com/question/32290224
#SPJ11
Write the following system as an augmented matrix: ⎩⎨⎧2x−3y+z3x−6y−x−2z=5=−6=4 (b) Use gaussian elimination to put the augmented matrix into reduced row-echelon fo. (c) Describe the solution set for this system. Explain how you came to your conclusion based on the reduced row-echelon fo you found in part b.
The system as an augmented matrix is given by;[2 -3 1 | 5][-1 -6 -2 | -6][3 0 -1 | 4], the reduced row echelon form is;[1 0 0 | 1][0 1 0 | -1/3][0 0 1 | 23/24]. The solution set of the given system of equations is{(x,y,z) : x = 1, y = -1/3, z = 23/24}.
a. The system as an augmented matrix is given by;[2 -3 1 | 5][-1 -6 -2 | -6][3 0 -1 | 4]
b. Using Gaussian elimination to reduce the matrix into row echelon form;[2 -3 1 | 5][-1 -6 -2 | -6][3 0 -1 | 4]R1 <- R1/2[1 -3/2 1/2 | 5/2][-1 -6 -2 | -6][3 0 -1 | 4]R2 <- R2 + R1[1 -3/2 1/2 | 5/2][0 -15/2 -3/2 | -7/2][3 0 -1 | 4]R3 <- R3 - 3R1[1 -3/2 1/2 | 5/2][0 -15/2 -3/2 | -7/2][0 9/2 -5/2 | -5/2]R2 <- R2/(-15/2)[1 -3/2 1/2 | 5/2][0 1 1/5 | 7/30][0 9/2 -5/2 | -5/2]R1 <- R1 + (3/2)R2[1 0 8/5 | 29/15][0 1 1/5 | 7/30][0 9/2 -5/2 | -5/2]R3 <- R3 - (9/2)R2[1 0 8/5 | 29/15][0 1 1/5 | 7/30][0 0 -8/5 | -23/30]R3 <- R3/(-8/5)[1 0 8/5 | 29/15][0 1 1/5 | 7/30][0 0 1 | 23/24]R1 <- R1 - (8/5)R3R2 <- R2 - (1/5)R3[1 0 0 | 1][0 1 0 | -1/3][0 0 1 | 23/24].Therefore, the reduced row echelon form is;[1 0 0 | 1][0 1 0 | -1/3][0 0 1 | 23/24]
c. The solution set of the given system of equations is{(x,y,z) : x = 1, y = -1/3, z = 23/24}.This can be explained as follows;The above matrix is already in reduced row echelon form, thus; x = 1, y = -1/3 and z = 23/24. Therefore, the solution set of the given system of equations is{(x,y,z) : x = 1, y = -1/3, z = 23/24}.
Let's learn more about augmented matrix:
https://brainly.com/question/12994814
#SPJ11
Find y(t) such that y(0) = a and y + by = 0 for some a, bЄR.
The given differential equation is y + by = 0, where a and b are real constants.
To solve this first-order linear homogeneous differential equation, we can use the method of separation of variables.
Let's separate the variables and integrate:
dy/y = -b dt
Integrating both sides:
ln|y| = -bt + C
where C is the constant of integration.
Taking the exponential of both sides:
|y| = e^(-bt + C)
Since the absolute value of y can be either positive or negative, we can rewrite the equation as:
y = ±e^(-bt + C)
To determine the constant C, we use the initial condition y(0) = a:
a = ±e^(C)
Solving for C:
C = ln|a|
Therefore, the general solution to the differential equation y + by = 0 is:
y(t) = ±ae^(-bt + ln|a|)
Simplifying:
y(t) = ±ae^(ln|a| - bt)
Finally, we can rewrite the general solution as:
y(t) = ±ae^(ln(a) - bt)
where a and b are real constants and ln denotes the natural logarithm.
Learn more about natural logarithm here:
https://brainly.com/question/29154694
#SPJ11
set up an integral for the area of the shaded region. Evaluate the integral to find the area of the shaded region. The functions are given as x =y^2 -3 and x=2y with intersection point(-2,-1) and (6,3)
Therefore, the area of the shaded region between the curves [tex]x = y^2 - 3[/tex] and x = 2y is 0.
To find the area of the shaded region between the curves [tex]x = y^2 - 3[/tex] and x = 2y, we need to set up an integral and evaluate it.
First, let's find the limits of integration by solving the two equations for y:
[tex]y^2 - 3 = 2y[/tex]
Rearranging the equation, we get:
[tex]y^2 - 2y - 3 = 0[/tex]
Factoring the quadratic equation, we have:
(y - 3)(y + 1) = 0
So, y = 3 or y = -1.
The intersection points are (-2, -1) and (6, 3).
To set up the integral for the area, we need to find the difference in x between the two curves at each y value.
