An induction motor has the following parameters: 5 Hp, 200 V, 3-phase, 60 Hz, 4-pole, star- connected, Rs=0.28 12, R=0.18 12, Lm=0.054 H, Ls=0.055 H, L=0.056 H, rated speed= 1767 rpm. (i) Find the slip speed, stator and rotor current magnitudes when it is delivering 12 Nm air gap torque under V/f control; (please note that you can ignore the offset voltage for V/f control, and this motor is not operating under the rated condition at 12 Nm) (ii) When this motor is under indirect vectorr control, compute the line-to-line stator rms voltage magnitude at the rated speed condition, when the rotor flux is 0.421 Wb-Turn, the torque producing current is 16 A, and the flux producing current is 8 A.

Answers

Answer 1

Slip speed is given by the formula, ns = 120 f/P where ns is synchronous speed, f is frequency of power supply and P is number of poles of the machine.

Substituting given values in this formula,

ns = 120 × 60/4 = 1800 rpm.

Slip speed,

s = ns – nr,

where nr is the rotor speed.

From speed torque curve, slip corresponding to 12 Nm torque is 5.4%.

rotor speed nr = 1767(1 – 0.054) = 1669 rpm.

Slip speed s = 1800 – 1669 = 131 rpm.

Stator current,

Is = Pg / (3 Vl cos ϕ)

where Pg is gross mechanical power developed in the air gap, Vl is line voltage and cosϕ is power factor.

Under V/f control, the motor is not operating under rated condition.

Hence, we need to determine the voltage/frequency (V/f) ratio at 12 Nm torque condition.

According to V/f control,

V/f = constant.

the voltage and frequency can be varied in proportion to each other.

At rated condition, V/f ratio is given as (200/60) = 3.33.

the V/f ratio at 12 Nm torque can be calculated as (12/5) × 3.33 = 8 V/Hz (approx.).

Gross mechanical power developed,

Pg = 2πnT / 60

where T is the torque developed and n is the rotor speed in rpm.

Substituting values,

Pg = 2π × 1669 × 12 / 60 = 1326.4 W.

Cos ϕ at 12 Nm torque condition is not given, hence it is assumed that it remains same as at rated condition.

Cos ϕ at rated condition can be calculated as 0.8 (approx).

Is = 1326.4 / (3 × 200 × 0.8) = 2.08 A.

Rotor current, Ir = Is / s = 2.08 / (131/1669) = 26.38 A

Torque producing current,

Ia = (Pg / 3) / (ωmϕr)

where ϕr is rotor flux and ωm is electrical radian frequency.

From the given data,

ϕr = 0.421 Wb-Turn,

Ia = 16 A,

P = 4, f = 60 Hz and

ns = 1800 rpm.

Electrical radian frequency,

ωm = 2πf / P = 2π × 60 / 4 = 94.25 rad/s.

Pg can be calculated from the given data, as,

T = Pg / ωm, where T is the developed torque.

To know more about synchronous visit:

https://brainly.com/question/27189278

#SPJ11


Related Questions

3. An ideal Otto engine, operating on the hot-air standard with k=1.34, has a compression ratio of 5. At the beginning of compression the volume is 6ft3 , the pressure is 13.75 psia and temperature is 100F. during constant - volume heating, 350 Btu are added per cycle. Compute T3,P3,T3, QA, QR, Wnet, thermal Efficiency, and mean effective pressure.

Answers

Given data: Compression ratio = V1/V2 = 5The initial volume of the engine = V1 = 6ft3Pressure at the beginning of compression = P1 = 13.75 psia.

Volume at the end of compression V2 = V1/r = 6/5 = 1.2 ft3Using the ideal gas equation, PV = mRT1 => P1V1 = mR(T1+460)where m is the mass of the air, R is the gas constant of air, T1 is the temperature in Fahrenheit.Rearranging and substituting the values;`m = P1V1/R(T1+460)` = (13.75 x 6) / (53.35 x (100+460)) = 0.0333 lbmCalculating the temperature and pressure at the end of the isentropic compression;P2V2^k = P1V1^kSince the process is adiabatic, PV^k = constant. Therefore;T2 = T1 * r^(k-1) = 100 * 5^(1.34-1) = 831.3 FT2/P2 = T1/P1 * r^(k) = 100/13.75 * 5^(1.34) = 170.6 F / 92.65 psiaDuring the constant volume heating process, the pressure and temperature of the air increase from (P2, T2) to (P3, T3).

