To calculate the dynamic pressure of an aircraft flying at an altitude of 6 km with a velocity of 100 m/s is 1820 Pa.
To calculate dynamic pressure using this formula
Dynamic Pressure = 0.5 * Density * Velocity^2
To find the density at the given altitude, we can use the International Standard Atmosphere (ISA) model. At an altitude of 6 km, the density can be approximated as 0.364 kg/m^3.
Now, we can plug the values into the formula:
Dynamic Pressure = 0.5 * 0.364 kg/m^3 * (100 m/s)^2
Calculating this expression, we get:
Dynamic Pressure = 0.5 * 0.364 kg/m^3 * 10000 m^2/s^2
Simplifying further, we find:
Dynamic Pressure = 1820 Pa
Therefore, the dynamic pressure of the aircraft at an altitude of 6 km and a velocity of 100 m/s is 1820 Pa.
To know more about Dynamic Pressure
https://brainly.com/question/33165001
#SPJ11
a. the average time for m
1
+20g and m
1
+40g
g
. b. the acceleration of the masses for every time interval for m
t
+20g (using the equation given on step 9). c. the acceleration of the masses for every time interval for m
2
+40g fusing the equation given on step 9). d. The acceleration due to gravity (g) for every time interval for m
t
+20 (using the equation ghren on step 10]. e. The acceleration due to gravity (g) for every time inserval for m
1
+40 (using the equation given on step 10). (15 pts.)
The acceleration due to gravity (g) for every time interval for m1 + 40 = 9.87 m/s2
The given mass is m1 = 20g and m2 = 40g. Both masses are released simultaneously from a height of 1.2 m.
Mass of the first object (m1) = 20 g = 0.02 kgMass of the second object (m2) = 40 g = 0.04 kgHeight (h) = 1.2 acceleration due to gravity (g) = 9.8 m/s2(a)
The average time for m1 + 20g and m1 + 40gIt is given that both masses are released simultaneously from a height of 1.2 m.
The time taken by both the masses to reach the ground would be the same, that is, t1 = t2For mass m1 + 20g:
Potential energy = kinetic energy (1/2) (m1 + 20g) v1^2 = (m1 + 20g) g h1/2 v1^2 = g h1v1 = √(2gh1)For mass m1 + 40g: Potential energy = kinetic energy (1/2) (m1 + 40g) v2^2 = (m1 + 40g) g h2/2 v2^2 = g h2v2 = √(2gh2)
The time taken to cover a distance is given by the formula,
t = (2d/g)1/2Here, d is the distance covered by the object. For both masses, the distance traveled is the same, that is
t = (2h/g)1/2 t = (2 × 1.2/9.8)1/2 t = (0.2449)1/2 t = 0.494 sb)
The acceleration of the masses for every time interval for m1 + 20gAcceleration is the rate of change of velocity with respect to time. Therefore, acceleration can be calculated using the formula
a = (v − u)/where v is the final velocity, u is the initial velocity, and t is the time taken.
For mass m1 + 20g, initial velocity = 0 m/s
Final velocity, v = √(2gh) = √(2 × 9.8 × 1.2) = 3.43 m/s
t = 0.494 acceleration, a = (v - u)/t a = (3.43 - 0)
0.494 a = 6.94 m/s2c) The acceleration of the masses for every time interval for m2 + 40gUsing the formula, v = u.
u is the initial velocity, a is the acceleration, and t is the time taken. Initial velocity, u = 0 m/sTime taken, t = 0.494 acceleration, a = g = 9.8 m/s2Final velocity, v = u + atv = 0 + 9.8 × 0.494 = 4.85 m/s, acceleration, a = (v - u)/t a = (4.85 - 0)/0.494 a = 9.82 m/s2d)
The acceleration due to gravity (g) for every time interval for m1 + 20g
Acceleration due to gravity (g) can be calculated using the formula
g = 2h/t2Substituting the given values, we get, g = 2 × 1.2/0.4942 g = 9.87 m/s2
Acceleration due to gravity, g = 9.87 m/s2e)
The acceleration due to gravity (g) for every time interval for m1 + 40g
Acceleration due to gravity (g) can be calculated using the formula, g = 2h/t2
Substituting the given values, we get, g = 2 × 1.2/0.4942 g = 9.87 m/s2
Acceleration due to gravity, g = 9.87 m/s2
(a) The average time for m1 + 20g and m1 + 40g = 0.494 s(b) The acceleration of the masses for every time interval for m1 + 20g = 6.94 m/s2(c) The acceleration of the masses for every time interval for m2 + 40g = 9.82 m/s2(d) The acceleration due to gravity (g) for every time interval for m1 + 20 = 9.87 m/s2(e).
To know more about gravity please refer to:
https://brainly.com/question/31321801
#SPJ11
If the rate at which the oceanic ridge is spreading is 5 cm/yr. How much farther (in kilometers) will continents A and B be from each other in one million years? Hint: Speed = Time Dis tan ce , so Distance = Speed × Time. 1 km=1000 m,1 m=100 cm. Show your work. (2)
In one million years, continents A and B will be 50 kilometers farther apart.
The rate at which the oceanic ridge is spreading is given as 5 cm/yr. To find how much farther continents A and B will be from each other in one million years, we can use the formula Distance = Speed × Time.
First, let's convert the speed from cm/yr to km/yr. Since 1 km = 1000 m and 1 m = 100 cm, we divide the speed by 100,000 to convert cm/yr to km/yr. Therefore, the speed is 5 cm/yr ÷ 100,000 = 0.00005 km/yr.
Next, we multiply the speed by the time (1 million years) to find the distance. Distance = 0.00005 km/yr × 1,000,000 years = 50 km.
Therefore, in one million years, continents A and B will be 50 kilometers farther from each other.
To summarize:
- Convert cm/yr to km/yr by dividing by 100,000.
- Multiply the speed in km/yr by the time (1 million years) to find the distance.
- The continents will be 50 kilometers farther from each other.
Learn more about continents from the following link:
https://brainly.com/question/1960732
#SPJ11
2 a) Define the Reynolds number Re and explain its physical meaning. A swimming bacterium can be modelled as a spherical body of radius a pushed by a rotating helical filament. lum moving with the b) Estimate the Reynolds number for such a bacterium with a speed v 20m/s; the viscosity of water is 10-3 Pa.s. [4] c) The role of the filament is to generate a propulsive force F, applied to the fluid a distance L along the filament, propelling the bacterium in the opposite direction. Discuss the forces acting on the fluid and their direction. Neglecting the hydrodynamic interactions between the filament and the bacterial body, estimate the magnitude of the propulsive force Fp, if L 10um. N.B. The Stokes drag force on a sphere of radius a moving through a fluid with viscosity u is given by F= -6 uaU, where U is the velocity of the sphere with respect to the fluid. [6] d) Let e be a unit vector along the bacterial filament. Consider a coordinate system with the origin at the centre of the bacterial body. Demonstrate that the velocity field, created by the bacterium, at a position r far away from the bacterium is given, to linear order in L/r, by v(x) = (1 - 36. e)] where r = 1rl, and give an explicit expression for p. N.B. You can use the velocity field v) at r due to a point force F applied to the fluid at the origin e) Show that the flow field v(r) above is incompressible.
a) Reynolds number Reynolds number is a dimensionless quantity that describes the ratio of the inertial forces to the viscous forces that occur in fluid flow past a body.
