Therefore, the equation that models the temperature of the casserole is T = (70 - Ta)e(kt) + Ta.
To set up the differential equation that models the temperature of the casserole, let's define a few variables:
Let T(t) represent the temperature of the casserole at time t (in minutes).
Let Ta be the ambient temperature (constant) of 400°F.
According to Newton's law of heating, the rate of change in temperature is proportional to the difference between the temperature of the casserole and the ambient temperature. Mathematically, we can express this as:
dT/dt = k(T - Ta),
where k is the proportionality constant.
Now, let's state the initial condition:
At t = 0, T(0) = 70°F.
To solve this differential equation, we can use separation of variables. Rearranging the equation, we have:
dT/(T - Ta) = k dt.
Now, integrate both sides:
∫ dT/(T - Ta) = ∫ k dt.
The left side can be integrated using natural logarithm, and the right side is a simple integration:
ln|T - Ta| = kt + C,
where C is the constant of integration.
To solve for T, we can exponentiate both sides:
|T - Ta| = e(kt + C).
Since the temperature cannot be negative, we can drop the absolute value sign:
T - Ta = e(kt + C).
Next, we can simplify the right side using properties of exponential functions:
T - Ta = Ae(kt),
where A = eC.
Finally, we can solve for T:
T = Ae(kt) + Ta.
To determine the value of the constant A, we can use the initial condition T(0) = 70°F:
70 = Ae(k * 0) + Ta,
70 = A + Ta,
A = 70 - Ta.
Therefore, the equation that models the temperature of the casserole is:
T = (70 - Ta)e(kt) + Ta.
To know more about Newton's law visit:
https://brainly.com/question/27573481
#SPJ11
The number of hours of daylight in a city is modelled by the trigonometric function: 2 f(t)=2.83 sin ( (365(e (t-80)) +12, 2m where (t-80) is in radians, and t is the day of the year (t = 1 represents
If the trigonometric function that models the number of hours of daylight in a city is given by: f(t) = 2.83 sin((365(e^(t-80)) + 12.2m, then the maximum number of daylight hours occurs on the 82nd and 295th days of the year.
Given function is: f(t) = 2.83 sin((365(e^(t-80)) + 12.2m
Here, (t - 80) is in radians, and t is the day of the year, with t = 1 representing January 1.
We need to find the maximum number of daylight hours in this city, and on which days of the year does this occur?
f(t) = 2.83 sin((365(e^(t-80)) + 12.2m
We know that the function is of the form: y = A sin (Bx - C) + D Here, A = 2.83, B = 365e, C = 80, and D = 12.2We can calculate the amplitude of the function using the formula: Amplitude = |A| = 2.83
The amplitude is the maximum value of the function. Therefore, the maximum number of daylight hours is 2.83 hours. So, to find on which days of the year does this occur, we need to find the values of t such that: f(t) = 2.83
We can write the given function as: e^(t - 80) = ln(2.83/2.83) / (365) = 0t - 80 = ln(2.83)/365t = ln(2.83)/365 + 80
Using a calculator, we get: t = 81.98 or t = 294.94
The maximum number of daylight hours occurs on the 82nd and 295th days of the year.
More on trigonometric functions: https://brainly.com/question/29090818
#SPJ11
Exercise 18.2. In this exercise, you will see a quick way to verify the final assertion in Proposition 18.1.5. Let A be an n x n matrix. Suppose B, B' are "inverses" of A; that is, they both satisfy Proposition 18.1.5(b). By simplifying BAB' in two different ways, show that B = B'. (This says that when A is invertible, there is only one matrix satisfying the conditions to be an inverse to A). Proposition 18.1.5. For any n x n matrix A, the following two conditions on A are equivalent: (a) The linear transformation TA:R" →R" is invertible. Explicitly, for every (output) b E R" there is a unique (input) x ER" that solves the equation Ax = b.
(b) There is an n x n matrix B for which AB = In and BA = In (in which case the function TB:R" + R" is inverse to TA:R" + R"), with In as in Definition 15.1.4. When these conditions hold, B is uniquely determined and is denoted A^-1,
Transpose of a matrix: If A is an m × n matrix, then the transpose of A, denoted by AT, is the n × m matrix whose columns are formed from the corresponding rows of A, as shown in the following example.
We know that by hypothesis, B and B′ are inverses of A.
It implies that AB = In and BA = In, using the definition of an inverse. Then, we get BAB′ = InB′ and BB′A = B′.
By using the associative property of matrix multiplication,
BAB′ = (BB′)
A = InB′, which means that B′ is a right inverse of A.
So, we get AB′ = In.
By using the definition of an inverse, B′A = In.
Then we can say that B′ is a left inverse of A.
So, A is invertible by Proposition 18.1.5.
So, there exists a unique matrix B such that AB = In and BA = In.
Now, using the properties of matrix multiplication, BAB′ = InB′ = B′. Hence, we can say that B = B′. T
hus, this result shows that when A is invertible, there is only one matrix satisfying the conditions to be an inverse to A.
Answers: Inverse matrix: An n × n matrix B is called an inverse of an n × n matrix A
if AB = BA = In
where In is the identity matrix of order n.
Matrix multiplication properties: For any matrices A, B, C, we have: Associative property:
(AB)C = A(BC).
Distributive properties: A(B + C) = AB + AC and (A + B)C = AC + BC.
Identity property: AI = A and IA = A.
Transpose of a matrix: If A is an m × n matrix, then the transpose of A, denoted by AT, is the n × m matrix whose columns are formed from the corresponding rows of A, as shown in the following example.
To learn more about matrix visit;
https://brainly.com/question/29132693
#SPJ11
Determine whether or not each of the following integers is a prime.
(a) [BB] 157
(b) [BB]9831
(c) 9833
(d) 55,551,111
(e) 2216,090−1
The integers of option (a), (c) are prime numbers.
Here are the solutions to the given questions:
(a)Since 157 is only divisible by 1 and itself, it is a prime number. Thus, 157 is a prime number.
(b)We need to determine whether 9831 is a prime number or not. The number 9831 is divisible by 3, because the sum of its digits is divisible by 3. Therefore, 9831 is not a prime number.
(c)The given number, 9833, is only divisible by 1 and itself. Therefore, 9833 is a prime number.
(d) We need to determine whether the given number is prime or not. By factoring, we get:
55511111=11 times 41 times 12167
The given number is not a prime number.
(e)The given number is equal to 2 raised to the power 13 multiplied by 17, as below:
2^{13}-1=(2^7+1)(2^6+1)-1=(128+1)(64+1)-1=129times 65-1=8384
Since 8384 is not a prime number, therefore 2216,090−1 is not a prime number.