The heat added to the air during the constant volume heating is rejected during the isentropic expansion process.Q1V = mCv(T3-T2) = mCv(T3-T4)where T4 is the temperature at the end of the expansion process.T4 = T1 * r^(k-1) = 100 * 5^(1.34-1) = 831.3 FQA = Q1V = mCv(T3-T4) = 0.0333 x 133.38 x (2260-831.3) = 35680.14 BtuThe compression work Wc = mCv(T2-T1) = 0.0333 x 133.38 x (831.3-100) = 3577.58 BtuThe expansion work We = mCv(T3-T4) = 0.0333 x 133.38 x (2260-831.3) = 35680.14 BtuTherefore, Wnet = We - Wc = 35680.14 - 3577.58 = 32102.56 BtuThe thermal efficiency is given by;η = Wnet/Q1V = 32102.56/350 = 91.72%The mean effective pressure (MEP) is given by;MEP = Wnet/V1(V2/r - V1) = 32102.56/6(1.2/5 - 1) = 148.1

To know more about volume visit:

https://brainly.com/question/32332387

#SPJ11

Why is the loating effect. effect not much of a problem between the two stages of an instrumentation amplifier? What are the Common-mode and differential-mode voorge of the input stage of an instrumentation amp- lifier? Why is the stated set of results. important? Explain.

Answers

The effect of the floating effect is not much of a problem between the two stages of an instrumentation amplifier because the voltage gain of the differential amplifier of the first stage is higher than that of the buffer amplifier in the second stage.

This is because the floating effect is more pronounced in low voltage amplifiers with low voltage gain and high output impedance. In contrast, instrumentation amplifiers have high voltage gain, low output impedance, and high input impedance, which makes them less susceptible to the floating effect.Common-mode and differential-mode voltage of the input stage of an instrumentation amplifier:In an instrumentation amplifier, the differential amplifier provides the differential mode gain, while the input buffer provides the common-mode gain.

The stated set of results is important because it shows how well the instrumentation amplifier performs in terms of noise reduction, signal amplification, and input offset voltage. This is because the performance of the instrumentation amplifier depends on these factors. Noise reduction helps to eliminate unwanted signals from the input signal, while input offset voltage affects the accuracy of the output signal. Therefore, the set of results helps to determine the effectiveness of the instrumentation amplifier in reducing noise and offset voltage.

To know more about amplifier visit :

https://brainly.com/question/33224744

#SPJ11

Assume the unsigned integer in base 10, x=11. What are the results of x << 4 (logical shift left by 4) and x >> 3 (logical shift right by 3), respectively? We use 11 bits to represent the number and when we apply the shift. The result of the shift in either case remains an unsigned integer in terms of representation.

None of the options 8 and 1 176 and 1 1000 and 1

Answers

The results of x << 4 (logical shift left by 4) and x >> 3 (logical shift right by 3) are 176 and 2, respectively.

Here, x is an unsigned integer in base 10 which is equal to 11. We have to calculate the results of x << 4 (logical shift left by 4) and x >> 3 (logical shift right by 3), respectively. We use 11 bits to represent the number and when we apply the shift. The result of the shift in either case remains an unsigned integer in terms of representation.

Logical shift left and Logical shift right operations are used to move the bits of a number either left or right by shifting zeros into the newly created bits. It works with two operators, "<<", which shifts the bits of a number to the left and ">>" which shifts the bits of a number to the right. Logical shift left is performed by adding zeros to the right-hand side of the binary number. In binary, left shifting by 4 positions is the equivalent of multiplying by 2^4, or 16. It means we need to multiply the number by 16, that is; x << 4 = 11 << 4= 176

Binary representation of 11: 0000 1011

After logical shift left by 4, the binary representation will be 1011 0000, which is equal to the decimal value of 176. Logical shift right is performed by removing the n bits from the right-hand side of the binary number. In binary, right shifting by 3 positions is the equivalent of dividing by 2^3, or 8. It means we need to divide the number by 8, that is; x >> 3 = 11 >> 3= 1

Binary representation of 11: 0000 1011

After logical shift right by 3, the binary representation will be 0000 0010, which is equal to the decimal value of 2.

Therefore, the results of x << 4 (logical shift left by 4) and x >> 3 (logical shift right by 3) are 176 and 2, respectively.

To know more about Binary representation refer to:

https://brainly.com/question/30543511

#SPJ11

Consider that a 100 Kbps data stream is to be transmitted on a voice grade telephone with band width of 3 KHz. It is possible to achieve error free transmission with SNR of Page 1 of 2 10 dB. Justify your answer. If it is not possible, suggest system modification that might be made.

Answers

Given that the data stream is 100 Kbps and the bandwidth of the telephone is 3 KHz, it is not possible to achieve error-free transmission with an SNR of 10 dB because the channel capacity of the voice-grade channel is not sufficient to accommodate the data rate of the stream.