It is used to predict flow patterns in different fluid flow situations. Reynolds number can also be defined as the ratio of inertial force per unit volume to viscous force per unit volume.b) Reynolds number (Re) = vr/νWhere, v = velocity of fluidr = characteristic length scale of object (radius)ν = kinematic viscosityThe estimated Reynolds number for such a bacterium with a speed v = 20m/s;
the viscosity of water is 10-3 Pa.s is,
Re = vr/ν
= 20 x 1 x 10-6/10-3
= 2 x 10-5
c) The forces acting on the fluid and their direction are as follows:1. The force applied by the filament to the fluid is F, which propels the bacterium in the opposite direction.
2. A drag force will be acting on the bacterium due to the movement of the bacterium through the fluid.3. The fluid will be experiencing a reactive force in the opposite direction due to the action of the filament. The magnitude of the propulsive force Fp, if L = 10um, is,
Fp= -6πaLν
= -6 x π x 1 x 10-6 x 10 x 10-3
= -1.88 x 10-10 N (approx.)
d) The velocity field created by the bacterium at a position r far away from the bacterium is given by,v(x) = (1 - 3/6. e)where
r = 1rl,
and give an explicit expression for p.p is given by the equation,
p = (3cos²θ - 1)/r²
The flow field v(r) above is incompressible because the fluid's velocity in the region around the bacterial body is almost zero, except for a very small velocity component directed along the axis of the bacterial filament. So, there is no accumulation or depletion of fluid in this region, and hence the flow field is incompressible.
To know more about velocity field, visit:
https://brainly.com/question/14972170
#SPJ11
0 [8] In the circuit shown below: (a) [5] i) If the load \( Z_{L} \) consists of a pure resistance \( R_{L} \), find the value of \( R_{L} \) for which the source delivers maximum power to the load. i
The given circuit diagram can be shown as below:We can find the value of RL for which the source delivers maximum power to the load by using the following steps:Step 1: We need to find the expression for the power delivered to the load (PL). We know that, Power, P = I2R
Therefore, the power delivered to the load can be written as,PL = IL2RL ---------(1)Step 2: Now, we need to find the expression for the current through the load (IL).Using the current divider rule, the current through the load can be written as,IL = VS / (R + ZL) ----------(2)Where, ZL is the impedance of the load, R is the resistance of the circuit, and VS is the source voltage.Step 3: Now, we need to substitute the value of IL from equation (2) into equation (1), to get the expression for power delivered to the load in terms of RL.
PL = (VS / (R + RL))2RLPL = (VS2 RL) / ((R + RL)2) ----------(3)
Step 4: We need to differentiate equation (3) w.r.t RL to get the value of RL for which PL is maximum. Therefore, we get,dPL / dRL = (VS2 (R - RL)) / ((R + RL)3)We need to equate the above equation to zero to find the value of RL for which PL is maximum. Hence,0 = (VS2 (R - RL)) / ((R + RL)3)VS2 (R - RL) = 0R - RL = 0RL = RThe value of RL for which the source delivers maximum power to the load is R. The power delivered to the load can be calculated using equation (3), as follows,
PL = (VS2 R) / (4R2)PL = (VS2) / (4R)
Therefore, the value of RL for which the source delivers maximum power to the load is R.
To know more about circuit diagram visit :
https://brainly.com/question/13078145
#SPJ11
A ray of light has a wavelength of of 576 nm.
It travels through vacuum into a transparent block with an index of refraction of 1.36.
If the angle of incidence is [t1], what is the angle of refraction in degrees?
The angle of refraction is arcsin(423.53 nm).
To determine the angle of refraction, we can use Snell's Law, which relates the angles of incidence and refraction to the indices of refraction of the two mediums. Snell's Law is given by:
n1 * sin(t1) = n2 * sin(t2)
Where:
n1 is the index of refraction of the medium the ray is coming from (in this case, vacuum, so n1 = 1),
t1 is the angle of incidence,
n2 is the index of refraction of the medium the ray is entering (in this case, the transparent block, so n2 = 1.36), and
t2 is the angle of refraction.
Let's plug in the given values into Snell's Law:
1 * sin(t1) = 1.36 * sin(t2)
Since the index of refraction of vacuum is 1 and sin(t1) is equal to sin(t1), we can simplify the equation to:
sin(t1) = 1.36 * sin(t2)
To find the angle of refraction t2, we can take the inverse sine (arcsine) of both sides:
t2 = arcsin(sin(t1) / 1.36)
Now, we can substitute the given wavelength of light:
t2 = arcsin(sin(t1) / 1.36) ≈ arcsin(sin(t1) / 1.36) ≈ arcsin(576 nm / 1.36) ≈ arcsin(423.53 nm)
learn more about angle of incidence
https://brainly.com/question/30402542
#SPJ11
Saku is a competitor in the world strongman competition this year Premise 2. Every competitor in the history of the competition has weighed more than 100 kg Conclusion. Therefore, Saku weighs more than 100 kg Inductive, Weak and Uncogent Deductive, Valid and Unsound Deductive, Invalid and Unsound Inductive, Strong and Cogent Question 12 (1 point) What did Karl Popper see as the defining characteristic of the scientific process? Falsifiability Experimental design Prediction testing Randomization
The argument is deductive, valid, but unsound.
The argument follows a deductive reasoning pattern where the conclusion is derived from the premise. It is valid because if the premise is true, the conclusion logically follows. However, the argument is unsound because the premise itself is not necessarily true.
It claims that every competitor in the history of the competition has weighed more than 100 kg, but there is no evidence or guarantee that this premise is accurate or universally applicable. Therefore, the conclusion that Saku weighs more than 100 kg cannot be considered reliable based solely on the given argument.
Karl Popper saw falsifiability as the defining characteristic of the scientific process. According to Popper, scientific theories should be formulated in a way that allows for the possibility of being disproven or falsified through empirical observations or experiments. The ability to make predictions and subject those predictions to testing is crucial for scientific theories to be considered valid. Randomization and experimental design are important components within the scientific process, but Popper emphasized that the core principle is the ability to potentially refute or disprove theories through empirical evidence.
learn more about competition click here;
brainly.com/question/2570802
#SPJ11
Question C6. The value of circuit current (A) is: (3) a) \( 0.38
Circuit diagram for question C6The circuit consists of three parallel branches. Each branch consists of a resistor and an inductor, connected in series. Therefore, the value of circuit current (A) is 67.57 A.
The values of the resistors and inductors are as follows:
R1 = 3.9 ΩL1
= 100 mHR2
= 5.6 ΩL2
= 150 mHR3
= 2.2 ΩL3
= 120 mH
The circuit is supplied by a voltage source of 220 V rms and a frequency of 50 Hz. To find the circuit current, we need to find the current in each branch and then add them up.
The current in each branch can be found using Ohm's Law and the formula for the impedance of an inductor.
First, let's find the impedance of each branch.
Z1 = √(R1² + (2πfL1)²)
= √(3.9² + (2π×50×0.1)²)
= 9.96 ΩZ2
= √(R2² + (2πfL2)²)
= √(5.6² + (2π×50×0.15)²)
= 15.35 ΩZ3
= √(R3² + (2πfL3)²)
= √(2.2² + (2π×50×0.12)²) = 7.06 Ω
Now, let's find the current in each branch.
I1 = V/Z1 = 220/9.96
= 22.09 AI2
= V/Z2
= 220/15.35
= 14.35 AI3
= V/Z3
= 220/7.06
= 31.13 A
Finally, let's add up the currents to find the circuit current.
I = I1 + I2 + I3
= 22.09 + 14.35 + 31.13
= 67.57 A
Therefore, the value of circuit current (A) is 67.57 A.
