An analog low-pass filter will be made as a Butterworth filter with specifications in the form of cutoff frequency wc-1000 rad/s, passband frequency op-760 rad/s, frequency topband os=1445 rad/s, and the tolerance parameter in the passband frequency region &-0.1, and in the stopband frequency area 8=0.05 a) Determine the order of the Butterworth filter that can meet the requested technical specifications. b) Determine the transfer function of the Butterworth filter H(s), the location of the poles and zeros of the filter, and plot all the H(s) and H(-s) poles in the s-plane, c) Sketch the frequency response of the Butterworth H2(jo) filter, and determine the value of magnitude of the frequency response at the wc cutoff frequency, op passband frequency, and stopband frequency.os. d) Draw a schematic of the Butterworth filter circuit using reactive components.

Answers

Answer 1

The order of the Butterworth filter that can meet the given specifications is 4.


A Butterworth filter is characterized by a maximally flat frequency response in the passband, which means it has a constant gain up to the cutoff frequency. The order of the filter determines how quickly the filter's gain decreases beyond the cutoff frequency. In this case, the filter needs to have a passband frequency of 760 rad/s and a stopband frequency of 1445 rad/s.

To determine the order of the Butterworth filter, we can use the following formula:

N = log((1 / &^2 - 1) / (1 / 8^2 - 1)) / (2 * log(os / op))

where N is the order of the filter, & is the tolerance in the passband, and 8 is the tolerance in the stopband. Plugging in the given values, we have:

N = log((1 / (-0.1)^2 - 1) / (1 / 0.05^2 - 1)) / (2 * log(1445 / 760))

 ≈ log(99 / 399) / (2 * log(1.9))

 ≈ 2.4392 / (2 * 0.6253)

 ≈ 1.9512

Since the order of the Butterworth filter must be an integer, we round up to the nearest whole number. Therefore, the order of the Butterworth filter that meets the specifications is 4.

Learn more about Butterworth filters .
brainly.com/question/33178679


#SPJ11


Related Questions

A commercial developer is planning on a 5 story multi-use building with the bottom 2 floors consist of shops and restaurants, and upper 3 floors residential apartments. For the upper floor residential units, assume all the units are one bedroom apartments with a fridge (500W, 120V), a washer (800W, 120V) and a dryer (3000W, 240V), but exclude HVAC system (central system powered somewhere else). List the different circuits and estimate the electrical loads (VA) on these circuits for one apartment unit.

Answers

The different circuits and estimated electrical loads (VA) on these circuits for one apartment unit are: Fridge and Washer circuit: 187.2 kVA Dryer circuit: 1036.8 kVA

To estimate the electrical loads (VA) on different circuits for one apartment unit, we need to use the given information as follows:

Given, Power of Fridge = 500 W

Power of Washer = 800 W

Power of Dryer = 3000 W

Voltage of Fridge and Washer = 120V

Voltage of Dryer = 240V

Let's first find the power of the washer and fridge together,

Total Power of Fridge and Washer = Power of Fridge + Power of Washer= 500W + 800W= 1300W

Power of Dryer = 3000W

As there are two different voltages, we need to calculate the current separately.

Let's start by calculating the current for the fridge and the washer.

Current for Fridge and Washer = (Power of Fridge and Washer) / (Voltage of Fridge and Washer)= 1300 W / 120 V= 10.83 A

Current for Dryer = (Power of Dryer) / (Voltage of Dryer)= 3000 W / 240 V= 12.5 A

We can now use these values to calculate the VA (Volt-Ampere) for each circuit. It's always better to keep some margin, hence we take a 20% extra margin for future expansions of load.

So the total VA for the fridge and washer circuit would be,

VA for Fridge and Washer = (Power of Fridge and Washer x 1.2) x (Voltage of Fridge and Washer) = 1300 x 1.2 x 120 = 187200 VA = 187.2 kVA

For the dryer circuit,

VA for Dryer = (Power of Dryer x 1.2) x (Voltage of Dryer) = 3600 x 1.2 x 240 = 1036800 VA = 1036.8 kVA

Therefore, the different circuits and estimated electrical loads (VA) on these circuits for one apartment unit are: Fridge and Washer circuit: 187.2 kVA Dryer circuit: 1036.8 kVA.

Learn more about electrical loads here:

https://brainly.com/question/30497047

#SPJ11

a) Write a method computePrice () to compute the total price (quantity times unit price). i. custName- The custName field references a String object that holds a customer name. ii. custNumber- The custnumber field is an int variable that holds the customer number. iii. quantity- The quantity field is an int variable that holds the quantity online ordered. iv. unitPrice- The unitPrice field is a double that holds the item

Answers

Here's an example of a method named `computePrice()` that computes the total price based on the given inputs:

```java

public class Order {

   private String custName;

   private int custNumber;

   private int quantity;

   private double unitPrice;

   // Constructor and other methods

   public double computePrice() {

       double totalPrice = quantity * unitPrice;

       return totalPrice;

   }

   // Other methods and class implementation

}

```

Explanation:

- The `computePrice()` method is declared within the `Order` class.

- It calculates the total price by multiplying the quantity and unit price together.

- The method returns the computed total price as a `double`.

To use this method, you can create an instance of the `Order` class, set the `quantity` and `unitPrice` fields with appropriate values, and then call the `computePrice()` method to obtain the total price.

Note: This code assumes that you have a class named `Order` with the necessary fields and other methods implemented. Make sure to adjust the code according to your specific class structure.

Learn more about class structure here:

https://brainly.com/question/11460118

#SPJ11




Intrinsic silicon is insulator True O False

Answers

Intrinsic silicon is a semiconductor, not an insulator.

The correct option is False.

What is intrinsic silicon?

Intrinsic silicon is pure silicon and is the most widely used material in electronic devices.

Intrinsic semiconductors are conductive and non-conductive substances.

Pure silicon is called intrinsic silicon, and it has no impurities.

Intrinsic silicon can be transformed into a p-type semiconductor by doping it with a tiny amount of acceptor atoms.

Similarly, by doping a small amount of donor atoms, it can be converted into an n-type semiconductor.

Intrinsic silicon has properties that are essential to the operation of most modern electronics.

Its crystalline structure allows electrons to be easily transferred in and out of its orbitals, making it an ideal conductor.

However, since it is still a semiconductor, it is not an ideal conductor like copper or other metals.

Therefore, we can conclude that Intrinsic silicon is not an insulator, but a semiconductor, and the statement given in the question is False.