Explanation:The channel capacity is given by the Shannon-Hartley theorem, which states that the maximum capacity of a communication channel is C=B*log2(1+SNR), where C is the channel capacity, B is the bandwidth, and SNR is the signal-to-noise ratio.It is given that the bandwidth is 3 KHz, and SNR is 10 dB. To convert SNR from dB to a linear scale, we can use the formula SNR=10*log10(Signal/Noise).

Using this information, we can calculate the channel capacity: [tex]C=3*log2(1+10)=3*log2(11)=16.15 Kbps.[/tex] Since the channel capacity is less than the data rate of the stream, it is not possible to achieve error-free transmission. To improve the transmission quality, we could increase the bandwidth of the channel or decrease the data rate of the stream to match the channel capacity. Alternatively, we could use techniques such as error correction coding or interleaving to improve the resilience of the transmission to errors.

To know more about capacity visit:

https://brainly.com/question/30630425

#SPJ11

Solve y[n] - (1/2)y[n 1] = [n] by using the Z-transform and sketch the solution.

Answers

Given the difference equation [tex]y[n] - (1/2)y[n - 1] = [n][/tex]By applying the Z-transform on both sides of the above equation, we get [tex]Y(z) - (1/2)z^-1Y(z) = Z{[n]} ⇒ Y(z)(1 - (1/2)z^-1) = Z{[n]} ⇒ Y(z) = Z{[n]}/(1 - (1/2)z^-1)[/tex]Here, Z{[n]} is the Z-transform of [n].We know that [tex]Z{[n]} = 1/(1 - z^-1)^2Hence, Y(z) = 1/((1 - z^-1)^2(1 - (1/2)z^-1))[/tex]

By partial fraction method, we can express the above equation as[tex]Y(z) = A/(1 - z^-1) + B/(1 - z^-1)^2 + C/(1 - (1/2)z^-1)[/tex]where A, B and C are constants.By solving for A, B and C, we get A = 1/2, B = -1/2 and C = 1 Now, [tex]Y(z) = 1/2/(1 - z^-1) - 1/2/(1 - z^-1)^2 + 1/(1 - (1/2)z^-1)[/tex] By applying the inverse Z-transform on both sides of the above equation, we get [tex]y[n] = (1/2)u[n - 1] - (n - 1/2)u[n - 1] + 2(1/2)^nu[n][/tex]

Hence, the solution of the given difference equation is [tex]y[n] = (1/2)u[n - 1] - (n - 1/2)u[n - 1] + 2(1/2)^nu[n][/tex] where u[n] is the unit step function.Sketch of the solution is shown below:

To know more about transform visit :

https://brainly.com/question/29479702

#SPJ11

(i) Compute the Energy and Power of the following signal: \( u[n] \) is the unit step signal. \[ x[n]=u[n-5] \] (ii) Determine if the following signal is periodic and compute its fundamental period if

Answers

Compute the Energy and Power of the following signal: \( u[n] \) is the unit step signal. \[ x[n]=u[n-5] \]Since, \( u[n] \) is the unit step signal.

For the given signal, x[n]=u[n-5]\[x[n]=u[n-5]\] [tex]\Rightarrow[/tex] \[x[n]=\begin{cases} 0\qquad n<5\\ 1\qquad n\geq5 \end{cases}\] Thus, for the given signal, the signal has the value 1 after the index n=4 and zero before this.

The signal energy can be calculated as:\[E_{x}=\sum_{n=-\infty}^{\infty}|x[n]|^{2}\]As per the signal's definition, the signal is nonzero only after the index n=4.

The summation is evaluated from 4 to infinity. So,\[\begin{aligned} E_{x}&=\sum_{n=4}^{\infty}|x[n]|^{2}\\ &=\sum_{n=4}^{\infty}|1|^{2}\\ &=\sum_{n=4}^{\infty}1\\ &=\infty \end{aligned}\]Thus, the signal is not an energy signal, as the signal energy is infinite. Now, we will compute the signal power.

The signal power can be calculated as:\[P_{x}=\lim_{N\rightarrow\infty}\frac{1}{2N+1}\sum_{n=-N}^{N}|x[n]|^{2}\]As per the signal's definition, the signal is nonzero only after the index n=4.

To know more about signal visit:

https://brainly.com/question/31473452

#SPJ11

Power Electronics Technique I. (14 points) (a) The efficiency of a converter is 95%, if the output power is 950W, what is the input power? (b) For a DC-DC converter of n-90%, input power is 500W, the input voltage is 45V, what is the output current?

Answers

(a) The efficiency of a converter is given by the formula:

Efficiency = (Output Power / Input Power) * 100%

We are given that the efficiency is 95% and the output power is 950W. We can rearrange the formula to solve for the input power:

Input Power = (Output Power / Efficiency) * 100%

Substituting the given values, we get:

Input Power = (950W / 95%) * 100%

Input Power = 1000W

Therefore, the input power is 1000W.