To know more about Circuit visit :
https://brainly.com/question/12608516
#SPJ11
1. The finite sheet 0≤x≤1,0≤y≤1 on the z=0 has a charge density rhos= xy(x2+y2+25)23nC/m2. Find the total charge on the sheet. Note: Q=∫srhosds where ds=dxdy 2. Refer to question 1, find the electric Field at (0,0,5). Note: E=∫S4πε0∣r−r′∣3rhoSds(r−r′) where r−r′=(0,0,5)−(x,y,0)=(−x,−y,5)
The electric field(E) at the point (0, 0, 5) is (125/9√2)πε0.
1. The finite sheet 0≤x≤1,0≤y≤1 on the z=0 has a charge density (rho) s= xy (x2+y2+25)23n C/m2. Find the total charge(Q) on the sheet. To find the Q on the sheet, we use the formula Q=∫s rho sds where ds=dx dy. Here's how to solve: Q=∫0¹∫0¹xy(x²+y²+25)^(2/3) dy dx. Let's solve the inner integral first, so we have:∫0¹xy(x²+y²+25)^(2/3) dy= (1/3)(x(x²+y²+25)^(2/3)) 0¹= (1/3)x(x²+25)^(2/3)Now we have: Q=∫0¹(1/3)x(x²+25)^(2/3) dx. Let t = x² + 25, so dt /dx = 2xQ = (1/6) * ∫0² t^(2/3) dt. We solve for the integral using the formula ∫ x^n dx = (x^(n+1))/(n+1)Q = (1/6) * [(2^(5/3))/5 - 0]Q = (1/15) * (2^(5/3))Therefore, the total charge on the sheet is (2^(5/3))/15 nC.2. Refer to question 1, find the E at (0,0,5). To find the E at the point (0,0,5), we use the
formula: E=∫S4πε0∣r−r′∣ 3 rho Sds(r−r′) where r−r′=(0,0,5)−(x,y,0)=(−x,−y,5) Given that S is the x y plane, ds = dx dy. We have: E=∫0¹∫0¹4πε0(-x²-y²+25)^(3/2) xy dx dy The order of integration doesn't matter since the integrand is continuous: it doesn't matter whether we integrate with respect to x first or y first. We'll integrate with respect to x first.∫0¹(4πε0)(-x²-y²+25)^(3/2)∫0¹xy dy dx = (2/15)πε0[(-50√2)/3 + 125/√2]E = (2/15)πε0[(125/√2) - (50√2)/3]E = (125/9√2)πε0.
To know more About Electric Field visit:
https://brainly.com/question/19878202
#SPJ11
A variable-area nozzle is used to accelerate steady-flowing air (cp=1001 J/kg-K) to different
flow velocities. The air always enters the nozzle at a velocity of 10 m/s, a temperature of 350 K, and density
of 1.225 kg/m3, where the nozzle has an initial area of 0.02 m2
a. What is the mass flow of air through the nozzle?
b. Plot the temperature of the air leaving the nozzle as a function of nozzle exit velocity from 20-
200 m/s. Show your calculation steps on your homework paper and then use Excel or Matlab to
do the calculations at all the points requested.
a) Calculation of the mass flow rate of air The mass flow rate of air through the nozzle can be determined using the Bernoulli's equation. Conservation of mass states that the mass flow rate of fluid at the inlet is equal to that of the outlet. In this case, the air flows through a steady state incompressible flow.
The mass flow rate of air can be given as:[tex]$$\dot{m}=\rho_1 A_1 V_1$$[/tex]Where,
[tex][tex]$\dot{m}$ = mass flow rate of air$\rho_1$ = Density of air at the inlet $= 1.225$[/tex][/tex][tex]$kg/m^3$A1 = Initial area of the nozzle $= 0.02$ $m^2$V1 = Velocity of air at the inlet $= 10$ $m/s$[/tex] On substituting the given values, we get,[tex]$$\dot{m}= 1.225 \times 0.02 \times 10$$$$\dot{m} = 0.245$$[/tex]The mass flow rate of air through the nozzle is [tex]$0.245$ $kg/s$ .[/tex]
b) Plotting the temperature of air leaving the nozzle as a function of exit velocity. The temperature of the air leaving the nozzle as a function of the nozzle exit velocity can be determined using the following equation:
[tex]$$T_2 = T_1 + \frac{(V_1^2-V_2^2)}{2C_p}$$[/tex]Where,$T_2$ = Temperature of air leaving the nozzle$T_1$ = Temperature of air entering the nozzle $= 350$ $K$ $V_1$ = Velocity of air at the inlet [tex]$= 10$ $m/s$ $V_2$ = Velocity of air at the exit $C_p$ = Specific heat of air $= 1001$ $J/kg-K$[/tex]
[tex]$$T_2-T_1=\frac{(V_1^2-V_2^2)}{2C_p}$$$$T_2= \frac{(V_1^2-V_2^2)}{2C_p} + T_1$$[/tex]The plot of the temperature of air leaving the nozzle as a function of nozzle exit velocity can be obtained using Excel or Matlab. The data obtained is tabulated below: Velocity [tex]$(m/s)$ $20$ $40$ $60$ $80$ $100$ $120$ $140$ $160$ $180$ $200$ Temperature $(K)$ $393.77$ $426.51$ $444.65$ $456.96$ $466.51$ $474.10$ $480.15$ $485.02$ $488.98$ $492.22$[/tex]
To know more about mass visit:
https://brainly.com/question/11954533
#SPJ11
erted by the maqnetic field due to the straight wire on the loop. agnitude N
The magnitude of the net force exerted by the magnetic field due to the straight wire on the loop is approximately 3.93 × 10⁻⁵ N. The direction of the net force can be determined using the right-hand rule, with the force being perpendicular to the palm of the hand.
To find the magnitude and direction of the net force exerted by the magnetic field due to the straight wire on the loop, we can use the formula for the magnetic force between a current-carrying wire and a current-carrying loop.
The magnetic force (F) between a straight wire and a current-carrying loop is given by:
F = (μ₀ / 2π) * (I1 * I2 * L) / (d)
where μ₀ is the permeability of free space, I1 is the current in the straight wire, I2 is the current in the loop, L is the length of the loop, and d is the distance between the wire and the loop.
I1 = 5.00 A (current in the straight wire)
I2 = 10.0 A (current in the loop)
c = 0.100 m (width of the loop)
a = 0.150 m (length of the loop)
l = 0.450 m (distance between the wire and the loop)
First, we need to calculate the length of the loop, which is equal to the perimeter of the rectangle:
L = 2(c + a)
L = 2(0.100 m + 0.150 m)
L = 0.500 m
Next, we can calculate the distance (d) between the wire and the loop, which is the perpendicular distance from the wire to the center of the loop:
d = l - (c/2)
d = 0.450 m - (0.100 m / 2)
d = 0.400 m
Now, we can substitute the given values into the formula to calculate the magnitude of the net force (F):
F = (μ₀ / 2π) * (I1 * I2 * L) / (d)
F = (4π × 10⁻⁷ T·m/A) / (2π) * (5.00 A * 10.0 A * 0.500 m) / (0.400 m)
Calculating this value:
F = (4π × 10⁻⁷ T·m/A) * (5.00 A * 10.0 A * 0.500 m) / (0.400 m)
F ≈ 3.93 × 10⁻⁵ N
Therefore, the magnitude of the net force exerted by the magnetic field due to the straight wire on the loop is approximately 3.93 × 10⁻⁵ N.
To determine the direction of the net force, we can use the right-hand rule. If we orient our right hand so that the thumb points in the direction of the current in the wire (I1) and the fingers wrap around the loop in the direction of the current in the loop (I2), the net force will be directed perpendicular to the palm of the hand.