To know more about conductive visit:

https://brainly.com/question/31201773

#SPJ11

x= inspace (0,1,N) y=sin(spii∗x/2); xi=1inspace(0,1,100) The program should use the interpl function to perform spline interpolation of the (x,y) data at the 100×i points. These interpolated values should be compared to the exact values of the function sin(πx/2) and your program should use this to find the smallest number of samples N that gives an interpolation with an error of no more than ±0.00001

Answers

The program prints the smallest N value that satisfies the error condition. You can run this program in Python to find the smallest number of samples N that gives an interpolation with an error of no more than ±0.00001.

To find the smallest number of samples N that gives an interpolation with an error of no more than ±0.00001, we can use the following Python program that utilizes spline interpolation and compares the interpolated values with the exact values of the function sin(πx/2):

```python

import numpy as np

from scipy.interpolate import interpl

def calculate_error(N):

   x = np.linspace(0, 1, N)

   y = np.sin(np.pi*x/2)

   xi = np.linspace(0, 1, 100)

   yi_interpolated = interpl(x, y, xi)

   yi_exact = np.sin(np.pi*xi/2)

   error = np.max(np.abs(yi_interpolated - yi_exact))

   return error

def find_smallest_N():

   N = 2

   error = calculate_error(N)

   

   while error > 0.00001:

       N += 1

       error = calculate_error(N)

   

   return N

smallest_N = find_smallest_N()

print("Smallest N:", smallest_N)

```

In this program, we define a function `calculate_error(N)` that takes the number of samples N as an input. It generates the x and y data points using `np.linspace` and calculates the interpolated values `yi_interpolated` using the `interpl` function. It also calculates the exact values `yi_exact` using `np.sin`. The error is then calculated as the maximum absolute difference between `yi_interpolated` and `yi_exact`.

The function `find_smallest_N()` iteratively increases the number of samples N until the error becomes less than or equal to 0.00001. It calls `calculate_error(N)` to calculate the error for each N value.

Finally, the program prints the smallest N value that satisfies the error condition.

You can run this program in Python to find the smallest number of samples N that gives an interpolation with an error of no more than ±0.00001.

Learn more about interpolation here

https://brainly.com/question/33283792

#SPJ11

FILL THE BLANK.
A(n) _______________ address is used by a program to reference a generic memory location.

Answers

The term that fills in the blank given in the question is "virtual". In a computer, the virtual memory is a memory management technique that enables an operating system (OS) to provide more memory than might be available physically.

Virtual memory uses both hardware and software components. The virtual memory includes a translation mechanism to translate between virtual memory addresses used within software and the physical memory addresses used to access memory chips. A virtual address is a type of intermediate representation of an actual physical memory address that is used by programs to specify memory access commands and to reference a generic memory location. Furthermore, the operating system (OS) maps the virtual memory address into the physical memory address. A page table is typically used by the OS to track which virtual pages are currently stored in physical memory. For example, in Windows operating systems, the page table is managed by the Memory Manager, which is a component of the OS kernel. Thus, we can say that a virtual address is used by a program to reference a generic memory location.

To know more about generic memory  visit:

https://brainly.com/question/32287203

#SPJ11

Given an ADC with 10-bit precision and Vref being 3.3v; what would be the converted output (in HEX) for an input of 2V
Given an output of 100100110110 to a 1.9v input; what is the precision of an ADC with a Vref of 3.3v?
In the ARM KL25Z processor, which register provides the ADC output converted data
Which Mask would you assign to pin 2 on PORTC to make it an analog input? Please write the C statement using the C pointer notation.
KL25Z128VLK4 has __________ GPIO ports.
what would happen if we tried to access any registers associated with a port (PORT A,PORT B, PORT C,PORT D or PORT E) before the clock is enabled?
To make an F on a 7-segment display which segments needs to lit?

Answers

ADC output = (2/3.3)*1024 = 62110 in decimal.Converting decimal to HEX, 62110 in decimal = F24E in HEX.Precision of the ADC = (1/2^10)*3.3 = 3.225mV.

Therefore, for an input of 1.9v, the precision of the ADC with a Vref of 3.3v is 6 bits.The ADC output converted data can be provided by the ADC Data Register (ADCDR) in the ARM KL25Z processor.The mask for pin 2 on PORTC to make it an analog input would be 0x04. The C statement using the C pointer notation would be PORTC->PCR[2] = 0x00000700.KL25Z128VLK4 has 5 GPIO ports namely,

PORT A, PORT B, PORT C, PORT D, and PORT E.If we try to access any registers associated with a port (PORT A, PORT B, PORT C, PORT D or PORT E) before the clock is enabled, the read or write operations may not be successful.To make an F on a 7-segment display, the segments that need to be lit are a, b, c, e, f. Explanation:By lighting the segments a, b, c, e, and f, the alphabet F can be displayed on a 7-segment display.

To know more about decimal visit:

https://brainly.com/question/32332387

#SPJ11

Design a PV system. The specification is as follows:

PV voltage: 48 - 100 volt with 1 KW output power over the voltage range

Load: ±240 V split single phase, <1 kW average and 2 kW peak power

All capacitor voltage peak ripples: < 5%

All inductor current peak ripples: < 50%


in matlab

Answers

To design a PV system that meets the given specifications, we can use MATLAB's Simulink and Simscape Power Systems tools. Here are the steps for designing the system:

Create a new Simulink model.

Add a Simscape Electrical > Specialized Power Systems > Electrical Sources > Solar Cell block to the model. Set the parameters of the block to match the specifications:

Maximum power point voltage range: 48-100V

Maximum power point output power: 1 kW

Add a step-up DC-DC converter to boost the output voltage of the solar cell to the required level. Use a Simscape Electrical > Circuit Elements > Controlled Voltage Source block in combination with a Simscape Electrical > Circuit Elements > Inductor block and a Simscape Electrical > Circuit Elements > Capacitor block to create the DC-DC converter circuit.

Add a split-phase AC load to the model. Use a Simscape > Electrical > Specialized Power Systems > Three-Phase > Split Phase Load block to create the load. Set the average and peak power consumption to less than 1 kW and 2 kW respectively.

Use a Simscape > Electrical > Specialized Power Systems > Three-Phase > Rectifier block to convert the AC load to DC.

Add a filter to smooth out the voltage ripples on the output of the rectifier. Use a Simscape Electrical > Circuit Elements > Capacitor block and a Simscape Electrical > Circuit Elements > Inductor block to create an LC filter circuit.

Finally, add a Simscape Electrical > Measurements > RMS block to measure the root-mean-square voltage and current values of the output.

Run the simulation to test the performance of the system. Adjust the values of the filter elements to ensure that the capacitor voltage ripple is less than 5% and the inductor current ripple is less than 50%.

learn morea bout Simscape here

https://brainly.com/question/33185030

#SPJ11

Assume a 20MHz Fcy and a prescaler value of 8 for Timer2 operating in 16 bit mode. Also assume that an output compare module has been configured for pulse width modulation using a 10 ms period. WhatOCxRS register value is required to produce a pulse width of 5 ms ? a) 12,500 b) 12,250 c) 11,764 d) 12,650

Answers

The value of OCxRS register can be obtained by dividing the value of PR2 by option is (b) 12,250.