(b) The efficiency of a DC-DC converter is given by the formula:

Efficiency = (Output Power / Input Power) * 100%

We are given that the efficiency is 90% and the input power is 500W. We can rearrange the formula to solve for the output power:

Output Power = (Efficiency / 100%) * Input Power

Substituting the given values, we get:

Output Power = (90% / 100%) * 500W

Output Power = 450W

The output power can also be calculated using the formula:

Output Power = Output Voltage * Output Current

Since we are given the input voltage (45V), we can rearrange the formula to solve for the output current:

Output Current = Output Power / Output Voltage

Substituting the given values, we get:

Output Current = 450W / 45V

Output Current = 10A

Therefore, the output current is 10A.

Learn more about DC-DC converter here:

https://brainly.com/question/21593477


#SPJ11

Please show everything in detail. Please screenshot
everything in wolfram modeler system
3. Question 3 [8] Figure 3.1 Spring Damper Mass system For the system displayed in Figure 3.1, Construct the model Wolfram System Modeler, Simulate it for 60 seconds. For the damperl insert the follow

Answers

To construct the model in Wolfram System Modeler and simulate it for 60 seconds for the given spring-damper-mass system displayed in Figure 3.1, the following steps can be followed:

Step 1: Create a new model in Wolfram System Modeler by clicking on "New Model" in the home page of the software.

Step 2: Give a name to the new model, for example, "Spring_Damper_Mass_System" and then click on "Create" button.

Step 3: Once the new model is created, the Model Center screen appears where we can drag and drop the required components from the Component Library. From the Component Library, we need to select "Modelica Standard Library" and then select "Mechanics.Translational.Components" which contains components for translational mechanical systems.

Step 4: From the above selection, we can drag and drop the components "Mass", "Damper", and "Spring". The screen looks like the below image:Screenshot of the Wolfram System Modeler showing the Model Center screen:

Step 5: Connect the components by drawing lines between the connectors. The connectors can be accessed by clicking on the respective components. Also, the parameters of the components can be adjusted by double-clicking on them. In the given system, the mass (M) is connected to the ground through a spring (k) and a damper (c). The spring and damper are connected to the ground. The connections are shown in the below image:Screenshots of the Wolfram System Modeler showing the connections of the components:

Step 6: To simulate the model, click on the "Simulation" button present in the Model Center screen and then click on the "Simulate" button. The simulation time can be set to 60 seconds by clicking on the "Simulation settings" button. The simulation results can be visualized by clicking on the "Results" button.Screenshots of the Wolfram System Modeler showing the Simulation settings and Results screen:

To know about Modeler visit:

https://brainly.com/question/32196451

#SPJ11

A 36 VA, 120/12 volt, 60 Hz transformer is connected as a booster by placing a 3 + j4 load on the high side and a car battery (12 volt direct current) on the low voltage side. An ohmmeter was previously connected and 240 ohms on the high side and 2.4 ohms on the low side were measured. Determine:
a) The current in the load,
b) The current in the battery,
c) The voltage in the load.

Answers

To solve the given problem, we'll follow these steps:

1) Calculate the equivalent impedance of the transformer:

  - The impedance on the high side is given as 240 ohms, and on the low side as 2.4 ohms.

  - Since the transformer is step-down (from 120 V to 12 V), the impedance scales down by the turns ratio squared.

  - The turns ratio is given by (120 V / 12 V) = 10.

  - Therefore, the equivalent impedance on the high side is (240 ohms / 10^2) = 2.4 ohms.

2) Calculate the current in the load:

  - The load is given as 3 + j4 ohms, where j represents the imaginary unit (√(-1)).

  - To find the current, we can use Ohm's Law: I = V/Z, where I is the current, V is the voltage, and Z is the impedance.

  - The voltage across the load is 12 V (since it's connected to the low voltage side).

  - The impedance of the load is Z = 3 + j4 ohms.

  - Therefore, the current in the load is I_load = 12 V / (3 + j4) ohms.

3) Calculate the current in the battery:

  - Since the transformer is an ideal transformer, the power on the high side should equal the power on the low side.

  - Power is given by P = VI, where P is the power, V is the voltage, and I is the current.

  - On the high side, the power is (120 V) * I_high.

  - On the low side, the power is (12 V) * I_battery.

  - Since the powers are equal, we can set up the equation: (120 V) * I_high = (12 V) * I_battery.

  - Rearranging the equation gives: I_battery = (120 V / 12 V) * I_high.

  - I_high is the current flowing through the transformer, which we can calculate using Ohm's Law: I_high = 120 V / 2.4 ohms.