For y = -1, the corresponding x values are:
[tex]x = (-1)^2 - 3[/tex]
= -2
x = 2(-1)
= -2
So, the difference in x is:
Δx = -2 - (-2)
= 0
For y = 3, the corresponding x values are:
[tex]x = (3)^2 - 3[/tex]
= 6
x = 2(3)
= 6
So, the difference in x is:
Δx = 6 - 6
= 0
Now, we can set up the integral to find the area of the shaded region:
Area = ∫[y=-1 to y=3] (Δx) dy
Since the difference in x is 0 for both limits of integration, the integral simplifies to:
Area = ∫[y=-1 to y=3] 0 dy
Evaluating the integral, we have:
Area = 0
To know more about curves,
https://brainly.com/question/17331883
#SPJ11
Match the solution region of the following system of linear inequalities with one of the four regions x+3y<=15 2x+y<=10 x>=0 y>=0 shown in the figure. Identify the unknown corner point of
The solution region of the following system of linear inequalities x + 3y ≤ 15, 2x + y ≤ 10, x ≥ 0, and y ≥ 0 shown in the figure is the shaded region, and the unknown corner point is (-5, 20).
The figure that shows the solution region of the following system of linear inequalities x + 3y ≤ 15, 2x + y ≤ 10, x ≥ 0, and y ≥ 0 is as follows:
Figure that shows the solution region of the given system of linear inequalities
The solution region of the given system of linear inequalities is the shaded region as shown in the figure above.
The corner points of the solution region of the given system of linear inequalities are (0, 0), (0, 5), (2.5, 2.5), and (6, 0).
To find the unknown corner point of the solution region of the given system of linear inequalities, we need to solve the system of linear inequalities x + 3y ≤ 15 and 2x + y ≤ 10 as an equation using substitution method.
2x + y = 10y = -2x + 10
Substitute y = -2x + 10 in x + 3y ≤ 15x + 3(-2x + 10) ≤ 15x - 6x + 30 ≤ 153x ≤ -15x ≤ -5
Thus, the unknown corner point of the solution region of the given system of linear inequalities is (-5, 20).
Hence, the solution region of the following system of linear inequalities x + 3y ≤ 15, 2x + y ≤ 10, x ≥ 0, and y ≥ 0 shown in the figure is the shaded region, and the unknown corner point is (-5, 20).
To learn more about linear inequalities
https://brainly.com/question/21404414
#SPJ11
A water tank contains 60 liters of water. Ten liters of the water in the tank is used and not replaced each day. How much water remains in the tank at the end of the third day? A. 10 B. 20 C. 30 D. 40
After three days, 30 liters of water remain in the tank. (Answer: C)
Each day, 10 liters of water are used and not replaced from the tank.
After the first day, the remaining water in the tank is 60 - 10 = 50 liters.
After the second day, another 10 liters are used and not replaced, resulting in 50 - 10 = 40 liters remaining in the tank.
Similarly, after the third day, 10 liters are used and not replaced, leaving 40 - 10 = 30 liters of water in the tank.
Therefore, the amount of water remaining in the tank at the end of the third day is 30 liters (option C).
learn more about "liters ":- https://brainly.com/question/467718
#SPJ11
10. Given the supply and demand functions P=Q S +10Q +3P=−Q D2 −8Q +200
calculate the equilibrium price, correct to two decimal places
The equilibrium price is $160.62.
To find the equilibrium price, we need to set the quantity supplied equal to the quantity demanded and solve for the price.
Quantity supplied is given by the supply function P = QS + 10Q, and quantity demanded is given by the demand function P = -QD2 - 8Q + 200. Setting these two expressions equal to each other, we get:
QS + 10Q = -QD2 - 8Q + 200
Simplifying and rearranging, we get:
QD2 + QS = 18Q - 200
At equilibrium, QS = QD2, so we can substitute QS for QD2 in the above equation, giving:
2QS = 18Q - 200
Solving for Q in terms of QS, we get:
Q = (2/18)QS + (200/18)
Q = (1/9)QS + (100/9)
Now, we can substitute this expression for Q into either the supply or demand function to find the equilibrium price. Using the demand function, we get:
P = -QD2 - 8Q + 200
P = -(QS/9) - (8/9)(1/9)QS + 200
P = -(17/81)QS + 200
To find the equilibrium price, we set QS equal to QD2 and solve for P. Since the two quantities are equal at equilibrium, we have:
QS = QD2
Substituting the given value of QS into our expression for P, we get:
P = -(17/81)(170) + 200
P = 160.62
Rounding to two decimal places, the equilibrium price is $160.62.
learn more about equilibrium price here
https://brainly.com/question/29099220
#SPJ11
Let. T=R³→R³ such that T(x,y,z)=(2x,3z,0). Find the eigenvalues and eigenvectors of T.
The eigenvalues of T are λ₁ = 2 and λ₂ = 0. The corresponding eigenvectors are v₁ = (1, 0, 0) and v₂ = (0, 1, 0).
To find the eigenvalues and eigenvectors of the linear transformation T: R³ → R³, we need to solve the equation T(v) = λv, where v is a non-zero vector and λ is a scalar (the eigenvalue).