Given:
- Fcy = 20MHz
- Prescaler value = 8
- Timer2 operating in 16 bit mode
- Output compare module configured for pulse width modulation using a 10 ms period

To find: OCx RS register value required to produce a pulse width of 5 ms.

Formula used: Period = [(PR2) + 1] × 4 × Tcy × (Prescaler value)

Where, PR2 = OCxRS Register value

Tcy = 1 / Fcy (Tcy is the time period of an instruction cycle)

Calculation:

Given, Fcy = 20MHzTcy = 1 / Fcy= 1 / 20MHz= 50 × 10⁻⁹ sec

Prescaler value = 8

Timer2 operating in 16 bit mode,

Therefore, maximum value of PR2 = (2^16) - 1= 65,535Pulse width = 5ms

Time period of the PWM wave = 10msPR2 can be calculated as:

Period = [(PR2) + 1] × 4 × Tcy × (Prescaler value)PR2 = [(Period / (4 x Tcy x Prescaler value))]- 1

PR2 = [(10ms / (4 x 50 × 10⁻⁹ x 8))] - 1= 62,499

The duty cycle of the PWM is 50% (since pulse width = 5ms and time period = 10ms)

Thus the value of OCxRS register can be obtained by dividing the value of PR2 by 2:OCxRS = PR2 / 2= 62,499 / 2= 31249.5 ≈ 12,250Hence, the correct option is (b) 12,250.

Learn more about pulse width modulation here:

https://brainly.com/question/29358007

#SPJ11

1. a) From the specification given in component listing, show the calculation on how to get the remaining phase voltage of the generator source and record the value below. The system using abc phase sequence. V_ =120Ꮓ0 V ma V V = 3.0 COMPONENTS: 1. Simulation using Multisim ONLINE Website 2. Generator: V = 120/0° V, 60 Hz 3. Line impedance: R=10 2 and C=10 mF per phase, 4. Load impedance: R=30 2 and L=15 µH per phase,

Answers

To calculate the remaining phase voltage, we subtract the voltage drops across the line impedance and load impedance from the generator source voltage, considering the given component values.

How can the remaining phase voltage of the generator source be calculated, considering the given component values?

To calculate the remaining phase voltage of the generator source, we need to consider the line impedance and load impedance.

The given specifications state that the generator source voltage (V_) is 120 V with a phase angle of 0°. The system uses the abc phase sequence.

Considering the line impedance, we have a resistance (R) of 10 Ω and a capacitance (C) of 10 mF per phase.

Additionally, the load impedance consists of a resistance (R) of 30 Ω and an inductance (L) of 15 µH per phase.

To calculate the remaining phase voltage, we need to account for the voltage drops across the line impedance and load impedance. This can be done by performing voltage division.

First, we calculate the total impedance (Z) of the line, which is the square root of the sum of the resistance squared (R²) and the reactance squared (X²).

For the line impedance, the reactance is the reciprocal of the product of the angular frequency (ω = 2πf) and the capacitance (X = 1 / (ωC)).

Performing these calculations based on the given component values will yield the specific value for the remaining phase voltage.

Learn more about phase voltage

brainly.com/question/29340593

#SPJ11

what can i learn about PowerPoint from a Microsoft 365
administrator?

Answers

As a Microsoft 365 administrator, you can learn the following about PowerPoint:

1. Licensing and Deployment: You can understand the licensing options available for PowerPoint in Microsoft 365 and how to deploy it to users within your organization.

2. Configuration and Settings: You can explore the various configuration and settings options for PowerPoint, such as enabling or disabling specific features, controlling default settings, and customizing the user interface.

3. Security and Compliance: You can learn about the security and compliance features available in PowerPoint, including data encryption, access controls, and protection against malware.

4. Collaboration and Sharing: You can explore the collaboration and sharing capabilities in PowerPoint, such as co-authoring, version control, and integration with Microsoft Teams and other collaboration tools.

5. Integration with other Microsoft 365 Services: You can understand how PowerPoint integrates with other Microsoft 365 services, such as SharePoint, OneDrive, and Exchange, to enhance productivity and streamline workflows.

6. Troubleshooting and Support: You can gain knowledge about troubleshooting common issues in PowerPoint, accessing support resources, and resolving technical problems faced by users.

7. Training and Adoption: You can access training resources, documentation, and best practices to promote the effective use of PowerPoint within your organization, ensuring that users are proficient in creating compelling presentations.

By understanding these aspects of PowerPoint as a Microsoft 365 administrator, you can effectively manage and support the application within your organization, optimizing its usage and maximizing its benefits for your users.

Learn more about Microsoft 365  here:

https://brainly.com/question/32099643

#SPJ11

Finally, below your function definitions in partitioning.py, write a program that does the following. Call your previously written functions as needed. •Create two identical large lists. ("Large" is somewhat subjective – make it large enough to see a noticeable difference in your partitioning algorithms, but not so large that you have to wait for a while every time you test your code!) •Run the naive partitioning algorithm on the first list. Measure and print how many seconds are needed to complete this. Verify that the list is correctly partitioned. •Run the in-place partitioning algorithm on the second list. Measure and print how many seconds are needed to complete this. Verify that the list is correctly partitioned. Python tip on timing: One way to get the execution time of a segment of code is to use Python’s built-in process time() function, located in the time module. This function returns the current time in seconds and can be used as a "stopwatch": import time start_time = time.process_time() # Code to time here end_time = time.process_time() # Elapsed time in seconds is (end_time - start_time)

Answers

Certainly! Here's an example program that creates two large identical lists, applies the naive partitioning algorithm to one list and the in-place partitioning algorithm to the other list, measures the execution time, and verifies the correctness of the partitioning:

# Run naive partitioning on the first list and measure execution time

start_time = time.process_time()

list1 = naive_partition(list1, len(list1) // 2)

end_time = time.process_time()

execution_time_naive = end_time - start_time

# Print execution times

print("Naive Partitioning Execution Time:", execution_time_naive, "seconds")

print("In-Place Partitioning Execution Time:", execution_time_in_place, "seconds")

```

In the above code, two large identical lists are created using the `random` module. The naive partitioning algorithm is applied to `list1`, while the in-place partitioning algorithm is applied to `list2`. The execution time of each algorithm is measured using `time.process_time()`. Finally, the correctness of the partitioning is verified by printing the left, pivot, and right segments of each list.

Please note that the size of the lists and the range of random integers used can be adjusted based on your requirements.

Learn more about partitioning here:

https://brainly.com/question/32329065

#SPJ11

What is true about the following instance of PDA transition function (q, 1, Y) = {(p, XY), {q,e) } A. The PDA has the option of not reading the input symbol and to remain in state q. B. The transition function is invalid since PDA's are single state automata. C. The PDA transitions from state p to state q upon reading symbol 1 when the top of the stack is Y. D. The PDA may read the input symbol and pop the stack.

Answers

C. The PDA transitions from state p to state q upon reading symbol 1 when the top of the stack is Y.

In the given transition function (q, 1, Y) = {(p, XY), (q, ε)}, it specifies that when the PDA is in state q, reads input symbol 1, and the top of the stack contains Y, it transitions to state p and replaces Y with XY on the stack. This transition reflects the PDA's behavior when encountering a specific input configuration.

Option A is incorrect because the transition function does not mention the PDA's ability to remain in state q without reading the input symbol.

Option B is incorrect because PDAs are not limited to single-state automata. They can have multiple states and transitions between them.

Option D is incorrect because the given transition function does not explicitly state that the PDA may read the input symbol and pop the stack. It only specifies the transition when the conditions (state, input symbol, stack top) are satisfied.

Learn more about PDA transitions here:

https://brainly.com/question/29563395

#SPJ11

Auslogic registry Cleaner ?
One paragraph Summary of the utility
Did you discuss the primary importance and use of the software?
Your evaluation of the utility
This includes a short narrative to answer each of the questions:
Was it easy to install?
Did you find the utility easy to use?
Any problems?
Was the utility worth your use?

Answers

Auslogics Registry Cleaner is a utility software designed to optimize and clean the Windows registry. It scans the registry for invalid or obsolete entries, fixes registry errors, and improves system performance. The primary importance of the software is to help maintain a healthy and optimized Windows operating system by removing unnecessary registry clutter.

In terms of installation, Auslogics Registry Cleaner is easy to install, with a straightforward installation process that does not require any technical expertise. It can be downloaded from the official website and installed in a few simple steps.

As for usability, the utility provides a user-friendly interface that makes it easy to use. It offers a simple and intuitive layout, allowing users to perform scans and repairs with just a few clicks. The software provides clear instructions and options for customizing the scan process.

During usage, Auslogics Registry Cleaner generally performs well and delivers effective results. It efficiently scans the registry, identifies invalid entries, and offers the option to repair or remove them. The utility helps improve system stability and speed by eliminating unnecessary registry clutter.

However, it's important to note that modifying the Windows registry can be risky, and users should exercise caution when using any registry cleaner. It is recommended to create a system backup or restore point before making any changes to the registry.

Overall, Auslogics Registry Cleaner is a reliable utility that can be worth using for those seeking to optimize their Windows system's performance by cleaning and repairing the registry.

Learn more about Windows registry here:

https://brainly.com/question/31675673

#SPJ11

3.28 Using the tables for water, determine the specified property data at the indicated states. In each case, locate the state on sketches of the p-v and T-v diagrams. a. Atp=2 MPa, T= 300°C. Find u, in kJ/kg. b. At p=2.5 MPa, T= 200°C. Find u, in kJ/kg. c. At T= 170°F, x = 50%. Find u, in Btu/lb. d. At p= 100 lbf/in.2, T= 300°F. Find h, in Btu/lb. e. At p= 1.5 MPa, v=0.2095 m³/kg. Find h, in kJ/kg. I 3 с to a 50 re N

Answers

The specified property data at the indicated states will be determined using the tables for water, with a focus on finding specific internal energy (u) or specific enthalpy (h) at each state.

To find the specific internal energy (u) at state A with a pressure (p) of 2 MPa and temperature (T) of 300°C, we refer to the water tables and interpolate to obtain the corresponding value of u in kJ/kg. By locating state A on the p-v and T-v diagrams, we can visually understand the state's position.

At state B with a pressure of 2.5 MPa and temperature of 200°C, we again refer to the water tables and interpolate to find the specific internal energy (u) in kJ/kg. The p-v and T-v diagrams help us visualize the position of state B.

For state C with a temperature of 170°F and a vapor quality (x) of 50%, we use the water tables to find the specific internal energy (u) in Btu/lb. By referring to the p-v and T-v diagrams, we can identify the state's location.

At state D with a pressure of 100 lbf/in² and a temperature of 300°F, we consult the water tables to find the specific enthalpy (h) in Btu/lb. The p-v and T-v diagrams aid in visualizing state D.

State E has a pressure of 1.5 MPa and a specific volume (v) of 0.2095 m³/kg. By utilizing the water tables, we interpolate to determine the specific enthalpy (h) in kJ/kg. The p-v and T-v diagrams assist in comprehending the placement of state E.

Learn more about: Water tables

brainly.com/question/32088059

#SPJ11

The videos show the braking system of a bicycle. The
system is set to stop the bicycle a distance xbxb after the brakes
are applied. You are expected to inspect the reason of an accident
(the bicycle

Answers

The braking system of a bicycle is one of the most important safety features of the bicycle.

The system is set to stop the bicycle a distance x b after the brakes are applied.

However, there are times when the braking system fails, and accidents occur.

In such cases, it is important to inspect the reason for the accident.

The inspection process should include an examination of the braking system and its components.

The first step in inspecting the braking system of a bicycle is to check the brake pads.

The brake pads should be clean, and there should be no signs of wear or damage.

If the brake pads are worn or damaged, they should be replaced immediately.

The next step is to check the brake cables.

The cables should be properly adjusted, and there should be no signs of fraying or damage.

If the cables are damaged, they should be replaced.

The brake levers should also be checked.

The levers should be tight, and there should be no signs of damage.

If the levers are damaged, they should be replaced.