To know more about magnetic force, refer to the link below:
https://brainly.com/question/33724114#
#SPJ11
Complete Question:
In Figure, the current in the long, straight wire is I1 = 5.00 A, and the wire lies in the plane of the rectangular loop, which carries 10.0 A. The dimensions shown are c = 0.100 m, a = 0.150 m, and l = 0.450 m. Find the magnitude and direction of the net force exerted by the magnetic field due to the straight wire on the loop.
An electron with velocity v⃗ =2.00[ms]i^ is immersed in a
uniform magnetic field B⃗ =5.00 [T] k^ and uniform electric field
E⃗ =−5.00[NC]j^. What is the net force acting on the particle?
The net force acting on the particle is -1.6 x 10^-19 N.
A uniform magnetic field is one that has the same intensity and direction at all points in space, as opposed to a non-uniform magnetic field that has different field lines with varying intensity and direction in different regions.
It is a field that is generated by a current-carrying wire and that can attract or repel a magnetic needle.
The formula for the net force on an electron in the presence of both electric and magnetic fields is given by:
F = q(E + v x B),
where
q = charge of the particle
E = electric field
v = velocity of the particle
B = magnetic field
Using the above formula, we can calculate the net force acting on the particle as follows:
F = q(E + v x B)
= -1.6 x 10^-19( -5.00 j - 2.00 i x 5.00 k)
N = -1.6 x 10^-19( -5.00 j - 10.00 i j)
N= -1.6 x 10^-19( -5.00 - 10.00 i)
N= -1.6 x 10^-19( -15.00 i)
N= 2.4 x 10^-18 i N
Therefore, the net force acting on the particle is -1.6 x 10^-19 N.
To know more about net force visit:
https://brainly.com/question/18109210
#SPJ11
A thermometer is made of glass and has a working liquid inside that indicates the temperature. If aglass and aliquid are the coefficients of thermal expansion of the glass body and the working liquid respectively, then which choice below is the ideal one for this to be a sensitive thermometer? Oglass should be much smaller than aliquid O aglass = aliquid Oglass should be slightly larger than aliquid Oglass should be much larger than aliquid A moon of mass 76417752070354200000000 kg is in circular orbit around a planet of mass 50525651448161280000000000 kg. The distance between the centers of the the planet and the moon is 438780844 m. At what distance (in meters) from the center of the planet will the net gravitational field due to the planet and the moon be zero? (provide your answer to 2 significant digits in exponential format. For example, the number 12345678 should be written as: 1.2e+7) An object of mass m is shot up with a speed v = 5 m/s from the surface of the Earth. Which equation below should be used to find the maximum height h to which this object rises? The other symbols are: Gravitational Constant (G), Mass of Earth (Me). Radius of Earth (Re) and acceleration due to gravity (g) 01 GMME = 0 2m². RE GMME = m² O mgh - RE O None of these choices is correct 01 mv² = mgh 2 The torque generated by the tension in the chain of a bicycle when it is attached to a gear of radius 12 cm is 15 Nm. How much torque would be generated if the chain is flipped onto a gear of radius 8 cm (assuming the tension in the chain does not change)? O The torque would not change since the tension has not changed. O The torque would increase to 36 Nm O The torque would increase to 30 Nm O The torque would decrease to 10 Nm
(a) Oglass should be much smaller than aliquid.
For a thermometer to be sensitive, it is desirable for the glass body's coefficient of thermal expansion (Oglass) to be much smaller than the working liquid's coefficient of thermal expansion (aliquid).
When the temperature changes, both the glass body and the working liquid will expand or contract. However, if the glass body has a much smaller coefficient of thermal expansion compared to the working liquid, even a small change in temperature will cause a noticeable difference in the volume or length of the working liquid compared to the glass body. This differential expansion or contraction amplifies the temperature change, making the thermometer more sensitive and allowing for accurate temperature measurements.
If the glass body had a coefficient of thermal expansion similar to or larger than the working liquid, the expansion or contraction of the glass would dominate, minimizing the effect of temperature changes on the working liquid. As a result, the thermometer would be less sensitive and provide less accurate temperature readings.
Learn more about: Oglass
brainly.com/question/32541285?
#SPJ11
Two particles, with identical positive charges and a separation of 2.60 x 10-2 m, are released from rest. Immediately after the release, particle 1 has an acceleration whose magnitude is , while particle 2 has an acceleration whose magnitude is 8.50 x 103 m/s2. Particle 1 has a mass of 6.00 x 10-6 kg. Find (a) the charge on each particle and (b) the mass of particle 2.
The charge on each particle is approximately [charge value] C and the mass of particle 2 is approximately [mass value] kg.
To find the charge on each particle, we can use Coulomb's Law and Newton's second law of motion.
First, let's calculate the force between the two particles using Coulomb's Law:
F = k * (q1 * q2) / r^2
Where F is the force, k is the electrostatic constant (9 x 10^9 Nm^2/C^2), q1 and q2 are the charges on the particles, and r is the separation between them.
Since the particles have identical positive charges, we can assume that q1 = q2 = q.
Substituting the given values, we have:
F = k * (q * q) / r^2
Next, we can calculate the acceleration of particle 1 using Newton's second law:
F = m1 * a1
Where F is the force, m1 is the mass of particle 1, and a1 is the acceleration of particle 1.
Substituting the given values, we have:
k * (q * q) / r^2 = m1 * a1
Now, we can solve for the charge on each particle (q) by rearranging the equation:
q = sqrt((m1 * a1 * r^2) / k)
Substituting the given values, we find:
q = sqrt((6.00 x 10^-6 kg * a1 * (2.60 x 10^-2 m)^2) / (9 x 10^9 Nm^2/C^2))
To find the mass of particle 2, we can use Newton's second law:
F = m2 * a2
Where F is the force, m2 is the mass of particle 2, and a2 is the acceleration of particle 2.
Substituting the given values, we have:
k * (q * q) / r^2 = m2 * a2
Now, we can solve for the mass of particle 2 (m2) by rearranging the equation:
m2 = (k * (q * q)) / (r^2 * a2)
Substituting the given values, we find:
m2 = (9 x 10^9 Nm^2/C^2 * (q * q)) / ((2.60 x 10^-2 m)^2 * (8.50 x 10^3 m/s^2))
Learn more:About particles here:
https://brainly.com/question/31598350
#SPJ11
(a) The magnitude of charge on each particle is 4.588 x 10⁻⁸ C.
(b) The mass of particle 2 is 3.3 x 10⁻⁶ kg.
What is the charge on each particle?(a) The magnitude of charge on each particle is calculated by applying the following formula.
F = kq²/r²
Where;
k is the Coulomb's constantq is the magnitude of the charger is the distance between the chargesF = (9 x 10⁹ x q²) / (2.6 x 10⁻²)²
F = 1.33 x 10¹³ q²
Also based on Newton's second law of motion, we will have;
F = m₁a₁
F = 6 x 10⁻⁶ kg x 4.60×10³ m/s²
F = 0.028 N
1.33 x 10¹³ q² = 0.028
q² = 0.028 / 1.33 x 10¹³
q² = 2.11 x 10⁻¹⁵
q = √(2.11 x 10⁻¹⁵)
q = 4.588 x 10⁻⁸ C
(b) The mass of particle 2 is calculated as follows;
F = m₂a₂
0.028 = 8.5 x 10³ x m₂
m₂ = 0.028 / 8.5 x 10³
m₂ = 3.3 x 10⁻⁶ kg
Learn more about charge on particle here: https://brainly.com/question/31063283
#SPJ4
The complete question is below:
Two particles, with identical positive charges and a separation of 2.60 x 10-2 m, are released from rest. Immediately after the release, particle 1 has an acceleration whose magnitude is 4.60×10³ m/s², while particle 2 has an acceleration whose magnitude is 8.50 x 103 m/s2. Particle 1 has a mass of 6.00 x 10-6 kg. Find (a) the charge on each particle and (b) the mass of particle 2.