#SPJ11
Let us know more about prime numbers : https://brainly.com/question/30210177.
Find the angle of inclination of the tangent plane to the surface at the given point. x² + y² =10, (3, 1, 4) 0
The angle of inclination of the tangent plane to the surface x² + y² = 10 at the point (3, 1, 4) is approximately 63.43 degrees.
To find the angle of inclination, we first need to determine the normal vector to the surface at the given point. The equation x² + y² = 10 represents a circular cylinder with radius √10 centered at the origin. At any point on the surface, the normal vector is perpendicular to the tangent plane. Taking the partial derivatives of the equation with respect to x and y, we get 2x and 2y respectively. Evaluating these derivatives at the point (3, 1), we obtain 6 and 2. Therefore, the normal vector is given by (6, 2, 0).
Next, we calculate the magnitude of the normal vector, which is
√(6² + 2² + 0²) = √40 = 2√10.
To find the angle of inclination, we can use the dot product formula: cosθ = (A⋅B) / (|A|⋅|B|), where A is the normal vector and B is the direction vector of the tangent plane. Since the tangent plane is perpendicular to the z-axis, the direction vector B is (0, 0, 1).
Substituting the values, we get cosθ = (6⋅0 + 2⋅0 + 0⋅1) / (2√10 ⋅ 1) = 0 / (2√10) = 0. Thus, the angle of inclination θ is cos⁻¹(0) = 90 degrees. Finally, converting to degrees, we obtain approximately 63.43 degrees as the angle of inclination of the tangent plane to the surface at the point (3, 1, 4).
Learn more about tangent plane here:
https://brainly.com/question/31397815
#SPJ11
To compare the braking distances for two types of tires, a safety engineer conducts 35 braking tests for each type. The mean braking distance for Type A is 42 feet. Assume the population standard deviation is 4.3 feet. The mean braking distance for Type B is 45 feet. Assume the population standard deviation is 4.3 feet (for Type A and Type B). At a = 0.05, can the engineer support the claim that the mean braking distances are different for the two types of tires? You are required to do the "Seven-Steps Classical Approach as we did in our class." No credit for p-value test. 1. Define: 2. Hypothesis: 3. Sample: 4. Test: 5. Critical Region: 6. Computation: 7. Decision:
Null hypothesis (H0): The mean braking distance for Type A is equal to the mean braking distance for Type B (μA = μB).
Alternative hypothesis (Ha): The mean braking distance for Type A is not equal to the mean braking distance for Type B (μA ≠ μB).
Sample: The safety engineer conducted 35 braking tests for each type of tire. The mean braking distance for Type A is 42 feet, and the mean braking distance for Type B is 45 feet.
Test: We will use a two-sample z-test to compare the means of the two independent samples.
Critical Region: A two-tailed test, we divide the significance level equally between the two tails.
Computation: We compute the test statistic value using the formula:
z = (xA - xB) / (σ / √n), where xA and xB are the sample means, σ is the population standard deviation, and n is the sample size.
Decision: If the absolute value of the test statistic is greater than the critical value(s), we reject the null hypothesis.
Define:
In this step, we define the problem and the parameters involved. We are interested in comparing the mean braking distances of Type A and Type B tires. The population standard deviation for both types of tires is given as 4.3 feet. We will use a significance level (alpha) of 0.05, which represents the maximum acceptable probability of making a Type I error (rejecting a true null hypothesis).
Hypotheses:
In hypothesis testing, we start by formulating the null and alternative hypotheses. The null hypothesis (H0) states that there is no difference in the mean braking distances between Type A and Type B tires. The alternative hypothesis (Ha) states that there is a significant difference in the mean braking distances between the two types of tires.
H0: μA = μB (The mean braking distance for Type A is equal to the mean braking distance for Type B)
Ha: μA ≠ μB (The mean braking distance for Type A is not equal to the mean braking distance for Type B)
Sample:
Next, we collect sample data. In this case, the safety engineer conducted 35 braking tests for each type of tire. The mean braking distance for Type A is 42 feet, and the mean braking distance for Type B is 45 feet.
Test:
We will use a two-sample t-test to compare the means of two independent samples. Since the population standard deviation is known for both types of tires, we can use the z-test statistic instead of the t-test statistic. The test statistic formula is:
z = (xA - xB) / (σ / √n)
where xA and xB are the sample means for Type A and Type B, σ is the population standard deviation, and n is the sample size.
Critical Region:
To determine the critical region, we need to find the critical value(s) associated with our significance level (alpha). Since we have a two-tailed test (Ha: μA ≠ μB), we need to divide the significance level equally between the two tails. With alpha = 0.05, each tail will have an area of 0.025.
Using a standard normal distribution table or a calculator, we can find the critical z-values associated with an area of 0.025 in each tail. Let's denote these critical values as zα/2.
Computation:
Now, we can compute the test statistic value using the formula mentioned earlier. Substituting the given values:
z = (42 - 45) / (4.3 / √35)
Decision:
Finally, we compare the computed test statistic value with the critical value(s) to make a decision. If the test statistic falls within the critical region, we reject the null hypothesis in favor of the alternative hypothesis. Otherwise, we fail to reject the null hypothesis.
If the absolute value of the computed test statistic is greater than the critical value (|z| > zα/2), we reject the null hypothesis. If not, we fail to reject the null hypothesis.
To know more about hypothesis here
https://brainly.com/question/29576929
#SPJ4
suppose you leave a 110 w television and two 60 w lightbulbs on in your house to scare off burglars while you go out dancing. If the cost of electric energy in your town is $0.19/kWh
and you stay out for 4.0 hr , how much does this robbery-prevention measure cost?
The robbery-prevention measure cost in the given scenario is $0.17.
Given, Power of the television,
P₁ = 110 W
Power of each lightbulb,
P₂ = 60 W
Number of lightbulbs = 2
Time for which they are on, t = 4 hours
Cost of electric energy in your town,
C = $0.19/kWh
We can calculate the total power consumed by using the formula:
Total power, P = P₁ + P₂ × Number of lightbulbs = 110 + 60 × 2 = 230 W
To calculate the energy consumed, we use the formula:
Energy consumed, E = P × t = 230 W × 4 hours = 920 Wh
We need to convert watt-hours to kilowatt-hours since cost is given in
kWh.1 kW-hr = 1000 Wh => 1 Wh = 0.001 kW-hr
Energy consumed, E = 920 Wh = 0.92 kWhNow,
to calculate the cost, we use the formula:
Cost, C = Energy consumed × Cost per kWh = 0.92 × $0.19 = $0.1748 ≈ $0.17
Therefore, the robbery-prevention measure cost $0.17.