  - Substituting the value of I_high, we find the current in the battery: I_battery = (120 V / 12 V) * (120 V / 2.4 ohms).

4) Calculate the voltage in the load:

  - The voltage across the load is given by V_load = I_load * Z_load, where V_load is the voltage, I_load is the current, and Z_load is the impedance of the load.

  - Substituting the values, we can calculate the voltage in the load: V_load = I_load * (3 + j4) ohms.

Performing the calculations with the given values will yield the desired results for the current in the load (a), the current in the battery (b), and the voltage in the load (c).

Learn more about impedance here:

https://brainly.com/question/32780202


#SPJ11

Plot (sketch) x[n]: - sinc -k

Answers

A sinc function is a mathematical function that is frequently used in signal processing, especially when analyzing signal frequencies.

In the signal processing field, a sinc function is used to smooth out a signal, allowing researchers to visualize it more clearly.A sinc function is a mathematical function that has a distinctive shape.

The function is symmetrical about zero, with zeros at each integer multiple of π. The sine is scaled down to a size that approaches zero as the variable x approaches zero. The function x[n] = sinc (k) is plotted in this question. Here, the function is referred to as sinc -k, which indicates that the negative side of the function is being plotted.

To know more about function  visit :

https://brainly.com/question/30721594

#SPJ11

2. A software development life cycle (SDLC) model is a conceptual framework describing all activities in a software development project, from planning to maintenance. Based on your user story in 1 (b ii.); a) Decide the best SDLC model that can be used to develop the system. [1 mark] b) Based on your answer in 2 (a), i. Draw a diagram of your chosen SDLC model. Make sure you label all the phases and put all the suitable symbols. [4 marks] ii. Write one (1) specific activity that pertains to your suggested system for every phase in the chosen SDLC model diagram. (Note: You can describe definition of the phase or give specific example of activity related to the phase and your user story in 1 (b ii.). [5 marks] [See next page

Answers

The activities mentioned above are general examples and can vary depending on the specific project and user story.

a) The choice of the best SDLC model depends on various factors such as project requirements, team size, budget, and time constraints. Given the user story in 1(b ii.), a suitable SDLC model could be the Agile model. The Agile model is known for its iterative and incremental approach, allowing for flexibility and continuous feedback.

b) Below is an example diagram of the Agile model:

```

   +-------------------+

   |   Requirements    |

   +-------------------+

           | Feedback

           v

   +-------------------+

   |    Design         |

   +-------------------+

           | Feedback

           v

   +-------------------+

   |   Implementation  |

   +-------------------+

           | Feedback

           v

   +-------------------+

   |    Testing        |

   +-------------------+

           | Feedback

           v

   +-------------------+

   |    Deployment     |

   +-------------------+

           | Feedback

           v

   +-------------------+

   |    Maintenance    |

   +-------------------+

```

ii. Specific activities for each phase in the Agile model:

1. Requirements: Collaborate with stakeholders to gather user requirements for the system, prioritize them, and define user stories and acceptance criteria.

2. Design: Create mockups, wireframes, and prototypes to visualize the user interface and overall system architecture.

3. Implementation: Develop the system incrementally, following the Agile principles and delivering working software at the end of each iteration (sprint).

4. Testing: Conduct unit testing, integration testing, and acceptance testing to ensure the system meets the defined requirements and user expectations.

5. Deployment: Release the developed features to production, ensuring proper deployment procedures and user training.

6. Maintenance: Continuously monitor and maintain the system, addressing any reported issues, and implementing updates and enhancements based on user feedback.

Please note that the activities mentioned above are general examples and can vary depending on the specific project and user story.

Learn more about activities here

https://brainly.com/question/29705240

#SPJ11


Develop a Work Breakdown Structure for a Highway Resurfacing
& Improvement of State Roads and Highways

Answers

Work Breakdown Structure (WBS) is a hierarchical decomposition of a project into smaller, more manageable components. It helps in organizing and planning the project activities.

In the case of highway resurfacing and improvement of state roads and highways, the WBS can be developed as follows:The Work Breakdown Structure (WBS) for the Highway Resurfacing and Improvement project can be divided into the following major components:To further break down the main components, each major component can be divided into smaller tasks and sub-tasks. For example, under the Construction Phase, tasks such as site preparation and clearing can include activities like removing obstacles, clearing vegetation,and leveling the ground.

Similarly, under the Design Phase, preparing road layout and alignment designs can involve activities like conducting surveys, analyzing traffic patterns, and developing alternative designs.the Work Breakdown Structure can continue to be broken down into more detailed levels based on the specific requirements and complexity of the project. It is essential to ensure that each task and sub-task is clearly defined, has a specific deliverable, and can be assigned to a responsible party.