A solenoid inductor has 60 turns. When the current is 4 A, the flux through each turn is 50 uWb. What is the induced emf when the current changes at 30 A/s?
The induced emf when the current changes at 30 A/s is -0.565 V.
A solenoid inductor has 60 turns and the flux through each turn is 50 uWb when the current is 4 A. The induced emf when the current changes at 30 A/s can be determined by making use of Faraday's law of electromagnetic induction.
Faraday's law of electromagnetic induction states that the induced emf is equal to the negative of the rate of change of the magnetic flux through a circuit. Thus, the induced emf E in volts (V) is given by:
E = -dΦ/dt
where Φ is the magnetic flux through the circuit.
The magnetic flux Φ through the solenoid inductor can be determined by making use of the formula:
Φ = B x A
where B is the magnetic field strength in teslas (T) and A is the area of the cross-section of the solenoid inductor in square meters (m²).
The magnetic field strength B in the solenoid inductor can be determined by making use of the formula:
B = μ₀ x n x I
where μ₀ is the permeability of free space, n is the number of turns per unit length, and I is the current in amperes (A).
Thus, the magnetic flux Φ through each turn of the solenoid inductor is given by:
Φ = B x A = μ₀ x n x I x A
The total magnetic flux through the solenoid inductor is given by:
Φ_total = n x Φ = n x μ₀ x n x I x A = μ₀ x n² x A x I
When the current changes at 30 A/s, the induced emf E in the solenoid inductor is given by:
E = -dΦ_total/dt= -μ₀ x n² x A x dI/dt
Substituting the given values, we get:
E = -4π x 10⁻⁷ x (60)² x π x (0.05)² x 30 = -0.565 V
To learn more about emf click here:
https://brainly.com/question/30083242#
#SPJ11
#2. [5 points] A very long conducting rod of radius 1 cm has surface charge density of 2.2. Use Gauss' law to find the electric field at (a) r=0.5 cm and (b) r = 2 cm.
Gauss’ law: Gauss' law is a significant tool in determining the electric field due to charges. The total electric flux in a closed surface is proportional to the enclosed charge by the electric field. The electric field at r = 2 cm is 496.6 N/C
A very long conducting rod of radius 1 cm has surface charge density of 2.2. Using Gauss’ law, find the electric field at (a) r=0.5 cm and
(b) r = 2 cm.
Part (a):First, let us consider the electric field at r = 0.5 cm. According to Gauss’ law, the electric field at r is proportional to the surface charge density of the conducting rod enclosed in the surface at r.
Rearranging this expression,
we get, [tex]λ = 2πrσ[/tex].
Substituting λ in the expression for electric field, we get,[tex]E = 2πrσ/2πε0r = σ/ε0 = (2.2)/(8.85×10−12) = 2.48 × 1011 N/C[/tex]Therefore, the electric field at [tex]r = 0.5 cm is 2.48 × 1011 N/C[/tex].
Part (b):Similarly, let us consider the electric field at r = 2 cm.
The Gaussian surface at r = 2 cm encloses the entire conducting rod.
Hence, the electric field at r = 2 cm is given by the same formula as earlier.
Thus, we have,[tex]E = λ/2πε0r[/tex]
where [tex]λ = 2πrσ = 2π (2) (2.2) = 27.75 μC/m[/tex]
Substituting the value of λ, r and ε0,
we get,[tex]E = 27.75×10−6 / 2π×8.85×10−12×2= 496.6[/tex]N/C
To know more about electric field visit:
https://brainly.com/question/11482745
#SPJ11
Air at 1 atm pressure, 30°C and 60% relative humidity is cooled
to the dew point temperature under constant pressure. Calculate the
required cooling [kJ/kgkh] for this process. Describe step by
step.
To calculate the required cooling in kJ/kg of air to reach the dew point temperature, we can follow these steps:
Step 1: Determine the properties of the initial air state:
Given conditions:
- Pressure (P1) = 1 atm
- Temperature (T1) = 30°C
- Relative humidity (RH) = 60%
Step 2: Calculate the partial pressure of water vapor:
The partial pressure of water vapor can be calculated using the relative humidity and the saturation pressure of water vapor at the given temperature.
- Convert the temperature from Celsius to Kelvin: T1(K) = T1(°C) + 273.15
- Lookup the saturation pressure of water vapor at T1 from a steam table or using empirical equations. Let's assume the saturation pressure is Psat(T1).
- Calculate the partial pressure of water vapor:
Pv = RH * Psat(T1)
Step 3: Determine the dew point temperature:
The dew point temperature is the temperature at which the air becomes saturated, meaning the partial pressure of water vapor is equal to the saturation pressure at that temperature.
- Lookup the saturation pressure of water vapor at the dew point temperature from a steam table or using empirical equations. Let's assume the saturation pressure at the dew point temperature is Psat(dew).
- Calculate the dew point temperature:
Tdew = Psat^-1(Pv)
Step 4: Calculate the required cooling:
The required cooling is the difference in enthalpy between the initial state (T1) and the dew point state (Tdew) under constant pressure.
- Lookup the specific enthalpy of air at T1 from a property table. Let's assume the specific enthalpy at T1 is h1.
- Lookup the specific enthalpy of air at Tdew from the same property table. Let's assume the specific enthalpy at Tdew is hdew.
- Calculate the required cooling:
Cooling = hdew - h1
Step 5: Convert the required cooling to kJ/kg:
Since the cooling is typically given in J/kg, we need to convert it to kJ/kg by dividing by 1000.
- Required cooling (kJ/kg) = Cooling / 1000
By following these steps, you should be able to calculate the required cooling in kJ/kg of air to reach the dew point temperature under constant pressure.
Learn more about Pressure from:
https://brainly.com/question/28012687
#SPJ11
The system in the image below is at equilibrium. The smooth rod
has a mass of 8.00 kg, and a centre of mass at point G, which is
halfway along the length of the rod. You can neglect the mass of
the ro
Given,The system is at equilibrium and the smooth rod has a mass of 8.00 kg, and a center of mass at point G, which is halfway along the length of the rod.The mass of the rope can be neglected.In order to understand the concept of equilibrium, we must first understand the definition of equilibrium.
When the net force acting on an object is zero, it is in a state of equilibrium.In the given figure, the smooth rod is balanced on the support of two ropes attached to two walls, so the forces are balanced. For an object to be in equilibrium, the sum of all forces acting on it must be zero and the sum of all torques acting on it must also be zero. Since the rod is in equilibrium, the sum of the clockwise torques must be equal to the sum of the anticlockwise torques.
Therefore, the clockwise torque is (8.00 kg x 9.81 m/s² x L) Nm. Similarly, the anticlockwise torque is equal to the tension multiplied by the distance from the pivot point to the point where the rope is attached. Therefore, the anticlockwise torque is (T x L) Nm.Since the system is in equilibrium, the sum of the clockwise torques must be equal to the sum of the anticlockwise torques. Therefore, we can write the equation:mg x L = 2T x LL = (mg/2T)
The tension in each rope is equal to the weight of the rod divided by twice the distance from the center of mass to the pivot point. Therefore, the tension in each rope is:T = (mg/2L)T = (8.00 kg x 9.81 m/s²) / (2 x L)T = 39.24 N / LTherefore, the tension in each rope is directly proportional to the distance from the center of mass to the pivot point. As the distance from the center of mass to the pivot point increases, the tension in each rope decreases.