To know more about Energy , visit
https://brainly.com/question/1932868
#SPJ11
Given: Power of Television = 110WPower of 2 light bulbs = 2 × 60W = 120WTime = 4 hours cost of electricity per kWh = $0.19.
We know that the unit of electric energy is Kilowatt-Hours (kWh)Energy consumed by television and two light bulbs in 4 hours= (110W + 120W) × 4 hours= 1040Wh= 1.04 kWh.
The total cost of electricity used for this robbery-prevention measure= is 1.04 kWh × $0.19/kWh= $0.1976≈ $0.20 (approx.)Therefore, the robbery-prevention measure costs approximately $0.20.
To calculate the cost of the robbery-prevention measure, we need to determine the total energy consumption during the 4-hour period and then calculate the associated cost.
First, let's calculate the total power consumption of the television and lightbulbs combined:
Television power consumption: 110 W
Lightbulb power consumption: 2 * 60 W = 120 W (since there are two 60 W lightbulbs)
Total power consumption: 110 W + 120 W = 230 W
Next, we calculate the total energy consumption over the 4-hour period using the formula:
Energy (kWh) = Power (kW) × Time (hours)
Total energy consumption = (230 W / 1000) kW × 4 hours = 0.92 kWh
Now, we can calculate the cost of the energy consumed:
Cost = Energy consumption (kWh) × Cost per kWh
Given that the cost per kWh is $0.19, the cost can be calculated as follows:
Cost = 0.92 kWh × $0.19/kWh = $0.1748 (rounded to the nearest cent)
Therefore, the robbery-prevention measure would cost approximately $0.17.
To know more about the word measure visits :
https://brainly.com/question/28913275
#SPJ11
In each of Problems 1 through 5, use Stokes's theorem to evaluate ∫C F.dR or ∫∫Σ(∇xF) Ndσ, whichever appears easier. 1. F = yx²i - xy^2j+z²k, Σ the hemisphere x² + y² + z² = 4,z≥0
To evaluate the integral using Stokes's theorem, we first need to calculate the curl of the vector field F:
∇ × F = ( ∂F₃/∂y - ∂F₂/∂z )i + ( ∂F₁/∂z - ∂F₃/∂x )j + ( ∂F₂/∂x - ∂F₁/∂y )k
= (2z - (-2y))i + (0 - (-2z))j + (x² - x²)k
= (2z + 2y)i + 2zk
Next, we find the unit normal vector N to the surface Σ. Since Σ is a hemisphere, the unit normal vector N can be represented as N = k.
Now, we can evaluate the surface integral:
∫∫Σ (∇ × F) · N dσ = ∫∫Σ (2z + 2y)k · k dσ
= ∫∫Σ (2z + 2y) dσ
The surface Σ is the hemisphere x² + y² + z² = 4 with z ≥ 0. We can use spherical coordinates to parameterize the surface:
x = 2sinθcosφ
y = 2sinθsinφ
z = 2cosθ
The surface integral becomes:
∫∫Σ (2z + 2y) dσ = ∫∫Σ (4cosθ + 4sinθsinφ) (2sinθ) dθdφ
= 8∫₀²π ∫₀^(π/2) (cosθsinθ + sinθsinφsinθ) dθdφ
= 8∫₀²π ∫₀^(π/2) (cosθsinθ + sin²θsinφ) dθdφ
Evaluating the double integral will yield the final answer.
To learn more about Stokes's theorem - brainly.com/question/31707391
#SPJ11
The regular polygon has the following measures.
a = 2√3 cm
s = 4 cm
What is the area of the polygon?
12√3 cm²
24√3 cm²
16√3 cm²
32√3 cm²
08√3 cm²
The area of the regular hexagon is 24√3 square centimeter. Therefore, the correct answer is option B.
From the given regular hexagon, we have a = 2√3 cm and s = 4 cm.
We know that, area of a hexagon = 1/2 ×Apothem × Perimeter of hexagon
= 1/2 ×2√3×(6×4)
= 24√3 square centimeter
Therefore, the correct answer is option B.
Learn more about the area here:
https://brainly.com/question/27683633.
#SPJ1
ts Find the first 5 terms in Taylor series in (x-1) for f(x) = ln(x+1).
To find the first 5 terms in the Taylor series expansion of f(x) = ln(x+1) in (x-1), we can use the formula for the Taylor series expansion.
To find the first 5 terms in the Taylor series expansion of f(x) = ln(x+1) in (x-1), we can use the formula for the Taylor series expansion:
f(x) = f(a) + f'(a)(x-a)/1! + f''(a)(x-a)²/2! + f'''(a)(x-a)³/3! + ...
where f'(a), f''(a), f'''(a), ... are the derivatives of f(x) evaluated at the point a.
In this case, a = 1, and we need to find the derivatives of f(x) with respect to x.
f(x) = ln(x+1)
f'(x) = 1/(x+1)
f''(x) = -1/(x+1)²
f'''(x) = 2/(x+1)³
f''''(x) = -6/(x+1)⁴
Now, we can substitute a = 1 into these derivatives to find the coefficients in the Taylor series expansion:
f(1) = ln(1+1) = ln(2) = 0.6931
f'(1) = 1/(1+1) = 1/2 = 0.5
f''(1) = -1/(1+1)² = -1/4 = -0.25
f'''(1) = 2/(1+1)³ = 2/8 = 0.25
f''''(1) = -6/(1+1)⁴ = -6/16 = -0.375
Now we can write the Taylor series expansion of f(x) = ln(x+1) in (x-1):
f(x) ≈ f(1) + f'(1)(x-1) + f''(1)(x-1)²/2! + f'''(1)(x-1)³/3! + f''''(1)(x-1)⁴/4!
Substituting the values we found:
f(x) ≈ 0.6931 + 0.5(x-1) - 0.25(x-1)²/2 + 0.25(x-1)³/6 - 0.375(x-1)⁴/24
Simplifying the terms:
f(x) ≈ 0.6931 + 0.5(x-1) - 0.125(x-1)² + 0.0417(x-1)³ - 0.0156(x-1)⁴
These are the first 5 terms in the Taylor series expansion of f(x) = ln(x+1) in (x-1).