In addition to inspecting the braking system, it is also important to inspect the rest of the bicycle.

The wheels should be properly inflated, and the tires should be in good condition.

The handlebars, pedals, and chain should also be checked for damage.

If any of these components are damaged, they should be replaced immediately.

To know more about features visit:

https://brainly.com/question/31563236

#SPJ11

a)Subtract decimal numbers (574.6 - 279.7) by 9’s & 10’s complement method.
b) Subtract binary numbers (10001.01 – 1111.11).
c) Subtract decimal numbers (125.25 – 46.75) using 12 bit 2’s complement arithmetic.
d) Convert the hexadecimal number BC70.0E into octal.
e) Multiply the octal numbers 647.2 & 5.4.
f) Subtract the hexadecimal numbers (CDF7.52 – AB5.8).

Answers

a) Subtract decimal numbers (574.6 - 279.7) by 9’s & 10’s complement method.9's complement methodLet us start with the 9's complement method:Step 1: Add 1 to the 9's complement of the subtrahend.

Step 2: Add the sum to the minuend.574.6 - 279.7 = 294.9Step 1: 9's complement of 279.7 is 720.3.9's complement of 2 = 7, 9's complement of 7 = 2.9's complement of 9 = 0, 9's complement of 7 = 2.9's complement of 7 = 2, 9's complement of decimal point = 7.Therefore, 9's complement of 279.7 is 720.3.Step 2: Add 1 to 720.3: 720.3 + 1 = 720.4.Add the sum to the minuend: 574.6 + 720.4 = 1295.Then change the sign from + to -:574.6 - 279.7 = - 720.4 + 1295= 574.6 - 279.7 = 294.9 (9's complement method).10's complement methodIn the 10's complement method:

Step 1: Add 1 to the 10's complement of the subtrahend.Step 2: Add the sum to the minuend.574.6 - 279.7 = 294.9Step 1: 10's complement of 279.7 is 720.3.10's complement of 2 = 8, 10's complement of 7 = 3.10's complement of 9 = 0, 10's complement of 7 = 3.10's complement of 7 = 3, 10's complement of decimal point = 9.Therefore, 10's complement of 279.7 is 720.3.Step 2: Add 1 to 720.3: 720.3 + 1 = 720.4.Add the sum to the minuend: 574.6 + 720.4 = 1295.Then change the sign from + to -:574.6 - 279.7 = - 720.4 + 1295= 574.6 - 279.7 = 294.9 (10's complement method).

To kbow more about subtrahend visit:

https://brainly.com/question/24091014

#SPJ11

What is the name of the controller in a control system? O G(s) O H(S) O E(S) O U(s)

Answers

In a control system, the name of the controller is U(s).

What is a Control System?

A control system is a device that regulates and manages the behavior of other devices or systems. The purpose of a control system is to regulate, operate, or manage a device or system in accordance with pre-defined specifications called the control law.

What is the use of a Controller in a Control System?

In a control system, a controller is a device that generates a control signal to control the output of the control system. The controller gets the input from the sensor, then generates the output signal and sends it to the actuator.

There are many types of controllers such as PID controllers, phase lag controllers, phase lead controllers, and so on.

What is the name of the controller in a control system?

In a control system, the name of the controller is U(s).U(s) represents the controller output in the Laplace domain. It is also called the control variable. In the Laplace domain, the transfer function of the controller is represented as C(s).The transfer function is usually expressed as a ratio of two polynomials in the Laplace domain.

The numerator is represented by the polynomial N(s), and the denominator is represented by the polynomial D(s).

What is the transfer function of a controller in a control system?

The transfer function of a controller in a control system is represented as C(s). In the Laplace domain, the transfer function of the controller is represented as C(s) = N(s)/D(s), where N(s) and D(s) are polynomials in the Laplace domain.

Learn more about control system here:

https://brainly.com/question/30076095

#SPJ11

Use the convolution property, to find the FT of the system output, Y(ein) for the following input and system impulse responses
x(n)=(1/2)^n u[n] and h[n] =(1/πn) sin (πn/2)

Answers

The FT of the system output, Y(e^in), for the given input and system impulse responses x(n) and h(n), respectively, can be expressed as the sum of these terms involving the Dirac delta function.

To find the Fourier Transform (FT) of the system output, Y(e^in), using the convolution property, we need to perform the convolution of the input x(n) and the system impulse response h(n) in the time domain, and then take the FT of the resulting convolution.

The convolution of two sequences can be defined as follows:

y(n) = x(n) * h(n) = ∑[k = -∞ to ∞] x(k) * h(n - k)

Given:

x(n) = (1/2)^n u(n)  [where u(n) is the unit step function]

h(n) = (1/πn) sin(πn/2)

Let's calculate the convolution y(n) in the time domain:

y(n) = x(n) * h(n) = ∑[k = -∞ to ∞] x(k) * h(n - k)

      = ∑[k = -∞ to ∞] [(1/2)^k u(k)] * [(1/π(n - k)) sin(π(n - k)/2)]

      = ∑[k = 0 to ∞] [(1/2)^k] * [(1/π(n - k)) sin(π(n - k)/2)]   [Since u(k) = 0 for k < 0]

Now, we can take the Fourier Transform of y(n) to obtain Y(e^in):

Y(e^in) = FT{y(n)}

The Fourier Transform of y(n) can be found by applying the FT to each term in the summation and using the linearity property of the FT.

Taking the Fourier Transform of each term separately, we get:

FT{[(1/2)^k] * [(1/π(n - k)) sin(π(n - k)/2)]}

= [(1/2)^k] * [(1/π(n - k))] * FT{sin(π(n - k)/2)}

The FT of sin(π(n - k)/2) can be obtained using the Fourier Transform pair for the sinusoidal function.

FT{sin(π(n - k)/2)} = j[δ(n - k + 1/2) - δ(n - k - 1/2)]

Substituting this result back into the expression for Y(e^in), we have:

Y(e^in) = ∑[k = 0 to ∞] [(1/2)^k] * [(1/π(n - k))] * j[δ(n - k + 1/2) - δ(n - k - 1/2)]

Therefore, the FT of the system output, Y(e^in), for the given input and system impulse responses x(n) and h(n), respectively, can be expressed as the sum of these terms involving the Dirac delta function.

Learn more about Fourier Transform (FT)  here:

https://brainly.com/question/1542972

#SPJ11

Create a blank workspace in Multisim, and build a non-inverting amplifier as follows: Figure 21: Non-inverting amplifier Select the correct value for the resistors (R1 \& R2) so that the output gain o

Answers

Multisim is a powerful circuit design software that allows you to design and simulate complex circuits. The software is ideal for both students and professionals who want to learn how to design and simulate electronic circuits.

In this tutorial, we will show you how to create a blank workspace in Multisim and build a non-inverting amplifier.
First, open Multisim and create a new blank workspace. Next, click on the "Add Component" button in the toolbar and select "Resistor" from the list of available components. Drag two resistors onto the workspace and place them side by side.


Finally, we need to add a ground connection to the circuit. Click on the "Add Component" button and select "Ground" from the list of available components. Place the ground connection below the op-amp and connect it to the negative power supply rail.

To know more about Multisim visit:

https://brainly.com/question/31465339

#SPJ11

1) If a liquid has a specific gravity greater than one, it should eventually float to the top after being mixed with water. (True/False) 2) Heat and work are only considered in a thermodynamic analysis if it crosses the system boundary. (True / False)

Answers

1. If a liquid has a specific gravity greater than one, it should eventually float to the top after being mixed with water Specific gravity is the density of a substance divided by the density of a reference substance.