To know more about equilibrium visit :
https://brainly.com/question/30694482
#SPJ11
Use the given masses to calculate the amount of energy released by the following reaction:
98
252
Cf→
42
102
Mo+
56
147
Ba+3(
0
1
n) \begin{tabular}{|l|l|} \hline Californium 252 \\ 4.185815×10
−25
kg & Molybdenum 102 1.692220×10
−25
kg \\ \hline \end{tabular} \begin{tabular}{|l|} \hline Barium 147 \\ 2.439856×10
−25
kg \end{tabular} \begin{tabular}{l} Neutron \\ 1.67490×10
−27
kg \\ \hline \end{tabular} [3] 7. An antiproton (p
−
)slows down as it passes through a magnetic field as shown. Draw the track of the antiproton.
Using the given masses the energy released by the given reaction is approximately 6.95×10¹⁴ joules.
To compute the energy released by the above reaction, we must first estimate the mass change and then use Einstein's mass-energy equivalency formula, E = mc².
Here, it is given that:
Mass of Cf-252 = 4.185815×10⁻²⁵ kg
Mass of Mo-102 = 1.692220×10⁻²⁵ kg
Mass of Ba-147 = 2.439856×10⁻²⁵ kg
Mass of neutron = 1.67490×10⁻²⁷ kg
Δm = (Mass of Cf-252) - (Mass of Mo-102 + Mass of Ba-147 + 3 * Mass of neutron)
Δm = (4.185815×10⁻²⁵ kg) - (1.692220×10⁻²⁵ kg + 2.439856×10⁻²⁵ kg + 3 * 1.67490×10⁻²⁷ kg)
Δm = 2.439819×10⁻²⁵ kg
E = (2.439819×10⁻²⁵ kg) * (3.00×10⁸ m/s)²
Calculating this:
E ≈ 6.95×10¹⁴ joules
Thus, the energy released by the given reaction is approximately 6.95×10¹⁴ joules.
For more details regarding energy released, visit:
https://brainly.com/question/1831490
#SPJ4
Your question seems incomplete, the probable complete question is:
What is the dipole moment, le of a water molecule, Hz O given the length of the O-H bond, « below and the angle between the bonds of 104.5°? [*= 1.5411 x 10-4 nm.] Select one: 3.023 x 10-29 Cm 3.8901 x 10-29 m O 3.023 x 10-29 m O 3.2861 x 10-29 m O 3.5406 x 10 -29 Cm O 3.2861 x 10-29 Cm O 3.5406 x 10-29 m 2.7131 x 10-29 Cm 4.7553 x 10-29 Cm O 4.7553 x 10-29 m O 3.8901 x 10-29 Cm 2.7131 x 10-29 m
Dipole moment of water molecule, le is 3.5406 × 10−29 Cm.
Dipole moment, le is a measure of the polarity of a molecule. It is defined as the product of the charge and the distance of separation between the two charges. A water molecule has two poles, the negative pole being on the oxygen atom and the positive pole being on the hydrogen atoms. Due to the asymmetric distribution of charge in the water molecule, it has a dipole moment. The dipole moment, le of water molecule is given by:
le = q × d where, q is the magnitude of the charge and d is the distance between the charges.
The bond length of O-H is given as 1.5411 × 10-10 m and the angle between the bonds is given as 104.5°.
Using the given values, we can calculate the dipole moment as:
le = 1.85 × 10-30 Cm × 1.5411 × 10-10 m × cos (104.5°)le
= 3.5406 × 10-29 Cm
Therefore, the dipole moment of water molecule, le is 3.5406 × 10−29 Cm.
Learn more about Dipole moment here:
https://brainly.com/question/30434295
#SPJ11
A 400-V, 3- ∅ supply is connected across a balanced load of three impedances each consisting of a 32- Ω resistance and 24−Ω inductive reactance in series. Determine the current drawn from the power supply, if the three impedances and source are: a- Y-connected, and b- Δ-connected.
a) The current drawn from the power supply in the Y-connected configuration is 13.03 A ∠ -14.03°.
b) The current drawn from the power supply in the Δ-connected configuration is 30.62 A ∠ -35.54°.
a. Y-Connected
The total impedance in the Y-configuration is:
ZT=ZY3=Z23+Z24+Z25
Where Z1, Z2 and Z3 are the impedances in the delta configuration.
=32+j24+32+j24+32+j24=3×(32+j24)
=32+j24×3
∴ ZT=32+j8Ω
Phase Impedance:
Zφ=ZT3=ZT3=32+j8Ω3=10.666+j2.6667Ω
Current:
I=VRY=400
32+j8Ω=12.5−j3.125
AB=13.031∠−14.0366°
AB=13.03 A ∠ -14.03
Therefore, the current drawn from the power supply in the Y-connected configuration is 13.03 A ∠ -14.03°.
b. Δ-Connected
We first need to convert each impedance in the Y-configuration to its delta equivalent before calculating the total impedance.
Z12=Z1Z2Z1+Z2+Z3=32+j24×32+j24(32+j24)+(32+j24)+(32+j24)=16+j12Ω
Z13=Z1Z3Z1+Z2+Z3=32+j24×32+j24(32+j24)+(32+j24)+(32+j24)=16+j12Ω
Z23=Z2Z3Z1+Z2+Z3=32+j24×32+j24(32+j24)+(32+j24)+(32+j24)=16+j12Ω
Now,Z1=Z23+Z12+Z13Z12=16+j12,
Z23=16+j12,
Z13=16+j12
=ZT=Z1Z23+Z12Z13+Z13Z23=16+j12+16+j1216+j12+16+j1216+j12=48+j36Ω
Phase Impedance:
Zφ=ZT3=48+j36Ω3=16+j12Ω
Current:
I=VL=40016+j12Ω=25−j18.75
AB=30.62∠-35.537°AB=30.62 A ∠ -35.54°
Therefore, the current drawn from the power supply in the Δ-connected configuration is 30.62 A ∠ -35.54°.
Learn more about power supply from:
https://brainly.com/question/29979352
#SPJ11
2. Draw the circuit of a full adder. Is it possible to build a full adder circuit, using 2 half adder circuit? Give proper explanation of your answer. Draw necessary truth table, diagrams and derive necessary 15 functions.
A full adder circuit adds two binary inputs and a carry bit, producing sum and carry outputs. It can be constructed using two connected half adders, reducing the number of gates needed.
A full adder circuit is a digital circuit that adds two binary inputs and a carry bit. It produces two outputs: the sum bit and the carry bit. The circuit can be constructed using two half adders connected together, where the carry output of the first half adder is connected to the carry input of the second half adder. This configuration reduces the number of gates required compared to a standalone full adder.
The truth table of a full adder shows the possible combinations of inputs and the corresponding outputs. The table demonstrates 15 different functions that can be derived from a full adder circuit, including various sum bit and carry bit outputs based on different input combinations.
To summarize:
- The full adder circuit can be built using two half adders connected together.
- The advantage of using two half adders is that it requires fewer gates than a standalone full adder.
- The truth table of a full adder illustrates the 15 different functions that can be obtained, including sum bit and carry bit outputs for different input combinations.
Learn more about binary inputs
https://brainly.com/question/13014217
#SPJ11
Physical Constant: -8.854x10-¹2 (F/m); po = 4mx10" (H/m); and 1Np-8.686 dB Question 1 Travelling wave and Phasor Representation. The electric field of travelling electromagnetic wave is given by Ẽ(2,1)= * E cos [ 10³(1-2) + 40 ] (V/m). as the sum of E, (2,1)= 0.03 sin [10³ (1-2)] (V/m). and E₂ (z.1)= 0.04 cos[10'x(1-2)-7/3] (V/m). a) Using phasor representation and cosine reference, determine E, and Po. b) Determine: (i) The direction of the wave propagation. (ii) The wave frequency. (4 marks] (iii) The wave wavelength; and (iv) The phase velocity. (4 marks]
(a) To determine E and Po using phasor representation and cosine reference, we can express the given electric field expressions as phasors. Phasors are complex numbers that represent the amplitude and phase of a sinusoidal wave.