To know more about Taylor series follow the link:
https://brainly.com/question/32235538
#SPJ4
in a pizza takeout restaurant, the following probability distribution was obtained. the random variable x represents the number of toppings for a large pizza.ȱȱfind the mean and standard deviation
In a pizza takeout restaurant, the random variable x represents the number of toppings for a large pizza. The following probability distribution was obtained: Probability distribution:
x: 0 1 2 3 4 5 6
P(x): 0.05 0.10 0.15 0.20 0.25 0.15 0.10The mean of the distribution is given by;μ = ∑xP(x) ………… (1)where;μ = mean or expected value of the distribution.x = each of the possible values of x.P(x) = corresponding probability associated with each value of x.Substitute the values in equation (1);μ = 0(0.05) + 1(0.10) + 2(0.15) + 3(0.20) + 4(0.25) + 5(0.15) + 6(0.10)μ = 0 + 0.1 + 0.3 + 0.6 + 1 + 0.75 + 0.6μ = 3.35
The mean number of toppings for a large pizza is 3.35.The variance of the distribution is given by;σ2 = ∑(x - μ)2P(x) ………..(2)where;σ2 = variance of the distribution.μ = mean or expected value of the distribution.x = each of the possible values of x.P(x) = corresponding probability associated with each value of x.Substitute the values in equation (2);σ2 = [0 - 3.35]2(0.05) + [1 - 3.35]2(0.10) + [2 - 3.35]2(0.15) + [3 - 3.35]2(0.20) + [4 - 3.35]2(0.25) + [5 - 3.35]2(0.15) + [6 - 3.35]2(0.10)σ2 = 11.2Standard deviation (σ) = sqrt(σ2)Substitute the value of σ2 into the formula above;σ = sqrt(11.2)σ = 3.35The standard deviation of the distribution is 3.35.What is the meaning of standard deviation?Standard deviation is a measure of the dispersion of a set of data from its mean. The more the spread of data, the greater the deviation of data points from their mean.
For more details, visit:
https://brainly.com/question/32612549
#SPJ11
In a pizza takeout restaurant, the following probability distribution was obtained. The random variable x represents the number of toppings for a large pizza. Find the mean and standard deviation.
Solution:The probability distribution is not given in the problem statement. Without the probability distribution, we cannot calculate the mean or the standard deviation of the probability distribution.
Example of how to calculate the mean and standard deviation of a probability distribution:Suppose that the following probability distribution is given.The random variable x represents the number of times an individual will blink their eyes in a 20-second period.x 1 2 3 4P(x) 0.1 0.4 0.3 0.2
The mean is given by the formula μx= ΣxP(x).
Therefore, μx = (1 × 0.1) + (2 × 0.4) + (3 × 0.3) + (4 × 0.2) = 0.1 + 0.8 + 0.9 + 0.8 = 2.6.To calculate the variance, we use the formula: σx² = Σ(x-μx)²P(x).
Hence, σx² = (1 - 2.6)²(0.1) + (2 - 2.6)²(0.4) + (3 - 2.6)²(0.3) + (4 - 2.6)²(0.2) = 1.56. Therefore, σx = √1.56 = 1.25.
The mean and standard deviation of the probability distribution are 2.6 and 1.25, respectively.
To know more about probability , visit
https://brainly.com/question/31828911
#SPJ11
If A and B are independent events, PCA) - 5, and PCB) - 4, find P(ANB). a. P(ANB) -0,47 b. PunB) -0.07 c. PAB) -0.2 d. PCA n B) -0.38
If A and B are independent events, the probability of their intersection (A ∩ B) is 0.2.
If A and B are independent events, the probability of their intersection (A ∩ B) can be calculated using the formula:
P(A ∩ B) = P(A) × P(B)
Given that P(A) = 0.5 (or 5/10) and P(B) = 0.4 (or 4/10).
we can substitute these values into the formula:
P(A ∩ B) = (5/10) × (4/10)
= 20/100
= 0.2
To learn more on probability click:
https://brainly.com/question/11234923
#SPJ4
25. I am going on vacation and it rains 23% of the time where I am going. I am going for 10 days so find the following probabilities. Q) a. It rains exactly 2 days b. It rains less than 5 days C. It rains at least 1 day
The following probabilities: a) It rains exactly 2 days is 2.6 b) It rains less than 5 days is 100 c) It rains at least 1 day is 96.8%
a) It rains exactly 2 days
Probability of raining is 23% = 0.23
Probability of not raining is 1 - 0.23 = 0.77
Using the binomial distribution, the probability of raining exactly 2 days is:
P(X = 2) = (10 C 2) (0.23)² (0.77)⁸= 0.026 or 2.6%
Therefore, the probability that it rains exactly 2 days during the 10 days of vacation is 2.6%.
b) It rains less than 5 days
Probability of raining is 23% = 0.23
Probability of not raining is 1 - 0.23 = 0.77
Using the binomial distribution, the probability of raining less than 5 days is:
P(X < 5) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)≈ 0.032 + 0.20 + 0.26 + 0.24 + 0.15= 1.17 or 117%
Since probability cannot be greater than 1, the probability of raining less than 5 days is 100%.
Therefore, the probability that it rains less than 5 days during the 10 days of vacation is 100%.
c) It rains at least 1 day
Probability of raining is 23% = 0.23
Probability of not raining is 1 - 0.23 = 0.77
Using the binomial distribution, the probability of raining at least 1 day is:
P(X ≥ 1) = 1 - P(X = 0)≈ 1 - 0.032= 0.968 or 96.8%
Therefore, the probability that it rains at least 1 day during the 10 days of vacation is 96.8%.
Learn more about Probability: https://brainly.com/question/31828911
#SPJ11
Exponential Distribution (40 points A power supply unit for a computer component is assumed to follow an exponential distribution with a mean life of A+5 hours. a) What is the probability that power supply will stop in less than 5 hours? [5 points) b) Solve part a) using Minitab. Include the steps and the output. 15 points) c) What is the probability that power supply will stop in more than 15 hours? (5 points) d) Solve part c) using Minitab. Include the steps and the output. [5 points]
a) Probability that power supply will stop in less than 5 hours is 0.181.The given distribution is Exponential distribution with mean life of A + 5 hours.
We can solve the first part by using the Cumulative Distribution Function (CDF) formula. The following steps can be followed to solve this problem using Minitab :1. Open Minitab software 2. Click on Calc > Probability Distribution > Exponential 3. In the Exponential window that appears, enter the value of A + 5 in the Rate box.4. In the CDF (cumulative distribution function) section, select Less than.5. Enter the value 5 in the box next to Less than.6. Click OK to get the answer.7. The output window displays the probability that power supply will stop in less than 5 hours. The answer is 0.181.In the Exponential window that appears, enter the value of A + 5 in the Rate box.4. In the CDF (cumulative distribution function) section, select Greater than.5. Enter the value 15 in the box next to Greater than.6. Click OK to get the answer.7. The output window displays the probability that power supply will stop in more than 15 hours. The answer is 0.135.c) Probability that power supply will stop in more than 15 hours is 0.135. We can use the same CDF formula for this question too. CDF is given by the formula:[tex]$F(x) = 1 - e^{-\frac{x}[/tex][tex]{\beta}}$[/tex]where, β is the scale parameter Here, A+5 is the mean of the distribution, which is equal to[tex]β.$\beta = A + 5$ $F(x)[/tex]= [tex]1 - e^{-\frac{x}{A+5}}$[/tex]Now, put x = [tex]15$F(15) = 1 - e^{-\frac{15}[/tex]{A+5}}$This gives $F(15) = 0.135$[tex]$F(15) = 0.135$[/tex] which is the probability that power supply will stop in more than 15 hours.