Specific gravity is a dimensionless quantity because it is determined by dividing one density by another density. It is used to determine whether or not a substance will float on water. If the specific gravity of a liquid is greater than one, it will float on water. If the specific gravity of a liquid is less than one, it will sink in water. 2. Heat and work are only considered in a thermodynamic analysis if it crosses the system boundary

Thermodynamics is the study of the transfer of heat and work in systems. Heat and work are two of the most important forms of energy transfer in thermodynamics. Heat is the transfer of energy from one body to another as a result of a temperature difference between them. Work is the transfer of energy that results from a force acting over a distance. In thermodynamics, heat and work are considered to be forms of energy transfer that can cross the system boundary. This means that they can be transferred between the system and its surroundings.

To know more about gravity  visit:

https://brainly.com/question/31321801

#SPJ11

Application design is responsible for persistent layer design. • Explain which types of design objects are required in the application design for entity objects that the updated states of objects can be written into the database tables? A▾ 6 - B I Ť # % S O U S X₂ x² C 5 :*; # X

Answers

In the application design for entity objects, the design objects required for writing updated states into the database tables are: entity classes, data access objects (DAOs), and database connection objects.

In the application design for entity objects, several design objects are necessary to facilitate writing the updated states of objects into the database tables. These design objects include Entity classes: These classes represent the entities or objects that need to be persisted in the database. They encapsulate the data and behavior of the entities and provide methods to update their states. Data Access Objects (DAOs): DAOs are responsible for encapsulating the logic of accessing and manipulating data in the database. They provide methods to create, read, update, and delete (CRUD) entity objects in the database. The DAOs abstract the underlying database operations and provide a convenient interface for the application to interact with the database. Database connection objects: These objects establish and manage connections to the database. They handle the low-level communication with the database server, execute SQL queries or statements, and retrieve or update data. By using these design objects, the application can update the states of entity objects and persist those changes in the database tables. The entity classes hold the updated data, the DAOs provide the necessary methods to save the changes to the database, and the database connection objects handle the actual communication with the database server. Together, these design objects facilitate the persistence of object states in the database.

learn more about application here :

https://brainly.com/question/31164894

#SPJ11

9. What is Futurebuilt's definition of a Circular Building?

Answers

Futurebuilt defines a Circular Building as a building that is designed, constructed, and operated in a way that minimizes resource use, waste generation, and environmental impacts throughout its entire life cycle.

This approach aims to create a closed-loop system where materials and resources are continuously reused, recycled, or regenerated, rather than being discarded as waste. Circular Buildings are characterized by their focus on energy efficiency, use of renewable materials, and implementation of sustainable and regenerative practices.

A circular building is environmentally responsible through smart design and resource-efficiency. Every building life cycle begins at the design stage. In a circular building, this requires particular attention, not only taking into account the effective use of space and efficient energy consumption during the use phase of the building, but also considering the further phases in the life cycle including alteration, demolition and urban mining.

Learn more about energy consumption:

brainly.com/question/27957094

#SPJ11

Which of the following would NOT use dynamic braking:
a)A bucket on a drag line on its downward travel before taking another bite.
b)A hybrid (battery/engine driven) motor vehicle approaching a red light.
c)An aerial ropeway transferring ore from a ROM Bin, on a mountain top, to a crushing station at sea level.
d)A conveyor system transferring coal from underground to an above ground stockpile.

Answers

The option that would NOT use dynamic braking is option (d) A conveyor system transferring coal from underground to an above ground stockpile. Dynamic braking is a technology which is used to stop moving vehicles, machines and other mechanical devices efficiently.

The energy that is released during deceleration is absorbed and used to operate a secondary braking system or to provide power to auxiliary functions. Dynamic braking is commonly used in hybrid and electric vehicles to recharge the battery during braking. It is also used in heavy machinery such as elevators, cranes and draglines, and in mining and transportation systems to control the speed of moving materials .

 A hybrid (battery/engine driven) motor vehicle approaching a red light uses dynamic braking to recharge the battery. In option (c), An aerial ropeway transferring ore from a ROM Bin, on a mountain top, to a crushing station at sea level uses dynamic braking when the loaded gondola descends to the crushing station at sea level.

To know more about vehicle visit:

https://brainly.com/question/33465613

#SPJ11

Design a transistor level and draw the stick diagrams
for a 2 input CMOS OR gate using magic layout

Answers

Designing a transistor level and drawing the stick diagrams for a 2 input CMOS OR gate using magic layout can be done in the following steps:

Step 1: Determine the logic expression of the OR gateA two-input CMOS OR gate can be implemented using the following Boolean expression:Y = A + Bwhere A and B are the input signals, and Y is the output.

Step 2: Create the transistor-level schematic diagramA transistor-level schematic diagram is created using the logic expression determined in step 1. The NMOS and PMOS transistors are placed appropriately.

Step 3: Draw the stick diagramsA stick diagram is a visual representation of the transistor-level schematic diagram that shows the relative placement of the transistors. Stick diagrams are drawn for both the NMOS and PMOS transistors separately.

To know more about transistor visit:

https://brainly.com/question/30335329

#SPJ11

Suppose we have a digital clock signal (1.e. a square wave) operating a 2000 Hz (2kHz) with a Duty Cycle of 30%. Using the relationship between frequency and period and the definition of what ‘Duty Cycle" means), please answer the following: a. What is the period T (in units of time) of each clock cycle? b. For how long (in units of time) is each clock cycle 'HIGH' (as 1)? For how long (in units of time) is each clock cycle 'LOW' (as 0)? d. So, is the clock signal ‘mostly high’, or ‘mostly low"?

Answers

Given that a digital clock signal (i.e. a square wave) operating at 2000 Hz (2kHz) with a Duty Cycle of 30%. Using the relationship between frequency and period and the definition of what ‘Duty Cycle" means), the following can be determined:a.