To know more about decomposition visit:-

https://brainly.com/question/12974523
#SPJ11

Which of the following hex numbers is divisible by 1610 ? 16h, 10h, 20h, 32h, 2000h, 3300h, 45678ABOh

Answers

To determine which of the following hex numbers is divisible by 1610, convert each number into a decimal representation and then divide by 1610. If the remainder is zero, then the number is divisible by 1610.

The hex number that is divisible by 1610 is 3300h.To convert 3300h to decimal, we have:3300h = (3 x 16³) + (3 x 16²) + (0 x 16¹) + (0 x 16º)= (3 x 4096) + (3 x 256) = 12288 + 768 = 13056 Dividing 13056 by 1610, we get:13056 ÷ 1610 = 8 R 736Since the remainder is not zero for any of the other hex numbers, they are not divisible by 1610. Therefore, the hex number that is divisible by 1610 is 3300h (which is equivalent to 13056 in decimal).

To know more about hex numbers visit:

https://brainly.com/question/23738979

#SPJ11

please work problem by hand. I posted this one time and it was
solved using a program. i will give it a like and good rating!
please
For two transmission line configurations shown, calculate the series impedance and shunt admittance per mile for each of the conductor configurations below. I. A copper conductor with a diameter of \(

Answers

The problem cannot be solved without the given value of diameter of the wire. Therefore, the complete problem statement must be posted to get a detailed and accurate answer.

However, in general, the formula to calculate the series impedance and shunt admittance per mile of a transmission line is given by:Series Impedance per mile:

[tex]\({Z_s} = \left[ {R + j\omega L} \right]\).[/tex]

where R is the resistance, L is the inductance, and \(\omega\) is the angular frequency.Shunt Admittance per mile: [tex]\({Y_s} = j\omega C\)[/tex] where C is the capacitance of the transmission line per unit length.

To know more about frequency visit:

https://brainly.com/question/29739263

#SPJ11

A system with excitation x() and response y() is described by y(0) = 3sin(x()). Identify the characteristics of the given system. Multiple Choice Linear, time invariant, BIBO stable, static, and non-causal Linear, time invariant, BIBO stable, dynamic, and non-causal Non-linear, time invariant, BIBO stable, static, and causal Non-linear, time invariant, BIBO stable, static, and non-causal

Answers

Given that a system with excitation x() and response y() is described by y(0) = 3sin(x()). We are to identify the characteristics of the given system.

A system can be described by its properties or characteristics such as its stability, linearity, causality, and time-invariance. The answer is ; Linear, time-invariant, BIBO stable, static, and non-causal.To justify the above characteristics, let's look at each one in more detail;Linear: A system is said to be linear if it satisfies two important properties: Superposition and Homogeneity.

Time-Invariant:

If the input and output of a system are shifted in time, and the system still works the same way, it is said to be time-invariant. BIBO stable: A system is stable if its output is bounded for any bounded input. This property is referred to as Bounded Input Bounded Output (BIBO) stability .Static: A static system is one that does not depend on time. A static system has no memory; it only depends on the present input. Non-causal: A non-causal system is one where the output depends on future inputs.

To know more about excitation visit :

https://brainly.com/question/31117111

#SPJ11

Consider a system described by the differential equation Ad2y(t)/ dt2​+Bdy(t)/dt​+Cy(t)=Ddx/dt(t)​+Ex(t). Determine the Laplace transform of the differential equation.

Answers

Laplace transform of the differential equation, Ad2y(t)/ dt2​+Bdy(t)/dt​+Cy(t)=Ddx/dt(t)​+Ex(t) is (As^2 + Bs + C – E)Y(s) = Asy(0) + Ay'(0) + DsX(s) – Dx(0)

The given differential equation is

Ad2y(t)/dt2​+Bdy(t)/dt​+Cy(t)=Ddx/dt(t)​+Ex(t).

We have to find the Laplace transform of this differential equation.

The Laplace transform of a differential equation is obtained by taking the Laplace transform of both sides of the differential equation.

Let L{y(t)} = Y(s) be the Laplace transform of y(t) and L{x(t)} = X(s) be the Laplace transform of x(t).