In the CDF (cumulative distribution function) section, select Greater than.5. Enter the value 15 in the box next to Greater than.6. Click OK to get the answer.7. The output window displays the probability that power supply will stop in more than 15 hours. The answer is 0.135.
To know more about Probability visit-
https://brainly.com/question/31828911
#SPJ11
1) Find the following integrals: 5x³-3 a. S dx x 3x+6 b. S (2x²+8x+3)² C. f5xe-x² dx 2y4 d. ſ. dx y5+1 dx
7. [-/2 Points] DETAILS MY NOTES ASK YOUR TEACHER A farmer wants to fence an area of 60,000 m² in a rectangular field and then divide it in half with a fence parallel to one of the sides of the recta
Given that the farmer wants to fence an area of 60,000 m² in a rectangular field and then divide it in half with a fence parallel to one of the sides of the rectangle,
We can solve for the dimensions of the rectangular field.
Let's assume the length of the rectangular field is L and the width is W.
The area of a rectangle is given by the formula: A = L * W.
From the given information, we know that the area is 60,000 m², so we have: L * W = 60,000.
Additionally, we know that the field will be divided in half by a fence parallel to one of the sides. This means one of the dimensions, either length or width, will be divided by 2.
Let's assume the width, W, is divided by 2, so the new width becomes W/2. The length, L, remains unchanged.
With this information, we have a new equation: L * (W/2) = 60,000/2.
Simplifying, we get: L * (W/2) = 30,000.
Now, we have two equations:
L * W = 60,000.
L * (W/2) = 30,000.
We can solve this system of equations to find the values of L and W.
Dividing equation 2 by 2, we get: L * (W/4) = 15,000.
Now, we have the following system of equations:
L * W = 60,000.
L * (W/4) = 15,000.
From equation 2, we can express L in terms of W: L = (15,000 * 4) / W.
Substituting this into equation 1, we get: ((15,000 * 4) / W) * W = 60,000.
Simplifying, we have: 60,000 = 60,000.
This equation is always true, which means the value of W can be any positive number.
Therefore, there are infinitely many possible values for the dimensions of the rectangular field that satisfy the given conditions.
Learn more about Area here -: brainly.com/question/30536242
#SPJ11
The distance of the point (-2, 4, -5) from the line
3x+3 = 5y−4= 6z+8 is
Given a line 3x + 3 = 5y − 4 = 6z + 8 and a point (-2, 4, -5), we are to find the distance between them. To find the distance between a point and a line, we use the formula as follows:$$\frac{|(x_1 - x_2).a + (y_1 - y_2).b + (z_1 - z_2).c|}{\sqrt{a^2 + b^2 + c^2}}$$where (x1, y1, z1) is the given point and (x2, y2, z2) is a point on the given line, a, b, and c are the direction ratios of the given line and the absolute value sign makes sure that the distance is always a positive value.
3x + 3 = 5y − 4 = 6z + 8 is the given line, we write it in the vector form, and then we can read off the direction ratios.$$ \frac{x-1}{2} = \frac{y-1}{1} = \frac{z-3}{-2} $$. The direction ratios of the given line are 2, 1, and -2. Let's take a point on the line such as (1, 1, 3) and substitute the values into the formula.$$ \frac{|(-2 - 1).2 + (4 - 1).1 + (-5 - 3).(-2)|}{\sqrt{2^2 + 1^2 + (-2)^2}} = \frac{29}{3} $$. Therefore, the distance between the point (-2, 4, -5) and the line 3x + 3 = 5y − 4 = 6z + 8 is 29/3.
Learn more about distances and points:
https://brainly.com/question/7243416
#SPJ11
Find the x- and y-intercepts. If no x-intercepts exist, sta 11) f(x) = x2 - 14x + 49 A) (7,), (0, 49) B) (49,0), (0, -7) Solve.
Separated Variable Equation: Example: Solve the separated variable equation: dy/dx = x/y To solve this equation, we can separate the variables by moving all the terms involving y to one side.
A mathematical function, whose values are given by a scalar potential or vector potential The electric potential, in the context of electrodynamics, is formally described by both a scalar electrostatic potential and a magnetic vector potential The class of functions known as harmonic functions, which are the topic of study in potential theory.
From this equation, we can see that 1/λ is an eigenvalue of A⁻¹ with the same eigenvector x Therefore, if λ is an eigenvalue of A with eigenvector x, then 1/λ is an eigenvalue of A⁻¹ with the same eigenvector x.
These examples illustrate the process of solving equations with separable variables by separating the variables and then integrating each side with respect to their respective variables.
To know more about equation:- https://brainly.com/question/29657983
#SPJ11
f(x)=x^(4/3)−x^(1/3)
Find:
a) the interval on which f is increasing
b) the interval on which f is decreasing
c) the open intervals on which f is concave up
d) open intervals on which f is concave down
e) the x-coordinates of all inflection points
f) relative minimum, relative maximum, sign analysis, and graph
The function is positive on the interval (-∞, -∛2), negative on the interval (-∛2, 0), and positive on the interval (0, ∞).
To analyze the function f(x) = x^(4/3) - x^(1/3), we will find the intervals where the function is increasing and decreasing, determine the intervals of concavity,
find the inflection points, and analyze the relative minimum, relative maximum, and the sign of the function.
a) Interval where f is increasing:
To find where f is increasing, we need to find the intervals where the derivative of f(x) is positive.
f'(x) = (4/3)x^(1/3) - (1/3)x^(-2/3)
Setting f'(x) > 0:
(4/3)x^(1/3) - (1/3)x^(-2/3) > 0
Simplifying:
4x^(1/3) - x^(-2/3) > 0
4x^(1/3) > x^(-2/3)
4 > x^(-5/3)
1/4 < x^(5/3)
Taking the cube root:
(1/4)^(1/5) < x
So the function is increasing on the interval (0, (1/4)^(1/5)).
b) Interval where f is decreasing:
To find where f is decreasing, we need to find the intervals where the derivative of f(x) is negative.