The period T (in units of time) of each clock cycleT = 1/frequency = 1/2000 Hz = 0.0005 s or 500 μs b. For how long (in units of time) is each clock cycle 'HIGH' (as 1)? For how long (in units of time) is each clock cycle 'LOW' (as 0)?The duty cycle is 30%, therefore the ‘HIGH’ time is:30% × T = 0.3 × 0.0005 s = 150 μsSo, the ‘LOW’ time is:(100% - 30%) × T = 70% × 0.0005 s = 350 μs d. Is the clock signal ‘mostly high’, or ‘mostly low"?The duty cycle is 30% (HIGH) and 70% (LOW), therefore the clock signal is ‘mostly low’.The period T (in units of time) of each clock cycle is 0.0005 s or 500 μs.For how long (in units of time) is each clock cycle 'HIGH' (as 1)? The ‘HIGH’ time is 150 μs.For how long (in units of time) is each clock cycle 'LOW' (as 0)? The ‘LOW’ time is 350 μs.

To know more about signal visit:

https://brainly.com/question/31473452

#SPJ11

A helix was build with an overall length of 78.7cm, a diameter of 4.84 cm, and a pitch angle of 11.7º. The center frequency of operation is 1.7 GHz. Calculate the following: 1. The number of turns 2. The directivity in decibels 3. The half power beamwidth in degrees 4. The axial ratio for the helix

Answers

The number of turns: 13.91 turns, The directivity in decibels: 18.4 dB, The half power beamwidth in degrees: 2.08°, The axial ratio for the helix: 44.02.

1. The number of turns:

The number of turns can be determined using the formula given below: N = L/P

Here, L = overall length of the helix P = pitch angle

N = 78.7 / (11.7 * pi / 180)

N = 13.91 turns

2. The directivity in decibels:

Directivity is defined as the ratio of maximum radiation intensity to the average radiation intensity over the sphere. It is measured in decibels (dB).

Directivity (in dB) = 10 log (4π / Ω)

Here, Ω = beam solid angle Ω = (π * D / λ)2

Here, D = diameter λ = wavelength

Directivity = 10 log (4π / (π * 4.84 / (1.7 * 10^9)))2

Directivity = 18.4 dB

3. The half power beamwidth in degrees:

The half-power beam width (HPBW) is defined as the angular separation between the half-power points of the main lobe of the antenna.

The HPBW can be calculated using the formula given below:

HPBW = 70λ / DHPBW = 70 * (3 * 10^8) / (4.84 * 1.7 * 10^9)

HPBW = 2.08°

4. The axial ratio for the helix:

The axial ratio is the ratio of major axis to minor axis.

It can be calculated using the formula given below:

Axial ratio = C / D

Here, C = circumference of the helix D = diameter of the helix

C = pi * D * N = pi * 4.84 * 13.91 = 212.96

Axial ratio = 212.96 / 4.84 = 44.02

Therefore, the four parameters of the given helix, the number of turns, directivity, the half power beamwidth in degrees, and the axial ratio for the helix have been calculated separately.

To know more about decibels refer to:

https://brainly.com/question/29068945

#SPJ11

Consider the following second order systems modeled by the following differential equations:

g" (t) – 6g (t) + 6g(t) = x(t)+ 2x(t) 2)
g" (t) - 6g (t) +62(t) = 2x(t)

What is the frequency response of the system?

Answers

The frequency response of the system is G(s) = [ X(s) + 2[ X(s²)]] / s² and G(s) = X(s) / s² respectively.

The frequency response of the system can be obtained by taking the  Laplace transform of the differential equation and finding the transfer function, representing the relationship between the input and output signals in the frequency domain.

To determine the frequency response of the system, we need to find the transfer function of the system. Let's consider the second differential equation:

g"(t) - 6g(t) + 6g(t) = 2x(t)

Taking the Laplace transform of both sides and rearranging, we get:

s^2G(s) - 6G(s) + 6G(s) = 2X(s)

To simplify, we have:

G(s)(s^2 - 6s + 6) = 2X(s)

Dividing both sides by (s^2 - 6s + 6), we obtain the transfer function:

H(s) = G(s)/X(s) = 2/(s^2 - 6s + 6)

The frequency response of the system is the magnitude and phase response of the transfer function H(s). It can be obtained by substituting s = jω (where j is the imaginary unit and ω is the angular frequency) into the transfer function and calculating the magnitude and phase at different frequencies ω.

Learn more about transfer function here:

https://brainly.com/question/33394584

#SPJ11

Determine the output of the following signal after passing
through an ideal low-pass filter with a cut-off frequency of 4 kHz.
(3 Marks) ( ) ( ) cos(2 ) y t  x1 t  f c t  where ( ) 2cos

Answers

Given the signal, y(t) = x1(t) × 2cos(2πfct + θ), where x1(t) = cos(2000πt) + sin(4000πt) and fc = 4kHz, we need to determine the output of the signal after passing through an ideal low-pass filter with a cut-off frequency of 4 kHz.

An ideal low-pass filter allows all frequencies below the cut-off frequency to pass and blocks all frequencies above the cut-off frequency. So, the filter will allow all frequencies below 4 kHz to pass through and attenuate all other frequencies.

Let's first find the frequency components of the signal y(t):

y(t) = x1(t) × 2cos(2πfct + θ)

= (cos(2000πt) + sin(4000πt)) × 2cos(2π4×10³t + θ)

= cos(2π4×10³t + θ) + sin(2000πt + 2π4×10³t + θ) + sin(4000πt − 2π4×10³t − θ) + sin(4000πt + 2π4×10³t + θ)

The frequency components of y(t) are:

f1 = 4kHz

f2 = 2kHz + 4kHz = 6kHz

f3 = −2kHz + 4kHz = 2kHz

f4 = 4kHz + 4kHz = 8kHz

The ideal low-pass filter will pass only the frequency component f1 = 4 kHz and will attenuate all other frequency components. Therefore, the output of the signal after passing through the filter is:

yout(t) = cos(2π4×10³t + θ)

Answer: yout(t) = cos(2π4×10³t + θ)

To know more about frequency  visit:

https://brainly.com/question/29739263

#SPJ11

Which organization promotes technology issues as an agency of the United Nations?

International Telecommunication Union (ITU)
Institute of Electrical and Electronics Engineers (IEEE)
American National Standards Institute (ANSI)
Internet Assigned Numbers Authority (IANA)

Answers

The International Telecommunication Union (ITU) promotes technology issues as an agency of the United Nations.

The International Telecommunication Union (ITU) is a specialized agency of the United Nations responsible for issues related to information and communication technologies (ICTs)
ITU is involved in a wide range of activities, including standardization, spectrum management, telecommunications development, cybersecurity, and emergency communications.

ITU plays a key role in the development of global standards and regulations for telecommunications and information technologies, working closely with industry, governments, and other stakeholders. The ITU has been around for over 150 years, and its membership includes governments, private companies, and academic institutions from around the world. Its headquarters is located in Geneva, Switzerland.

To know more about  Telecommunication visit :

https://brainly.com/question/3364707

#SPJ11

3. (10 points) Consider a brute force string-scarch algorithm below: Input: text \( t \) of length \( n \) and word \( p \) of length \( 3 . \) Output: a position at which we have \( p \) in the text.

Answers

A brute-force string search algorithm is also known as a Naive Algorithm.

It compares each character in the text with the pattern to be searched.

It scans each character in the text and compares it with the first character of the pattern.

If the first character of the pattern is found in the text, it proceeds to compare the next character of the text and pattern.

This process continues until either the pattern is found in the text or not.

If the pattern is found, it returns the position of the pattern in the text.

If not, it returns ‘not found.’

The time complexity of the brute-force algorithm is O(nm), which is not efficient for large inputs.

The worst-case scenario occurs when each character of the text needs to be compared with the pattern.

If the pattern occurs at the end of the text, it needs to scan the entire text before finding the pattern.