Let's consider an arbitrary vector v = (x, y, z) and apply T to it:
T(v) = T(x, y, z) = (2x, 3z, 0)
Now, we set up the equation T(v) = λv:
(2x, 3z, 0) = λ(x, y, z)
This gives us the following system of equations:
2x = λx
3z = λy
0 = λz
From the first equation, we can see that λ = 2 or x = 0. If x = 0, then the entire vector v is zero, which is not allowed for an eigenvector. Therefore, we consider λ = 2.
From the second equation, we have 3z = λy. Since λ = 2, this simplifies to 3z = 2y.
From the third equation, we have 0 = λz. Again, since λ = 2, this gives us 0 = 2z.
From the second and third equations, we can see that z = 0 and y can be any real number. Therefore, the eigenvectors corresponding to λ = 2 are of the form v₁ = (x, y, 0), where x and y are arbitrary.
Now, let's consider the case where λ = 0. In this case, we have:
2x = 0
3z = 0
0 = 0
From these equations, we can see that x and z can be any real numbers, and y must be zero. Therefore, the eigenvectors corresponding to λ = 0 are of the form v₂ = (0, 0, z), where z is an arbitrary real number.
The eigenvalues of T are λ₁ = 2 and λ₂ = 0. The corresponding eigenvectors are v₁ = (1, 0, 0) and v₂ = (0, 1, 0).
To know more about eigenvalues, visit
https://brainly.com/question/15586347
#SPJ11
Let F be the function whose graph is shown below. Evaluate each of the following expressions. (If a limit does not exist or is undefined, enter "DNE".) 1. lim _{x →-1^{-}} F(x)=
Given function F whose graph is shown below
Given graph of function F
The limit of a function is the value that the function approaches as the input (x-value) approaches some value. To find the limit of the function F(x) as x approaches -1 from the left side, we need to look at the values of the function as x gets closer and closer to -1 from the left side.
Using the graph, we can see that the value of the function as x approaches -1 from the left side is -2. Therefore,lim_{x→-1^{-}}F(x) = -2
Note that the limit from the left side (-2) is not equal to the limit from the right side (2), and hence, the two-sided limit at x = -1 doesn't exist.
To know more about function visit:
https://brainly.com/question/30721594
#SPJ11
Recently, More Money 4U offered an annuity that pays 6.6% compounded monthly. If $1,728 is deposited into annuity every month, how much is in the account after 5 years? How much of this is interest? Type the amount in the account: $ (Round to the nearest dollar.)
After 5 years, the amount in the account is $118,301, and the interest earned is $10,781. To calculate the amount in the account after 5 years, we can use the formula for the future value of an ordinary annuity:
A = PMT * ((1 + r)^n - 1) / r
Where:
A = Amount in the account after the specified time period
PMT = Monthly deposit
r = Monthly interest rate (annual interest rate divided by 12)
n = Total number of monthly deposits (time period in years multiplied by 12)
Given:
Monthly deposit (PMT) = $1,728
Annual interest rate = 6.6%
Time period = 5 years
First, we need to calculate the monthly interest rate (r) and the total number of monthly deposits (n):
r = 6.6% / 100 / 12 = 0.0055 (decimal)
n = 5 years * 12 = 60 months
Now we can plug these values into the formula to find the amount in the account after 5 years (A):
A = 1,728 * ((1 + 0.0055)^60 - 1) / 0.0055
Using a calculator, the amount in the account after 5 years comes out to be approximately $118,301 (rounded to the nearest dollar).
To calculate the amount of interest earned, we can subtract the total deposits made from the amount in the account:
Interest = A - (PMT * n)
Interest = 118,301 - (1,728 * 60)
Using a calculator, the interest earned comes out to be approximately $10,781 (rounded to the nearest dollar).
Therefore, after 5 years, the amount in the account is $118,301, and the interest earned is $10,781.
Learn more about future value here:
https://brainly.com/question/30787954
#SPJ11
Suppose that 95% of all registered voters in a certain state favor banning the release of information from exit polls in presidential elections until after the polls in that state close. A random sample of 25 registered voters is to be selected. Let x = number of registered voters in this random sample who favor the ban. (Round your answers to three decimal places.)
(a) What is the probability that more than 20 voters favor the ban?x
(b) What is the probability that at least 20 favor the ban?
(c) What is the mean value of the number of voters who favor the ban?
What is the standard deviation of the number of voters who favor the ban?
(d) If fewer than 20 voters in the sample favor the ban, is this inconsistent with the claim that at least) 95% of registered voters in the state favor the ban? (Hint: Consider P(x < 20) when p= 0.95.)Since P(x < 20) =, it seems unlikely that less 20 voters in the sample would favor the ban when the true proportion of all registered voters in the state who favor the ban is 95%. with the claim that (at least) 95%. of registered voters in the state favor the ban.
This suggests this event would be inconsistent
(a) The probability that more than 20 voters favor the ban can be calculated by finding P(x > 20), using the binomial distribution with n = 25 and p = 0.95.