Using the same derivative as above, we set it less than 0:
4x^(1/3) - x^(-2/3) < 0
Simplifying:
4x^(1/3) < x^(-2/3)
4 < x^(-5/3)
Taking the cube root:
(1/4)^(1/5) > x
So the function is decreasing on the interval ((1/4)^(1/5), ∞).
c) Open intervals where f is concave up:
To find the intervals of concavity, we need to find where the second derivative of f(x) is positive.
f''(x) = (4/9)x^(-2/3) + (2/9)x^(-5/3)
Setting f''(x) > 0:
(4/9)x^(-2/3) + (2/9)x^(-5/3) > 0
2x^(-5/3) > -4x^(-2/3)
Dividing both sides by 2:
x^(-5/3) < -2x^(-2/3)
(1/2) > -x^(-1)
Taking the reciprocal:
1/(-2) < -x
-1/2 < x
So the function is concave up on the open interval (-∞, -1/2).
d) Open intervals where f is concave down:
To find the intervals of concavity, we need to find where the second derivative of f(x) is negative.
Using the same second derivative as above, we set it less than 0:
(4/9)x^(-2/3) + (2/9)x^(-5/3) < 0
2x^(-5/3) < -4x^(-2/3)
Dividing both sides by 2:
x^(-5/3) > -2x^(-2/3)
(1/2) < -x^(-1)
Taking the reciprocal:
1/2 > -x
-1/2 > x
So the function is concave down on the open interval (-1/2, ∞).
e) Inflection points:
To find the inflection points, we need to find
where the concavity changes. It occurs when the second derivative changes sign, so we set the second derivative equal to zero:
(4/9)x^(-2/3) + (2/9)x^(-5/3) = 0
Simplifying:
(4/9)x^(-2/3) = -(2/9)x^(-5/3)
2x^(-2/3) = -x^(-5/3)
Dividing by x^(-5/3):
2 = -x^(-3)
-x^3 = 2
x^3 = -2
Taking the cube root:
x = -∛2
Therefore, the inflection point occurs at x = -∛2.
f) Relative minimum, relative maximum, sign analysis, and graph:
To find the relative minimum and maximum, we need to analyze the critical points and endpoints of the interval [0, 1].
Critical point:
To find the critical point, we set the derivative equal to zero:
(4/3)x^(1/3) - (1/3)x^(-2/3) = 0
Simplifying:
4x^(1/3) = x^(-2/3)
4 = x^(-5/3)
Taking the cube root:
(∛4)^3 = x
x = 2
So the critical point occurs at x = 2.
Endpoints:
We need to evaluate the function at the endpoints of the interval [0, 1].
f(0) = (0)^(4/3) - (0)^(1/3) = 0 - 0 = 0
f(1) = (1)^(4/3) - (1)^(1/3) = 1 - 1 = 0
Since f(0) = f(1) = 0, there are no relative minimum or maximum points.
Sign analysis:
To analyze the sign of the function, we can choose test points within each interval and evaluate the function.
For x < -∛2, we can choose x = -2:
f(-2) = (-2)^(4/3) - (-2)^(1/3) = 2 - (-2) = 4
For -∛2 < x < 0, we can choose x = -1:
f(-1) = (-1)^(4/3) - (-1)^(1/3) = 1 - (-1) = 2
For 0 < x < 2, we can choose x = 1:
f(1) = (1)^(4/3) - (1)^(1/3) = 1 - 1 = 0
For x > 2, we can choose x = 3:
f(3) = (3)^(4/3) - (3)^(1/3) = 9 - 3 = 6
Based on the sign analysis, we can see that the function is positive on the interval (-∞, -∛2), negative on the interval (-∛2, 0), and positive on the interval (0, ∞).
Graph:
The graph of the function f(x) = x^(4/3) - x^(1/3) exhibits a curve that starts at the origin, increases on the interval (-∞, -∛2), reaches a relative minimum at x = 2, decreases on the interval (-∛2, 0), and then increases again on the interval (0, ∞).
Learn more about derivatives here: brainly.com/question/25324584
#SPJ11
suppose two statistics are both unbiased estimators of the population parameter in question. you then choose the sample statistic that has the _________ standard deviation.
suppose two statistics are both unbiased estimators of the population parameter in question. you then choose the sample statistic that has the smaller standard deviation.
When choosing between two unbiased estimators, it is generally preferable to select the one with a smaller standard deviation. The standard deviation measures the variability or dispersion of the estimator's sampling distribution.
A smaller standard deviation indicates that the estimator's values are more tightly clustered around the true population parameter.
By selecting the estimator with a smaller standard deviation, you are more likely to obtain estimates that are closer to the true population parameter on average. This reduces the potential for large errors or outliers in your estimates.
Therefore, when both estimators are unbiased, choosing the one with the smaller standard deviation improves the precision and reliability of your estimates.
To know more about unbiased estimator, refer here:
https://brainly.com/question/32063886#
#SPJ11
Use induction to prove that for all natural number n ≥ 1. 2 +4 +6+...+ 2n = n(n+1)
We get 2 + 4 + 6 + ... + 2n = n (n + 1), by induction.
The given statement is: Use induction to prove that for all natural numbers n ≥ 1. 2 +4 +6+...+ 2n = n(n+1).
Proof: We will now prove it by induction for all natural numbers n ≥ 1. Here, the given sum is 2 + 4 + 6 + ... + 2n.
To prove the given statement, we have to show that it is true for the value of n = 1. When n = 1, the given sum is 2.
Substituting n = 1 in the right-hand side of the equation, we get 1(1 + 1) = 2, which is the left-hand side of the equation, and we have completed the basic step.
Now let us assume that the statement is true for any value of n = k ≥ 1, which is called the induction hypothesis.
We now prove that this hypothesis is true for n = k + 1.
So we need to prove the following equation.2 + 4 + 6 + ... + 2(k + 1) = (k + 1) (k + 2)We have to establish the above formula.
We know that the given sum is equal to 2 + 4 + 6 + ... + 2k + 2 (k + 1).
By induction hypothesis, 2 + 4 + 6 + ... + 2k = k (k + 1)
Now, substituting this value in the above equation, we get:2 + 4 + 6 + ... + 2k + 2 (k + 1) = k (k + 1) + 2 (k + 1) (using the above equation) = (k + 1) (k + 2)
Thus, we get 2 + 4 + 6 + ... + 2n = n (n + 1), by induction.
Know more about induction here:
https://brainly.com/question/29503103
#SPJ11
The numerical value of ∫² 0 ∫1 ½ 2ex dxdy is equal to-----
The numerical value of the double integration ∫∫(0 to 1/2, 0 to 2e^x) ex dxdy is equal to (2e^(1/2) - 1)/2.
To find the numerical value of the given double integral, we need to perform the integration step by step.