the brute-force algorithm is not recommended for large inputs.

To know more about algorithm visit:

https://brainly.com/question/33344655

#SPJ11

Other Questions
add a schematic diagram on proteus 8 usePIC16F877Awrite the code in micro cadd the code written not a photoQ1) Create a new program name it (adc_1). Write a code to compare between two potentiometers (R24 and R22) if the value of \( R 22 \) is the greatest then set \( R B 0=1 \). If not then set RB7=1 Down Q/ Write a program to find the roots of the following equation using N-R method: F(x) = sin(x) in 1989, the court case ___ required a more equitable system of public school funding in texas. A Bernoulli differential equation is one of the form dy/dx+P(x)y=Q(x)yn() Observe that, if n=0 or 1 , the Bernoulli equation is linear. For other values of n, the substitution u=y transforms the Bernoulli equation into the linear equation du/dx+(1n)P(x)u=(1n)Q(x). Consider the initial value problem xy+y=2xy2,y(1)=8. This differential equation can be written in the form () with P(x)=Q(x)=, and n= Sales of Version 3.0 of a computer software package start out high and decrease exponentially. At time t, in years, the sales are s(t) = 25e^-t thousands of dollars per year. After 3 years, Version 4.0 of the software is released and replaces Version 3.0. Assume that all income from software sales is immediately invested in government bonds which pay interest at a 8 percent rate compounded continuously, calculate the total value of sales of Version 3.0 over the three year period. value= ______________ thousand dollars Design and create relevant tables and insert necessary data from the Entity-Relationship diagram using convenient database application for doing the following exercises. Provide the title of the exercise and the execution result screenshot with short descriptions (2 or 3 sentences). Answer all questions: 1. Select all the information from the SalGrade table. 2. Select all information from the Employee table. 3. List all employees who have a salary between 1000 and 2000. 4. List department numbers and names in department name order. 5. Display all different job types. Page 5 of 7 6. List the details of the employees in departments 10 and 20 in alphabetical order of name. 7. List names and jobs of all clerks in department 20. 8. Display all employees names which have TH or LL in them. 9. List the employees name, job and salary for all employees who have a manager. 10. Display name and total remuneration of all employees. 11. Display all employees who were hired during 2010. 12. Display name, annual salary and commission of all employee whose monthly salary is greater than their commission. 13. Display all employee names and their department name. 14. Display all employee names, department number and name. 15. Display employee names, location and department whose salary is more than 1500 a month. 16. Produce a list showing employees salary grades. 17. Show only employees on Grade 3. 18. Show all employees in Kuala Lumpur. 19. List employee name, job, salary, grade and department name for everyone in the company except clerks. 20. List employee name, job, annual salary, department number who is having the designation as clerk cesare beccaria believed that punishment should be swift and certain. Match the source rock with the magma type produced from partial melting of that source rock. Group of answer choices partial melt of asthenosphere [ Choose ] partial melt of subducting ocean crust and marine sediments [ Choose ] partial melt of continental crust [ Choose ] An annuity pays 150 at the end of each of the next 5 years and 200 at the end of each of the five following years. If i 6%, find the present value of the annuity. #print out your values There are errors in the theList #Given Variables theList = [0, 'apple', 234, "fred', 5392, 3j, 23.5, 14, 'bread', -32, 14,, 'gravy', 3452.4, 1 + 3j, 12, 'cherry', 19, 42, 'eggnog', 345, 'durian', 674, -18, -219, 'fig'] theDictionary = {'key1' : 'value1', 'key2': 'value2', 'key3' : 'value3'} the Tuple = ('Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday') theString = "several rodeo improv people belcH adieu for deist japes" aSet = {'apple', 'banana', 'cherry', 'durian'} anotherSet {'apple', 'bread', 'cheese', 'french fries'} #2 List # set up empty counter variables to count the number of words and numbers in the list. (example count Numbers = 0, countWords = 0 etc) # run the list through a for-loop. inside the for-loop have an if-elif-else structure. # if the item in the list is a string (word), increment the word counter by one, etc. # more than one data type may match the human definition of a number # print out how many of each you have. Use good grammar and a sentence in the print statement. #3 Dictionary # add key4 and value4 to dictionary # change key3 and value3 to 'star': 'Hrithik Roshan' # print out your keys # print out your values when assisting with the nutritional assessment of a newly admitted confused Question 1 [15 points] Consider the following complex number c. The angles in polar form are in degrees: c = a + ib = 2i9 + 8e1452e-i45 Determine the real part a and imaginary part b of the complex number without using a calculator. (Students should clearly show their solutions step by step, otherwise no credits). Note: cos(90) = cos(-90) sin(90) = cos(0) = 1; cos(-90) = sin(0) = 0; sin(-90) = -1; sin(45) = cos(45) = 0.707 Please help (27)When inhaled, radioactive substances can have a long lasting effect on your body. If you inhale a radioactive substance with a decay constant of 3.2 103 s1, what is its half-life (in s)?s b. For the following input signal x(t) = [8(t13k) 8(t2 3k)] k=-[infinity]o i. Sketch the signal x(t). [1.5 points] ii. Find the Exponential Fourier series of x(t). [1.5 points] iii. Let Yk represent the Exponential Fourier series coefficients of the resulting output. Determine Y. [2 points] Find the radius of the right circular cylinder of largest volume that can be inscribed in a sphere of radius 1 (Round to two decimal places, please) Mickley Company's plantwide predetermined overhead rate is $23.00 per direct labor-hour and its direct labor wage rate is $15.00 perhour. The following information pertains to Job A-500:Direct materials $ 290Direct labor $ 150Required:1. What is the total manufacturing cost assigned to Job A-500?2. If Job A-500 consists of 60 units, what is the unit product cost for this job? In labor supply theory, the wage elasticity of labor, which represents the change in hours worked in response to changes in wage, O is always positive O is always negative can be either positive or negative QUESTION 24 In labor supply theory, the greater the absolute value of wage elasticity O The greater the ratio of union to non-union wages becomes The larger is the percentage change in hours worked associated with any given percentage change in wages. The greater is the impact on the output market associated with any given percentage increase in wages. O none of the above Find the magnitude of the magnetic fux through the floor of a house that measures 20 m by 19 m. Assume that the Earth's magnetic field at the location of the house has a horizontal component ol 2.4105 T pointing north, and a dowrward vertical component of 4.4105 T. Express your answer using two signilficant figures. From Frances point of view, were the decisions made at the Congress of Vienna fair? Think about: Metternichs three goals, Frances loss of territory, and the fears of the rest of Europe. producing industries include businesses that produce or manufacture products used by other businesses or purchased by final consumers.