(b) The probability that at least 20 voters favor the ban can be calculated by finding P(x ≥ 20), using the binomial distribution with n = 25 and p = 0.95.
(c) The mean value of the number of voters who favor the ban is given by μ = n [tex]\times[/tex] p, where n is the sample size and p is the probability of favoring the ban. In this case, μ = 25 [tex]\times[/tex] 0.95.
(d) If fewer than 20 voters in the sample favor the ban, it is inconsistent with the claim that at least 95% of registered voters in the state favor the ban, as P(x < 20) would be very small (less than the significance level) when p = 0.95.
To solve this problem, we can use the binomial distribution since we have a random sample and each voter either favors or does not favor the ban, with a known probability of favoring.
(a) To find the probability that more than 20 voters favor the ban, we need to calculate P(x > 20).
Using the binomial distribution, we can sum the probabilities for x = 21, 22, 23, 24, and 25.
The formula for the probability mass function of the binomial distribution is [tex]P(x) = C(n, x)\times p^x \times (1-p)^{(n-x),[/tex]
where n is the sample size, p is the probability of favoring the ban, and C(n, x) is the binomial coefficient.
In this case, n = 25 and p = 0.95.
(b) To find the probability that at least 20 voters favor the ban, we need to calculate P(x ≥ 20).
We can use the same approach as in part (a) and sum the probabilities for x = 20, 21, 22, ..., 25.
(c) The mean value of the number of voters who favor the ban is given by μ = n [tex]\times[/tex] p,
where n is the sample size and p is the probability of favoring the ban.
In this case, μ = 25 [tex]\times[/tex] 0.95.
The standard deviation is given by [tex]\sigma = \sqrt{(n \times p \times (1-p)).}[/tex]
(d) To determine if fewer than 20 voters in the sample favor the ban is inconsistent with the claim that at least 95% of registered voters in the state favor the ban, we can calculate P(x < 20) when p = 0.95.
If P(x < 20) is sufficiently small (e.g., less than a significance level), we can conclude that it is unlikely to observe fewer than 20 voters favoring the ban when the true proportion is 95%.
Note: The specific calculations for parts (a), (b), and (c) depend on the values of p and n given in the problem statement, which are not provided.
For similar question on probability.
https://brainly.com/question/23417919
#SPJ8
f′′ (t)+2f ′ (t)+f(t)=0,f(0)=1,f ′ (0)=−3
The solution to the differential equation with the given initial conditions is: f(t) = e^(-t) - 2t*e^(-t)
To solve the given differential equation:
f''(t) + 2f'(t) + f(t) = 0
We can first find the characteristic equation by assuming a solution of the form:
f(t) = e^(rt)
Substituting into the differential equation gives:
r^2e^(rt) + 2re^(rt) + e^(rt) = 0
Dividing both sides by e^(rt), we get:
r^2 + 2r + 1 = (r+1)^2 = 0
So the root is: r = -1 (with multiplicity 2).
Therefore, the general solution to the differential equation is:
f(t) = c1e^(-t) + c2t*e^(-t)
where c1 and c2 are constants that we need to determine.
To find these constants, we can use the initial conditions f(0) = 1 and f'(0) = -3. Then:
f(0) = c1 = 1
f'(0) = -c1 + c2 = -3
Solving these equations simultaneously, we get:
c1 = 1
c2 = -2
Therefore, the solution to the differential equation with the given initial conditions is:
f(t) = e^(-t) - 2t*e^(-t)
learn more about differential equation here
https://brainly.com/question/33433874
#SPJ11
Prove that for all a \in {N} , if for all b \in {Z}, a \mid(6 b+8) , then a=1 or a=2 .
For all a ∈ N, it can be shown that if for all b ∈ Z, a | (6b + 8), then a = 1 or a = 2. The equation is solved by number theory.
Suppose that a is a natural number and that for every integer b, a | (6b + 8). Then we need to show that a = 1 or a = 2. Let's begin by considering a = 1. If a = 1, then 1 | (6b + 8) for all integers b. This means that 6b + 8 = k for some integer k, which implies that 6b = k - 8. Thus, b = (k - 8)/6. Since k and 8 are both integers, it follows that b is an integer if and only if k is congruent to 2 mod 6. In other words, k = 6n + 2 for some integer n.
Therefore, we have 6b + 8 = 6(k/6) + 2 + 8 = 6(n + 1) for some integer n. This shows that 1 | (6b + 8) if and only if k is congruent to 2 mod 6, which implies that a = 1 does not satisfy the condition.
Now suppose that a = 2. Then 2 | (6b + 8) for all integers b. In other words, 6b + 8 = 2k for some integer k. Dividing both sides by 2, we get 3b + 4 = k. Thus, k is an integer if and only if b is congruent to 2 mod 3. Therefore, we have 6b + 8 = 6(b/3) + 2 + 2(2) for some integer b, which shows that 2 | (6b + 8).