Then, we have

L{d/dt(y(t))} = sY(s) – y(0)L{d^2/dt^2(y(t))} = s^2Y(s) – sy(0) – y'(0)

Applying the Laplace transform to both sides of the given differential equation, we get,

A(s^2Y(s) – sy(0) – y'(0)) + B(sY(s) – y(0)) + CY(s) = DsX(s) – Dx(0) + EY(s)

Factorizing Y(s), we get,(As^2 + Bs + C)Y(s) = Asy(0) + Ay'(0) + DsX(s) – Dx(0) + EY(s)

=> (As^2 + Bs + C – E)Y(s) = Asy(0) + Ay'(0) + DsX(s) – Dx(0)

Laplace transform of the differential equation, (As^2 + Bs + C – E)Y(s) = Asy(0) + Ay'(0) + DsX(s) – Dx(0)

Learn more about Laplace transform here:

https://brainly.com/question/30759963

#SPJ11

Java language:
What is the error in the following code?
Discuss, in some detail, why it is an error.
abstract class example {
abstract static public foo();
}

Answers

The error in the code is the missing return type for the abstract method `foo()`. In Java, every method declaration should include the return type, even for abstract methods.

In the provided code, the `foo()` method is declared as `abstract static public foo();`, which is incorrect. To fix the error, we need to specify the return type of the method. For example, if `foo()` is intended to return an integer, the correct declaration would be `abstract static public int foo();`.

The absence of a return type in the method declaration is considered an error because it violates the syntax rules of the Java language. The return type is essential as it specifies the type of value that the method should return or indicates that the method doesn't return any value (void). This information is necessary for the compiler to validate the code and ensure type safety. Additionally, the access modifiers (`abstract`, `static`, and `public`) are written in an unconventional order. Although the order of access modifiers doesn't affect the code's functionality,

Learn more about Java here:

https://brainly.com/question/33208576

#SPJ11

using Electronic Work Bench (EWB) design the following
EWB integrated sequential logic circuit
below:
Design the prototype of a synchronous electronic voting system
that controls arguably fifty two (5

Answers

The electronic voting system is an essential system in the modern democratic electoral system.

This system ensures that the voting process is transparent, accountable, and trustworthy.

Electronic Workbench (EWB) is a powerful software tool that can be used to design and simulate complex electronic circuits, including sequential logic circuits.

The following is the design of the prototype of a synchronous electronic voting system that controls arguably fifty-two (52) voters using EWB integrated sequential logic circuit:

Step 1: Open the EWB software and select the Logic Design option from the toolbar.

Step 2: Click on the Component Toolbar button and select the required logic gates (AND, OR, NOT, etc.) from the list.

Step 3: Connect the logic gates using wires by clicking on the Wire Tool button.

Step 4: Add a clock signal generator to the circuit to ensure that all the flip-flops are synchronized with each other.

Step 5: Add a counter to the circuit that will keep track of the number of votes.

Step 6: Add a decoder to the circuit that will decode the input signals from the voters.

Step 7: Add a flip-flop to the circuit that will store the state of the voting system.

Step 8: Connect the flip-flop to the counter and decoder using wires.

Step 9: Add an output display to the circuit that will display the final voting result.

Step 10: Run the simulation and test the circuit to ensure that it works correctly.

In summary, the above steps are how you can design the prototype of a synchronous electronic voting system that controls arguably fifty-two (52) voters using EWB integrated sequential logic circuit.

To know more about electoral visit;

https://brainly.com/question/1042279

#SPJ11

2. (5pt) Short questions about \( 8 b i t \) binaries A. What is the unsigned and signed \( 2 s \) complement of 01001110 ? B. Write down the output of a standard UNSIGNED 8-bit subtractor when doing

Answers

A. The unsigned value of 01001110 is 78. The 2's complement representation of 01001110 is 10110010.B. The output of a standard UNSIGNED 8-bit subtractor when doing 01110111-00101101 = 01001010, which represents the difference 46.

To find the 2's complement of a number, follow these steps:Reverse the bits of the number.Add one to the reversed number.The resulting number will be the 2's complement representation of the number. To find the signed value of a number, we use the first bit of the binary representation.

If the first bit is 1, the number is negative, and if it's 0, the number is positive.To find the decimal value of a binary number, we use the place values of each digit, starting from the right. For an 8-bit number, the place values are as follows:128 64 32 16 8 4 2 1 .So, for example, the binary number 11011010 would have a decimal value of:

[tex](1 × 128) + (1 × 64) + (0 × 32) + (1 × 16) + (1 × 8) + (0 × 4) + (1 × 2) + (0 × 1) = 218[/tex]

To know more about UNSIGNED visit:

https://brainly.com/question/30452303

#SPJ11

5. (2 pts.) A series RC circuit is driven with an AC source. The open-circuit source voltage is 5020°V. Find the expression (in terms of R, C and oo) for the source impedance that maximizes the average power dissipated in the series RC load.

Answers

The given information is for an RC series circuit. The goal is to find the source impedance that maximizes the average power dissipated in the series RC load.