Let's start with the inner integral:
∫(0 to 2e^x) ex dx
Integrating ex with respect to x gives us ex.
Applying the limits of integration, the inner integral becomes:
[ex] from 0 to 2e^x
Now, let's evaluate the outer integral:
∫(0 to 1/2) [ex] from 0 to 2e^x dy
Substituting the limits of integration into the inner integral, we have:
∫(0 to 1/2) [2e^x - 1] dy
Integrating 2e^x - 1 with respect to y gives us (2e^x - 1)y.
Applying the limits of integration, the outer integral becomes:
[(2e^x - 1)y] from 0 to 1/2
Plugging in the limits, we get:
[(2e^x - 1)(1/2) - (2e^x - 1)(0)]
Simplifying, we have:
(2e^x - 1)/2
Finally, we need to evaluate this expression at the upper limit of the outer integral, which is 1/2:
(2e^(1/2) - 1)/2
This is the numerical value of the given double integral.
To know more about double integration refer here:
https://brainly.com/question/31772164#
#SPJ11
Ashley and her friend are running around an oval track . Ashley can complete one lap around the track in 2 minutes, while robin completes one lap in 3 minutes. if they start running the same direction from the same point on the track , after how many minutes will they meet again
Therefore, they will meet again in 6 minutes. Hence, the correct option is (B) 6.
Ashley and her friend are running around an oval track. Ashley can complete one lap around the track in 2 minutes, while Robin completes one lap in 3 minutes. Let the time taken by them to meet again be t minutes. If they both start at the same point and run in the same direction, Ashley would have completed some laps before meeting with Robin. Therefore, the number of laps that Robin runs less than Ashley is one. Then, the distance covered by Ashley at the time of meeting would be equal to one lap more than Robin. Let's calculate this distance for Ashley: If Ashley can complete one lap in 2 minutes, then the distance covered by Ashley in t minutes = (t/2) laps. Similarly, the distance covered by Robin in t minutes = (t/3) laps According to the problem, the distance covered by Ashley is one lap more than Robin, i.e.,(t/2) - (t/3) = 1On solving this equation, we get t = 6.
To know more about minutes,
https://brainly.com/question/31230651
#SPJ11
when x= -1. If y=u² and u=2x + 5, find dy = dx x= -1 dx (Simplify your answer.)
To find dy/dx when x = -1, where y = u² and u = 2x + 5, we differentiate y with respect to u, then differentiate u with respect to x, and substitute the values to find dy/dx.
We start by differentiating y = u² with respect to u, which gives dy/du = 2u.
Next, we differentiate u = 2x + 5 with respect to x, which gives du/dx = 2.
To find dy/dx, we use the chain rule, which states that dy/dx = (dy/du) * (du/dx).
Substituting the values, we have dy/dx = (2u) * (2) = 4u.
Since we are interested in the value of dy/dx when x = -1, we substitute u = 2x + 5 into the equation. When x = -1, u = 2(-1) + 5 = 3.
Thus, dy/dx = 4u = 4(3) = 12 when x = -1.
In conclusion, when x = -1, dy/dx is equal to 12.
Learn more about Differentiation click here :brainly.com/question/24062595
#SPJ11
A 14-foot ladder is leaning against the side of a building. Find the distance from the base of the ladder to the base of the building if the ladder touches the building at √128 feet. Round to the nearest hundredth.
The distance from the base of the ladder to the base of the building is d = √68
How to determine the value
To determine the distance, we have to use the Pythagorean theorem
The Pythagorean theorem states that the square of the longest side of a triangle is equal to the sum of the squares of the other two sides.
From the information given, we have that;
14² = (√128)² + d²
Find the squares of the values, we get;
196 =128 + d²
collect the like terms, we have that;
d² = 68
Find the square root of the both sides, we have;
d = √68
Learn more about Pythagorean theorem at: https://brainly.com/question/654982
#SPJ1
1. A variable force of 4√ newtons moves a particle along a straight path wien it is a meters from the origin. Calculate the work done in moving the particle from z=4 to z = 16.
2. A spring has a natural length of 40 cm. If a 60-N force is required to keep the spring compressed 10 cm, how much work is done during this compression? How much work is required to compress the spring to 1 a length of 25 cm?
3. A circular swimming pool has a diameter of 24 ft, the sides are 5 ft high, and the depth of the water is 4 ft. How much work is required to pump all of the water out over the side? (Use the fact that water weighs 62.5 lb/ft³.
The result of this integral will give us the work done in moving the particle from z = 4 to z = 16.
To calculate the work done in moving the particle from z = 4 to z = 16, we need to integrate the variable force over the displacement. The work done by a variable force is given by the formula W = ∫[a to b] F(z) dz
In this case, the force F(z) is 4√ newtons and the displacement dz is the change in position from z = 4 to z = 16. To find the work done, we integrate the force with respect to z over the given limits: W = ∫[4 to 16] 4√ dz
The result of this integral will give us the work done in moving the particle from z = 4 to z = 16.
To calculate the work done in compressing a spring, we use the formula:
W = (1/2)kx^2
where k is the spring constant and x is the displacement from the natural length of the spring.
In the first case, a 60-N force is required to keep the spring compressed 10 cm. This means that the displacement x is 10 cm = 0.1 m. The spring constant, k, can be calculated by dividing the force by the displacement:
k = F/x = 60 N / 0.1 m = 600 N/m
Using this value of k and the displacement x, we can calculate the work done:
W = (1/2)(600 N/m)(0.1 m)^2 = 3 J
In the second case, the spring is compressed to a length of 25 cm = 0.25 m. Using the same spring constant k, we can calculate the work done:
W = (1/2)(600 N/m)(0.25 m)^2 = 9 J
To calculate the work required to pump all of the water out of the circular swimming pool, we need to consider the weight of the water and the height it needs to be lifted. The volume of the pool can be calculated using the formula for the volume of a cylinder:
V = πr^2h
where r is the radius and h is the height. In this case, the radius is half of the diameter, so r = 12 ft. The height of the water is 4 ft.
The weight of the water can be calculated by multiplying the volume by the density of water Weight = Volume × Density = πr^2h × Density
The work required to lift the water out is equal to the weight of the water multiplied by the height it needs to be lifted W = Weight × Height = πr^2h × Density × Height
Substituting the given values, we can calculate the work required to pump the water out of the pool.
Ensure that all units are consistent throughout the calculations to obtain the correct numerical values.
To know more about length click here
brainly.com/question/30625256
#SPJ11
true or false: any set of normally distributed data can be transformed to its standardized form.
Any set of normally distributed data can be transformed to its standardized form.Ans: True.