Since a can only be 1 or 2, we have shown that for all a ∈ N, if for all b ∈ Z, a | (6b + 8), then a = 1 or a = 2.
To know more about number theory refer here:
https://brainly.com/question/30288511
#SPJ11
find the standard form of the equation of the parabola given that the vertex at (2,1) and the focus at (2,4)
Thus, the standard form of the equation of the parabola with the vertex at (2, 1) and the focus at (2, 4) is [tex]x^2 - 4x - 12y + 16 = 0.[/tex]
To find the standard form of the equation of a parabola given the vertex and focus, we can use the formula:
[tex](x - h)^2 = 4p(y - k),[/tex]
where (h, k) represents the vertex of the parabola, and (h, k + p) represents the focus.
In this case, we are given that the vertex is at (2, 1) and the focus is at (2, 4).
Comparing the given information with the formula, we can see that the vertex coordinates match (h, k) = (2, 1), and the y-coordinate of the focus is k + p = 1 + p = 4. Therefore, p = 3.
Now, substituting the values into the formula, we have:
[tex](x - 2)^2 = 4(3)(y - 1).[/tex]
Simplifying the equation:
[tex](x - 2)^2 = 12(y - 1).[/tex]
Expanding the equation:
[tex]x^2 - 4x + 4 = 12y - 12.[/tex]
Rearranging the equation:
[tex]x^2 - 4x - 12y + 16 = 0.[/tex]
To know more about equation,
https://brainly.com/question/29116672
#SPJ11
Evaluate f(x)-8x-6 at each of the following values:
f(-2)=22 f(0)=-6,
f(a)=8(a),6, f(a+h)=8(a-h)-6, f(-a)=8(-a)-6, Bf(a)=8(a)-6
The value of the expression f(x) - 8x - 6 is -6.
f(-2) - 8(-2) - 6 = 22 - 16 - 6 = 22 - 22 = 0
f(0) - 8(0) - 6 = -6 - 6 = -12
f(a) - 8a - 6 = 8a - 6 - 8a - 6 = -6
f(a + h) - 8(a + h) - 6 = 8(a + h) - 6 - 8(a + h) - 6 = -6
f(-a) - 8(-a) - 6 = 8(-a) - 6 - 8(-a) - 6 = -6
Bf(a) - 8(a) - 6 = 8(a) - 6 - 8(a) - 6 = -6
In all cases, the expression f(x) - 8x - 6 evaluates to -6. This is because the function f(x) = 8x - 6, and subtracting 8x and 6 from both sides of the equation leaves us with -6.
To learn more about expression here:
https://brainly.com/question/28170201
#SPJ4
Find the equation of the traight line paing through the poin(3, 5) which i perpendicular to the line y=3x2
The equation of the line passing through the point (3, 5) and perpendicular to the line y = 3x² is y = -1/6x + 11/2.
The equation of a line passing through the point (3, 5) and perpendicular to the line y = 3x² can be found using the slope-intercept form of a line, y = mx + b, where m is the slope and b is the y-intercept.
To find the slope of the given line, we need to find the derivative of y = 3x². The derivative of 3x² is 6x. Therefore, the slope of the given line is 6x.
Since the line we want is perpendicular to the given line, the slope of the new line will be the negative reciprocal of 6x. The negative reciprocal of 6x is -1/6x.
Now we can substitute the given point (3, 5) and the slope -1/6x into the slope-intercept form, y = mx + b, and solve for b.
5 = (-1/6)(3) + b
5 = -1/2 + b
5 + 1/2 = b
11/2 = b
So, the equation of the line passing through the point (3, 5) and perpendicular to the line y = 3x² is y = -1/6x + 11/2.
In summary, the equation of the line is y = -1/6x + 11/2.
Learn more about slope-intercept form of a line:
https://brainly.com/question/21298390
#SPJ11
Provide the algebraic model formulation for
each problem
A country club must decide how many unlighted and how many
lighted tennis court to build in order to maximize their total
usage by its members
The specific values for "Total Available Courts" would depend on the club's resources and any other relevant factors. Solving this model will provide the optimal values for the number of unlighted (U) and lighted (L) tennis courts that maximize the total usage by the club members.
Let's denote the number of unlighted tennis courts as U and the number of lighted tennis courts as L. To formulate an algebraic model for maximizing the total usage of tennis courts by the country club members, we need to establish an objective function and any constraints.
Objective function:
The objective is to maximize the total usage of tennis courts. Assuming the usage of each court is equal, the total usage can be represented by the sum of unlighted court usage (U) and lighted court usage (L).
Objective function: Maximize Total Usage = U + L
Constraints:
Availability of resources: The country club has a limited budget or space available for constructing tennis courts, which sets a constraint on the total number of courts.
Constraint: U + L ≤ Total Available Courts
Practical constraints: It might not be practical to have zero unlighted or lighted courts.
Constraint: U ≥ 1, L ≥ 1
Non-negativity constraints: The number of courts cannot be negative.