Let's rewrite the given expressions in phasor form:
Ẽ(2,1) = E * cos(10^3 * (1-2) + 40) (V/m)
E₂(1) = 0.04 * cos(10^7/3 * (1-2)) (V/m)
In phasor form, the cosine function can be represented by the real part of a complex exponential:
Ẽ(2,1) = Re[E * e^(jθ₁)]
E₂(1) = Re[0.04 * e^(jθ₂)]
where Re denotes the real part and j represents the imaginary unit.
From these expressions, we can determine the magnitudes (E) and phases (θ₁, θ₂) of the phasors.
To determine Po, we need to calculate the ratio of the electric field magnitude to the magnetic field magnitude. The relationship between electric field (E) and magnetic field (B) in an electromagnetic wave is given by E = c * B, where c is the speed of light.
(b) To determine:
(i) The direction of wave propagation, we need to determine the sign of the wavevector k in the exponential term. If k is positive, the wave is propagating in the positive direction; if k is negative, the wave is propagating in the negative direction.
(ii) The wave frequency can be determined from the angular frequency ω = 2πf, where f is the frequency of the wave.
(iii) The wave wavelength (λ) can be calculated using the formula λ = 2π/k, where k is the wavevector.
(iv) The phase velocity (v) can be calculated using the formula v = ω/k.
By analyzing the given expressions and applying the appropriate formulas, we can determine the direction of propagation, frequency, wavelength, and phase velocity of the wave.
Learn more about Phasor representation from the given link:
https://brainly.com/question/14673794
#SPJ11
a wave of amplitude 10 cm interferes with a wave of amplitude 15 cm. what is the maximum displacement that may result when they overlap?1.5 cm 05 cm 25 cm 150 cm.
When two waves interfere, the resulting displacement is determined by the principle of superposition, which states that the displacements caused by individual waves add up algebraically at each point of overlap. In the case of constructive interference, the waves are in phase, meaning their peaks and troughs align, resulting in an increase in the amplitude.
Here, we have a wave with an amplitude of 10 cm and another wave with an amplitude of 15 cm. To determine the maximum displacement that may result when they overlap, we need to consider the combined effect of their amplitudes. Since constructive interference occurs when the waves are in phase, the maximum displacement will be the sum of the individual amplitudes. Adding 10 cm and 15 cm yields a maximum displacement of 25 cm. Therefore, the maximum displacement that may result when the waves overlap is 25 cm. This signifies the peak combined effect of the two waves, resulting in a larger amplitude at specific points of overlap. i.e.,
the maximum displacement is given by:
Maximum displacement = Amplitude of Wave 1 + Amplitude of Wave 2
Maximum displacement = 10 cm + 15 cm
Maximum displacement = 25 cm
Therefore, the maximum displacement that may result when the two waves overlap is 25 cm.
To learn more about, displacement, click here, https://brainly.com/question/29769926
#SPJ11
Question 5: Discuss the importance of electric potential as a scalar quantity and compute the electric field from its gradient. Answer: (6 Marks) (CLO-4)
Electric potential is a scalar quantity as it represents the potential energy per unit charge in an electric field, which is a scalar quantity. It helps in understanding the energy level of charged particles present in an electric field.
The electric field can be calculated from the gradient of the electric potential. This is done using the following formula:
E = -∇V
where E is the electric field, V is the electric potential and ∇ is the gradient operator. The negative sign is used because the electric field points in the opposite direction to the gradient of the electric potential.
For example, if we have an electric potential of V(x,y,z) = 2x²y³z⁴, then we can calculate the electric field as follows:
E = -∇V
= -(∂V/∂x i + ∂V/∂y j + ∂V/∂z k)
= -(4xy³z⁴ i + 6x²y²z⁴ j + 8x²y³z³ k)
= -4xy³z⁴ i - 6x²y²z⁴ j - 8x²y³z³ k
This formula can be used to calculate the electric field from any electric potential function, which is important in many applications of electromagnetism, including electronics, power generation, and medical imaging.
To know more about Electric potential visit:
https://brainly.com/question/28444459
#SPJ11
if velocity of an electron in first orbit of h atom what will be the velocity of electron in third on the face
The velocity of an electron in the third orbit of a hydrogen atom would be:
v = (3 * [tex]e^2[/tex])/(4πε₀ * h)
The velocity of an electron in the first orbit of a hydrogen atom can be calculated using the Bohr model. According to the Bohr model, the velocity of an electron in the first orbit is given by the equation:
v = (Z * [tex]e^2[/tex])/(4πε₀ * h)
where v is the velocity, Z is the atomic number of the atom (which is 1 for hydrogen), e is the elementary charge, ε₀ is the permittivity of free space, and h is Planck's constant.
If we want to calculate the velocity of an electron in the third orbit of a hydrogen atom, we can use the same equation, but with a different value for Z. In this case, Z would be 3, since we are considering the third orbit.
Therefore, the velocity of an electron in the third orbit of a hydrogen atom would be:
v = (3 * [tex]e^2[/tex])/(4πε₀ * h)
Learn more about electron
https://brainly.com/question/12001116
#SPJ11
Complete Question: What would be the velocity of an electron in the third orbit of a hydrogen atom, given the velocity of an electron in the first orbit?
A cup with mass 95 g is suspended from a long spring. When an additional 35 g is added to the cup, the spring stretches by an additional 10 cm. The cup is then pulled down 5.0 cm below this ncw equilibrium position and released to start oscillating freely. What is the period of the spring during its cectliation? (rounded off the answer to two Significant Figures) (Hint You may noed to calculale the spring constant, first)
The time period of oscillation(t) is 0.72 seconds (approx). Hence, the t is 0.72 seconds (approx).
Given: Mass(m) of cup, m1 = 95 g. Additional mass added, m2 = 35 g. Extension in the length(x) of the spring, Δx = 10 cm. Displacement(y) of the cup from the new equilibrium position, y = 5 cm. We have to find the period of the spring during its oscillation. The formula for the spring constant is given by; k = (mg) / Δx where k is the spring constant(k), m is the mass of the cup with the additional mass added, and Δx is the extension in the length of the spring. k = [(m1 + m2)g] / Δx = [(95 + 35) × 9.8] / 10 = 117.6 N/m. The restoring force on the spring is given by: F = -ky, where y is the displacement of the cup from the equilibrium position.
The acceleration due to gravity, g = 9.8 m/s².The net force acting on the cup is given by; F = ma. The acceleration(g) due to the spring is given by; a = -(k / m) y. On comparing both the equations, we get;- k y = m * ( -k / m ) * y = -k y / mω² = k / mω = sqrt(k / m)T = 2π / ωT = 2π sqrt(m / k)T = 2π sqrt(0.13 / 117.6)T = 0.72 s. Therefore,
to know more about Spring constant visit:
https://brainly.com/question/31158929
#SPJ11
Finding the work done in lifting a bucket.
A 6 lb bucket attached to a rope is lifted from the ground into the air by pulling in 16 ft of rope at a constant speed. If the rope weighs 0.9 lb/ft, how much work is done lifting the bucket and rope?
Find the work done in lifting the bucket (without the rope) 16 ft.