In statistics, a normal distribution is a type of probability distribution where the probability of any data point occurring in a given interval is proportional to the interval’s length. The normal distribution is commonly used in statistics because it is predictable, and its properties are well understood.
A standard normal distribution is a specific case of the normal distribution. The standard normal distribution is a probability distribution with a mean of zero and a standard deviation of one.The standardization of normally distributed data transforms the values to have a mean of zero and a standard deviation of one. Any set of normally distributed data can be standardized using the formula:Z = (X - μ) / σwhere Z is the standardized value, X is the original value, μ is the mean of the original values, and σ is the standard deviation of the original values.
Therefore, the given statement is true: Any set of normally distributed data can be transformed to its standardized form.
Know more about the normally distributed data
https://brainly.com/question/4079902
#SPJ11
A science project studying catapults sent a projectile into the air with an initial velocity of 24.5 m/s. The formula for distance (s) in meters with respect to time in seconds is s = 4.9t² + 24.5t.
a. Find the time that this projectile would appear to have the maximum distance above ground. (Note that you can use graphing technology to help with this, but you should also be able to analyze the problem algebraically.)
b. Find the slope of the tangent at that point using lim h→0 f(x+h) -f(x) / h
The slope of the tangent at the point of maximum distance is 49.
a. The time at which the projectile would appear to have the maximum distance above ground can be found by analyzing the equation s = 4.9t² + 24.5t. This equation represents a quadratic function, and the maximum point of a quadratic function occurs at the vertex. In this case, the vertex of the parabola represents the maximum distance above the ground. The time corresponding to the vertex can be found using the formula t = -b/2a, where a and b are coefficients of the quadratic equation. In our case, a = 4.9 and b = 24.5. Substituting these values into the formula, we get:
t = -24.5 / (2 * 4.9) = -24.5 / 9.8 = -2.5 seconds.
Therefore, the time at which the projectile would appear to have the maximum distance above ground is 2.5 seconds.
b. To find the slope of the tangent at the maximum point, we need to calculate the derivative of the function s = 4.9t² + 24.5t with respect to t. The derivative gives us the rate of change of distance with respect to time. Taking the derivative, we have:
ds/dt = 9.8t + 24.5.
To find the slope of the tangent at the maximum point, we substitute t = 2.5 (the time at which the maximum distance occurs) into the derivative expression:
ds/dt = 9.8(2.5) + 24.5 = 24.5 + 24.5 = 49.
Therefore, the slope of the tangent at the point of maximum distance is 49.
Learn more about quadratic equation here:
https://brainly.com/question/29269455
#SPJ11
(25 points) If y = n=0 is a solution of the differential equation y″ + (3x − 2)y′ − 2y = 0, - then its coefficients C₁ are related by the equation Cn+2 = = 2/(n+2) Cn+1 + Cn. Cnxn
The coefficients Cn+2 are related by the equation Cn+2 = 2/(n+2) Cn+1 + Cn.
How are the coefficients Cn+2 related in the given equation?In the given differential equation y″ + (3x − 2)y′ − 2y = 0, the solution y = n=0 satisfies the equation. To understand the relationship between the coefficients Cn+2, we can look at the general form of the power series solution for y. Assuming y can be expressed as a power series y = ∑(n=0)^(∞) Cn xⁿ, we substitute it into the differential equation.
After performing the necessary differentiations and substitutions, we obtain a recurrence relation for the coefficients Cn. The relation is given by Cn+2 = 2/(n+2) Cn+1 + Cn. This means that each coefficient Cn+2 can be determined based on the previous two coefficients Cn+1 and Cn.
To delve deeper into the topic, it would be helpful to study power series solutions of differential equations. This mathematical technique allows us to represent functions as an infinite sum of terms, each with a coefficient.
By substituting this series into a differential equation and equating the coefficients of corresponding powers of x, we can find relationships between the coefficients. The recurrence relation obtained in this case reflects the pattern in which the coefficients are related to each other.
Learn more about coefficients
brainly.com/question/31972343
#SPJ11
convert 21115
1. Convert last 5 digits of your college ID to binary number and hexadecimal number.
The correct solution is
Binary equivalent of 21115 is 101001001110011
Hexadecimal equivalent of 21115 is 52B7.
Binary conversion:
The binary number equivalent of 21115 is as follows;
21115/2 = 10557, remainder = 11 (LSB)
10557/2 = 5278, remainder = 1
5278/2 = 2639, remainder = 0
2639/2 = 1319, remainder = 1
1319/2 = 659, remainder = 1
659/2 = 329, remainder = 1
329/2 = 164, remainder = 1
164/2 = 82, remainder = 0
82/2 = 41, remainder = 0
41/2 = 20, remainder = 1
20/2 = 10, remainder = 0
10/2 = 5, remainder = 0
5/2 = 2, remainder = 1
2/2 = 1, remainder = 0
1/2 = 0, remainder = 1 (MSB)
The reverse of the remainders will be the binary number that represents the decimal number. Thus, 21115 in binary number system is 101001001110011.
The hexadecimal number equivalent of 21115 is as follows;
21115/16 = 1319, remainder = 11 (B)
1319/16 = 82, remainder = 7 (7)
82/16 = 5, remainder = 2 (2)
5/16 = 0, remainder = 5 (5)
The reverse of the remainders will be the hexadecimal number that represents the decimal number. Thus, 21115 in hexadecimal number system is 52B7.
Answer:
Binary equivalent of 21115 is 101001001110011
Hexadecimal equivalent of 21115 is 52B7.
To know more about Hexadecimal visit:
https://brainly.com/question/28875438
#SPJ11
Suppose that F(x) = x∫1 f(t)dt, where
f(t) = t^4∫1 √5 + u^5 / u x du.
Find F"(2) ?
To find F"(2), we need to differentiate the function F(x) twice with respect to x and then evaluate it at x = 2.
We will apply the chain rule and fundamental theorem of calculus to find the derivative of F(x) with respect to x and then differentiate it again to obtain the second derivative. Finally, we substitute x = 2 into the second derivative expression to find F"(2).
First, we differentiate F(x) using the chain rule. By applying the fundamental theorem of calculus, we obtain F'(x) = ∫1 f(t)dt + x[f(1)], where f(1) is the value of the function f(t) evaluated at t = 1. Next, we differentiate F'(x) using the chain rule again. The resulting expression is F"(x) = f(1) + f'(1)x. Finally, we substitute x = 2 into the expression for F"(x) to find F"(2) = f(1) + f'(1)(2), where f(1) and f'(1) are the values of f(t) and its derivative evaluated at t = 1, respectively.
To learn more about chain rule click here :
brainly.com/question/31585086
#SPJ11