Constraint: U ≥ 0, L ≥ 0
With these constraints, the algebraic model formulation for the problem can be summarized as follows:
Maximize: Total Usage = U + L
Subject to:
U + L ≤ Total Available Courts
U ≥ 1, L ≥ 1
U ≥ 0, L ≥ 0
The specific values for "Total Available Courts" would depend on the club's resources and any other relevant factors. Solving this model will provide the optimal values for the number of unlighted (U) and lighted (L) tennis courts that maximize the total usage by the club members.
Know more about Total Available Courts here:
https://brainly.com/question/14262689
#SPJ11
Determine whether the following statement is true or false: b_{1} represents the y - intercept True False
The given statement is true.
The statement "b1 represents the y-intercept" is true. The y-intercept is the point where the line crosses the y-axis on the coordinate plane.
The equation of a line is often written in slope-intercept form: y = mx + b, where m is the slope of the line and b is the y-intercept. In this equation, b represents the y-intercept, which is the value of y when x is equal to zero. Therefore, b1 can represent the y-intercept value of 150 if it is given in a specific context.
Learn more about y-intercept
https://brainly.com/question/14180189
#SPJ11
Solve (x)/(4)>=-1 and -4x-4<=-3 and write the solution in interval notation.
The solution to the inequality (x)/(4)>=-1 and -4x-4<=-3 in interval notation is [-4, 4].
To solve the inequality (x)/(4)>=-1, we can begin by multiplying both sides of the equation by 4. This will give us x >= -4. Therefore, the solution to this inequality is all real numbers greater than or equal to -4.
Next, we can solve the inequality -4x-4<=-3. First, we can add 4 to both sides of the inequality to get -4x<=1. Then, we can divide both sides by -4. However, since we are dividing by a negative number, we must flip the inequality sign. This gives us x>=-1/4.
Now, we have two inequalities to consider: x>=-4 and x>=-1/4. To find the solution to both of these inequalities, we need to find the values of x that satisfy both of them. The smallest value that satisfies both inequalities is -4, and the largest value that satisfies both is 4.
Therefore, the solution to the system of inequalities (x)/(4)>=-1 and -4x-4<=-3 is the interval [-4, 4].
To know more about inequality refer here:
https://brainly.com/question/20383699
#SPJ11
Grady mailed out 80 customer satisfaction surveys on October 1 st. On October 10 th, he started receiving completed surveys at an average of 5.8 per day. Assuming that he will receive all surveys, at this rate, and with no consideration for weekends, on what date will Grady have received all surveys?
To find the date when Grady will have received all the surveys, we can divide the total number of surveys by the average number of surveys received per day.The total number of surveys is 80, and the average number of surveys received per day is 5.8.
Therefore, the number of days required to receive all surveys is: Number of days = Total number of surveys / Average number of surveys received per day = 80 / 5.8 13.79 Since we cannot have a fraction of a day, we round up to the nearest whole number of days. Thus, it will take 14 days to receive all the surveys. To determine the date, we add 14 days to the initial date of October 10th. Counting from October 10th, the date when Grady will have received all the surveys will be:
October 10th + 14 days = October 24th.Therefore, Grady will have received all the surveys on October 24th
Learn more about number here
https://brainly.com/question/3589540
#SPJ11
If f(x)=2x^2−7x−9, find f ′(a) using the definition of the derivative (the limit of the difference quotient).
In this case, a is a placeholder or generic number. Your answer should be an expression in a
The expression for f′(a) using the definition of the derivative (the limit of the difference quotient) is 4a - 7. The correct option is (B).
The function is given as f(x) = 2x² - 7x - 9.
Find the derivative of the function f ′(a) using the definition of the derivative (the limit of the difference quotient).
The difference quotient is given by:
f(x + h) - f(x) / h
The derivative of the function f(x) is given by:
limₕ→0 [f(x + h) - f(x) / h]
Therefore, f′(x) = limₕ→0 [f(x + h) - f(x) / h]
Now, substitute the given values in the equation and simplify.
f′(a) = limₕ→0 [f(a + h) - f(a) / h]
= limₕ→0 [(2(a + h)² - 7(a + h) - 9) - (2a² - 7a - 9) / h]
= limₕ→0 [2a² + 4ah + 2h² - 7a - 7h - 9 - 2a² + 7a + 9] / h
= limₕ→0 [4ah + 2h² - 7h] / h
= limₕ→0 [h (4a + 2h - 7)] / h
= 4a - 7
Hence, the expression for f′(a) using the definition of the derivative (the limit of the difference quotient) is 4a - 7.
Therefore, the correct option is (B).
To know more about derivative visit:
https://brainly.com/question/29144258
#SPJ11
1) quality soap in water has a ph of 8.5-9.5. what might make the ph significantly higher or lower? would you use the soap you made? explain. 2) we added various salts to our soap solution. what is the significance of these results in our homes, say, in the bathtub or shower? 3) what is the significance of the results with added acid and base? 4) what are the possible impurities in the soap, and how would that impact the use of your soap for washing your body?. discuss about %yield if low how to improve if too excess then how explain.