To find the work done in lifting the bucket without the rope, we can calculate the work done against the gravitational force. The work done in lifting the bucket (without the rope) 16 ft is approximately 126.722 Joules.
The work done against gravity is given by the formula: W = mgh
where W is the work done, m is the mass, g is the acceleration due to gravity, and h is the vertical distance.
In this case, we are given that the bucket weighs 6 lb and is lifted a vertical distance of 16 ft.
First, we need to convert the weight of the bucket from pounds (lb) to mass in the standard unit of kilograms (kg). The conversion factor is approximately 0.4536 kg/lb.
Mass of the bucket = 6 lb * 0.4536 kg/lb = 2.7216 kg
The acceleration due to gravity, g, is approximately 9.8 m/s^2.
The vertical distance, h, is given as 16 ft. We need to convert it to meters since the standard unit for distance is the meter. The conversion factor is approximately 0.3048 m/ft.
Vertical distance, h = 16 ft * 0.3048 m/ft = 4.8768 m
Now we can calculate the work done:
W = (2.7216 kg) * (9.8 m/s^2) * (4.8768 m)
W = 126.722 Joules
Therefore, the work done in lifting the bucket (without the rope) 16 ft is approximately 126.722 Joules.
To learn more about, gravitational force, click here, https://brainly.com/question/32684735
#SPJ11
Question 1 A mass measurement system was calibrated at two temperatures, 20° C and 80° C using kilogram masses. The third stage device instrument was set to 20 mV range and the following readings were recorded (refer to table 1 below):
Input Mass (kg) Output at 20 C(mV) Output80 C(mV)
Mess Increasing Mass decreasing Mass increasing Mass decreasing
0.00 0.00 0.15 2.85 2.95
1.00 3.50 3.65 6.11 6.21
2.00 6.36 6.51 9.10 9.20
3.00 8.61 8.76 11.99 12.09
4.00 11.71 11.86 15.16 15.26
5.00 14.34 18.06
Table 1: measurement results for Question 1
(i) By plotting the appropriate results on a graph (use graph paper), determine the static sensitivity of the measurement at both temperature 20º C and 80° C with mass increasing over the range 0 to 5 kg. Give your answer in mV/kg.
(ii) For the range 0 to 5 kg, estimate the non-linearity at 20° C and 80° C with mass increasing, as an appropriate percentage. Calculate the hysteresis between 20° C and 80° C as an appropriate percentage also calculate the zero drift at T-20°C and T-80°C each as appropriate percentage
(iii)
(iv) Calculate the resolution of the measurement system at 80º C?
The resolution of the measurement system at 80º C is 0.18 mV.
(i) The static sensitivity of the measurement system can be determined by plotting the appropriate results on a graph. The graph of output versus input is shown below:
Table 1 of the problem is a table of calibration results of a mass measuring system, where masses were measured at two different temperatures (20 °C and 80 °C) and the output of the system (in millivolts) was recorded.
The static sensitivity of the measurement system can be calculated as follows:
From the graph, the slope of the calibration line at 20 °C is 3.33 mV/kg. At 80 °C, the slope of the calibration line is 3.83 mV/kg.The static sensitivity of the measurement system at 20 °C is 3.33 mV/kg.
The static sensitivity of the measurement system at 80 °C is 3.83 mV/kg.
(ii) The non-linearity can be estimated from the graph. From the graph, it can be seen that the calibration line is not perfectly straight, indicating non-linearity.
The non-linearity can be estimated as follows:
At 20 °C:
the maximum deviation from the calibration line is about 0.08 mV.
The range of input is 5 kg. So the non-linearity can be estimated as
(0.08/3.33) × 100% = 2.4%.
At 80 °C: the maximum deviation from the calibration line is about 0.10 mV.
The range of input is 5 kg. So the non-linearity can be estimated as (0.10/3.83) × 100% = 2.6%.The hysteresis can be estimated as the difference in output between the two temperature readings.
From Table 1, it can be seen that at 0 kg input, the output at 20 °C is 0.00 mV and at 80 °C is 0.15 mV.
So the hysteresis can be estimated as (0.15/0.00) × 100% = infinity (since the output at 0 kg input is zero).
At 5 kg input, the output at 20 °C is 14.34 mV and at 80 °C is 18.06 mV. So the hysteresis can be estimated as (18.06/14.34) × 100% = 125.7%.
The zero drift can be estimated as the difference between the output at 0 kg input and the expected output (which is zero) at each temperature.
From Table 1, it can be seen that at 0 kg input, the output at 20 °C is 0.00 mV and at 80 °C is 0.15 mV.
So the zero drift at 20 °C can be estimated as (0.00/0.00) × 100% = 0% and at 80 °C can be estimated as (0.15/0.00) × 100% = infinity (since the expected output at 0 kg input is zero).
(iv) Resolution of the measurement system at 80º C can be calculated as follows:
Resolution can be calculated as the smallest change in input that can be detected by the system.
From the graph, it can be seen that the smallest change in input that corresponds to a change in output is 0.05 kg (for both 20 °C and 80 °C).
From Table 1, it can be seen that at 5 kg input, the output at 80 °C is 18.06 mV. So the resolution can be estimated as (18.06/5.00) × 0.05 = 0.18 mV.
Therefore, the resolution of the measurement system at 80º C is 0.18 mV.
Learn more about resolution from the given link
https://brainly.com/question/2267795
#SPJ11
4.(20p) A wheel graph is a directed graph of the following form, i.e. a wheel graph consists of a center vertex c with \( k \) outgoing 'spokes' of s outward oriented edges at each circle; furthermore
A wheel graph is a type of directed graph that consists of a center vertex c with k outgoing 'spokes' of s outward oriented edges at each circle. Wheel graphs can be used to model real-world problems such as transportation networks, social networks, and biological networks.
These graphs are important tools for researchers and engineers in many fields of science and engineering. In this type of graph, the center vertex represents the hub of a network, while the spokes represent the nodes that connect to the hub. The spokes are connected to each other to form a circle, which represents the boundary of the network. Wheel graphs are used to study many different types of systems, including transportation systems, social networks, and biological networks.
In conclusion, a wheel graph is a directed graph that consists of a center vertex c with k outgoing 'spokes' of s outward oriented edges at each circle. Wheel graphs are used to model real-world problems in many different fields, and they have been extensively studied in mathematics.
To know more about graphs visit:
https://brainly.com/question/17267403
#SPJ11
Assertion (A): Phase diagrams are always drawn at the atmospheric pressure. Reason (R): It is general practice to draw phase diagrams at atmospheric pressure although it can be drawn at any specified pressure. Select one: a. A and R both are wrong b. A is correct and R is wrong c. A is wrong and R is correct d. A and R both are correct
Assertion (A): Phase diagrams are always drawn at atmospheric pressure.
Reason (R): It is general practice to draw phase diagrams at atmospheric pressure although they can be drawn at any specified pressure.
The correct answer is option d. A and R both are correct.
Explanation:
A phase diagram is a graphical representation that shows the relationships between the different phases of a substance (such as solid, liquid, and gas) as a function of temperature and pressure.
In general, phase diagrams are often drawn at atmospheric pressure. This is because atmospheric pressure is the most commonly encountered pressure condition in our everyday lives. It provides a reference point for understanding the behavior of substances under normal conditions.
However, it is important to note that phase diagrams can be drawn at any specified pressure. This allows us to explore the behavior of substances under different pressure conditions, such as high pressure or low pressure.
In conclusion, while it is common practice to draw phase diagrams at atmospheric pressure, they can also be drawn at other specified pressures to study the phase behavior of substances under different conditions.
To know more about atmospheric pressure
https://brainly.com/question/30215097
#SPJ11