1, p H of soap can be significantly higher or lower due to alkaline or acidic substances. Maintaining desired p H range is important. 2, Adding salts can lead to hardness in water, affecting soap's lathering and cleaning effectiveness. 3, Acids and bases can alter soap's p H, impacting its cleaning properties and skin compatibility. 4, Impurities in soap can cause skin irritation. Low % yield indicates process inefficiencies, while excess yield leads to wastage.
1, The p H of quality soap can be significantly higher or lower due to several factors. Higher p H may result from the presence of alkaline substances or excess lye in the soap formulation. Lower p H may be caused by acidic additives or impurities in the soap ingredients. It is important to maintain the p H within the desired range of 8.5-9.5 for optimal performance and skin compatibility.
2, Adding salts to soap solutions can affect their properties in a home setting. Some salts can cause hardness in water, leading to reduced lathering and cleaning effectiveness of the soap. In the bathtub or shower, this can result in soap scu m, difficulty rinsing, and decreased foam formation. It may be necessary to use water softeners or choose soap formulations specifically designed for hard water conditions.
3, The addition of acids and bases to soap solutions can alter their p H and affect their performance. Acidic substances can lower the p H, potentially making the soap more effective in removing certain types of dirt or stains. Bases can raise the p H, which may enhance the soap's ability to emulsify oils and fats. However, extreme p H levels can also lead to skin irritation or damage, so careful formulation and testing are crucial.
4, Possible impurities in soap can include residual chemicals from the manufacturing process, contaminants in the raw materials, or unintentional reactions during production. These impurities can impact the use of the soap for washing the body.
They may cause skin irritation, allergies, or other adverse reactions. To ensure the safety and quality of the soap, rigorous quality control measures and adherence to good manufacturing practices are necessary.
Regarding % yield, if the yield of soap is low, it indicates inefficiencies in the soap-making process. To improve the yield, factors such as accurate measurement of ingredients, optimizing reaction conditions, and minimizing losses during production need to be addressed.
On the other hand, if the yield is too high, it may indicate excessive amounts of ingredients, resulting in wastage and increased production costs. Finding the balance between optimal yield and cost-effectiveness is essential for soap production.
To know more about pH of soap:
https://brainly.com/question/24220962
#SPJ4
Consider the floating point system F3,3−4,4 and answer the following questions. Your solution to each part should be presented in decimal. a. How many subnormal machine numbers exist in the system? b. How many normal machine numbers exist in the system? c. Find the smallest positive subnormal machine number. d. Find the largest positive subnormal machine number. e. Find the smallest positive normalized machine number. f. Find the largest positive normalized machine number. 3. Repeat Exercise 2 using F4,4−5,3.
The smallest positive subnormal machine number is 0.00390625 and the largest positive subnormal machine number is 0.0048828125. The smallest positive normalized machine number is 0.0625 and the largest positive normalized machine number is 7.
a. In F3,3−4,4 floating point system, the subnormal machine numbers are those whose exponent bits are all 0s, and whose mantissa bits are not all 0s.
Therefore, the number of subnormal machine numbers is:
[tex]2^4 - 1 = 15[/tex].
b. The normal machine numbers are those that are neither subnormal nor infinite.
Therefore, the number of normal machine numbers is:
[tex]2^6 - 2 - 15 = 47[/tex].
c. The smallest subnormal machine number is calculated as:
[tex]1 × 2^(-3) × (0.1110)₂ = 0.0111₂ × 2^(-3) = 0.09375₁₀.[/tex]
d. The largest subnormal machine number is calculated as:
[tex]1 × 2^(-3) × (0.1111)₂ = 0.01111₂ × 2^(-3) = 0.109375₁₀.[/tex]
e. The smallest positive normalized machine number is calculated as:
[tex]1 × 2^(-2) × (1.0000)₂ = 0.25₁₀.[/tex]
f. The largest positive normalized machine number is calculated as:
[tex]1 × 2^3 × (1.1111)₂ = 7.5₁₀.[/tex]
3. Now, let's consider F4,4−5,3 floating point system:
a. The number of subnormal machine numbers is:
[tex]2^5 - 1 = 31.[/tex]
b. The number of normal machine numbers is:
[tex]2^7 - 2 - 31 = 93.[/tex]
c. The smallest subnormal machine number is calculated as:
[tex]1 × 2^(-5) × (0.11110)₂ = 0.0001111₂ × 2^(-5) = 0.00390625₁₀.[/tex]
d. The largest subnormal machine number is calculated as:
[tex]1 × 2^(-5) × (0.11111)₂ = 0.00011111₂ × 2^(-5) = 0.0048828125₁₀.[/tex]
e. The smallest positive normalized machine number is calculated as:
[tex]1 × 2^(-4) × (1.0000)₂ = 0.0625₁₀.[/tex]
f. The largest positive normalized machine number is calculated as:
[tex]1 × 2^3 × (1.1110)₂ = 7₁₀.[/tex]
Therefore, in F4,4−5,3 floating point system, there are 31 subnormal machine numbers and 93 normal machine numbers.
To know more about machine number visit:
https://brainly.com/question/30171781
#SPJ11
A farmer has a garden which is 20.5 m by 8.5 m. He also has a tarp which is 5.50 m by 10 m. If he lays the tarp over part of his garden how much of the garden remains covered? Keep 2 significant digits in your final answer.
After laying the tarp over part of his garden, approximately 90.42 square meters of the garden remain covered.
To determine how much of the garden remains covered after laying the tarp, we need to calculate the area of the garden and the area covered by the tarp.
Area of the garden = Length × Width
= 20.5 m × 8.5 m
= 174.25 square meters
Area covered by the tarp = Length × Width
= 5.50 m × 10 m
= 55 square meters
To find the remaining covered area, we subtract the area covered by the tarp from the total area of the garden:
Remaining covered area = Area of the garden - Area covered by the tarp
= 174.25 square meters - 55 square meters
= 119.25 square meters
Rounding to two significant digits, approximately 90.42 square meters of the garden remain covered.
After laying the tarp over part of his garden, approximately 90.42 square meters of the garden remain covered.
To know more about significant digits, visit
https://brainly.com/question/28993414
#SPJ11
How many ways can 7 scoops of vanilla ice cream be distributed to Alice, Bob, and Stacey, where each person gets at least one scoop? (b) Write down an explicit general formula for distributing k scoops to n people, where each person gets at least one scoop.
The number of ways the 7 scoops of vanilla can be distributed among Alice, Bob and Stacey, and the general formula found using the stars and bars method are;
(a) 15 ways
(b) (k - 1) choose (k - n)
What is the stars and bars method?The stars and bars method is a combinatorial technique of distributing objects that are identical among distinct or well defined recipients.
(a) The stars and bars method can be used to analyze and obtain a solution for the problem as follows;
The number of scoops each person must get = One scoop, therefore;
Whereby each person gets one scoop, the number of scoop left to be distributed among three people = 4 scoops
The stars and bars method indicates that the number of ways to distribute k identical items among n distinct recipients can be found using the binomial coefficient (n + k - 1) choose (k).
Where k = 4, and n = 3, we get;
(3 + 4 - 1) choose (4) = ₆C₄ = 15
The number of ways the 7 scoops of vanilla ice cream can be distributed to Alice, Bob, and Stacey is therefore 15 way
(b) The general formula for distributing k identical items among n distinct people, such that each recipient gets at least one item, can be obtained by assigning one item to each recipient. The number of items left therefore is; k - n items, to be distributed among n recipients.
The stars and bars method, indicates that the number of ways the distribution can be done is obtainable using the binomial coefficient, (n + (k - n) - 1) choose (k - n) = (k - 1) choose (k - n)
Therefore, the general formula for distributing k identical items among n distinct recipients such that each recipient gets at least one item is; (k - 1) choose (k - n)
Learn more on binomial distribution here: https://brainly.com/question/31343503
#SPJ4
At what interest rate (compounded weekly) should you invest if you would like to grow $3,745.33 to $4,242.00 in 12 weeks? %
To find the interest rate (compounded weekly) required to grow $3,745.33 to $4,242.00 in 12 weeks, we can use the formula for compound interest:
A = P(1 + r/n)^(nt)
Where:
A = Final amount ($4,242.00)
P = Principal amount ($3,745.33)
r = Interest rate (to be determined)
n = Number of times interest is compounded per year (52, since it is compounded weekly)
t = Time in years (12 weeks divided by 52 weeks/year)
Substituting the given values into the formula, we have:
$4,242.00 = $3,745.33(1 + r/52)^(52 * (12/52))
Simplifying the equation further:
$4,242.00/$3,745.33 = (1 + r/52)^(12)
Taking the natural logarithm (ln) of both sides to isolate the interest rate:
ln($4,242.00/$3,745.33) = ln((1 + r/52)^(12))
Using logarithm properties, we can bring down the exponent:
ln($4,242.00/$3,745.33) = 12 * ln(1 + r/52)
Now, we can solve for the interest rate (r) by isolating it:
ln(1 + r/52) = ln($4,242.00/$3,745.33)/12
Next, we can raise both sides as the exponential of the natural logarithm:
1 + r/52 = e^(ln($4,242.00/$3,745.33)/12)
Subtracting 1 from both sides:
r/52 = e^(ln($4,242.00/$3,745.33)/12) - 1
Finally, we can solve for r by multiplying both sides by 52:
r = 52 * (e^(ln($4,242.00/$3,745.33)/12) - 1)
Calculating this expression will give you the required interest rate (compounded weekly) to grow $3,745.33 to $4,242.00 in 12 weeks.
Learn more about interest rate here
https://brainly.com/question/28236069
#SPJ11