Source Impedance Zs is given by,Zs = R + j(ωC)Now, for the power dissipated in the RC load, we have,

Power, P = VI (cosθ)Here, V is the RMS value of the voltage across the RC load, I is the RMS current through the RC load, and cosθ is the phase angle between voltage and current.Now, V = V0∠0° (open-circuit voltage) and I = V0/Zs (voltage drop across the RC circuit)

Hence, P = (V0^2/Zs) (cosθ)Substituting the value of Zs in the above equation, we get,P

= (V0^2/R)[cosθ/(1 + (ωCR)^2)]To maximize the power dissipated, we need to maximize P. This can be done by maximizing cosθ/(1 + (ωCR)^2).To maximize cosθ/(1 + (ωCR)^2), we need to minimize (ωCR)^2. This means that the impedance across the RC circuit must be kept small. For this, the value of C must be kept large. The lower the impedance across the RC circuit, the greater the power dissipation will be.

Thus, the expression for the source impedance that maximizes the average power dissipated in the series RC load is Zs = R + j(ωC). The RC circuit impedance should be kept low for maximum power dissipation. Formula used: Source Impedance Zs = R + j(ωC)Power, P = VI (cosθ)Hence, P = (V0^2/Zs) (cosθ)P = (V0^2/R)[cosθ/(1 + (ωCR)^2)]

Learn more about Power at:

brainly.com/question/1634438

#SPJ11

Question 2 A 100 MVA, 220/66 kV, Y/Y, three-phase, 50 Hz transformer has iron loss 54 kW. The maximum efficiency occurs at 60% of full load. Find the efficiency of transformer at: (a) (b) Full load and 0.8 lagging p.f. load and unity p.f. [4] [2]

Answers

To calculate the efficiency of the transformer at full load and at a power factor of 0.8 lagging and unity power factor, we need to consider the copper losses and the iron losses.

Given data:

Transformer rating: 100 MVA

Transformer voltage ratio: 220/66 kV

Iron losses: 54 kW

Maximum efficiency load: 60% of full load

(a) Efficiency at Full Load:

To calculate the efficiency at full load, we need to find the copper losses and then subtract them from the total input power.

(b) Efficiency at 0.8 lagging p.f. load and unity p.f.:

To calculate the efficiency at 0.8 lagging power factor load and unity power factor, we can use the same formula as above. The only difference is in the copper losses, as the current will be different. Once we have the current, we can calculate the copper losses using the same formula as above. Then, we can use the efficiency formula to calculate the efficiency at 0.8 lagging power factor.

To calculate the efficiency at unity power factor, we can use the same formula as above but with unity power factor current.

By plugging in the values and performing the calculations, we can find the efficiency of the transformer at full load and at 0.8 lagging power factor and unity power factor.

Learn more about losses here:

https://brainly.com/question/32457648

#SPJ11


A Silicon NPN transistor in a circuit has a base current of 9.6
micro A , while the emitter current is 0.780 Milli-Amperes.
Determine: The B of the Transistor, The a of the transistor and the
I c.

Answers

The B of the transistor is approximately 81.25, the a of the transistor is approximately 81.25, and the Ic (collector current) is approximately 0.780 Milli-Amperes.

To determine the B (commonly known as the current gain) of the transistor, we can use the formula B = Ic / Ib, where Ic is the collector current and Ib is the base current. In this case, the base current is given as 9.6 micro-Amperes (µA) and the emitter current (which is approximately equal to the collector current) is given as 0.780 Milli-Amperes (mA). By substituting these values into the formula, we find that B is approximately 81.25.

The a (commonly known as the current transfer ratio) of the transistor is also approximately equal to the B value. It represents the ratio of the collector current to the base current and is often used to analyze the amplification capability of the transistor. In this case, the a value is also approximately 81.25.

Finally, the Ic (collector current) is given directly as 0.780 Milli-Amperes (mA). This represents the current flowing through the collector terminal of the transistor.

It's important to note that these calculations are approximate values and may vary depending on the specific characteristics of the transistor and the conditions of the circuit.

Learn more about transistor

brainly.com/question/30335329

#SPJ11

which of the following is the primary role of a mail transfer agent (mta)?

Answers

The primary role of a Mail Transfer Agent (MTA) is to route and deliver email messages between mail servers.

A Mail Transfer Agent (MTA) plays a crucial role in the email delivery process. It acts as the intermediary responsible for accepting, routing, and delivering email messages between different mail servers. When an email is sent, the MTA receives it from the sender's mail server and initiates the process of transferring it to the recipient's mail server.

The MTA utilizes a set of protocols, such as Simple Mail Transfer Protocol (SMTP), to establish connections with other MTAs involved in the email's journey. It examines the recipient's address, determines the appropriate destination server, and then relays the message to the next MTA in the delivery chain. This process continues until the email reaches its final destination.

Additionally, the MTA performs various checks and tasks to ensure proper email delivery. It verifies the authenticity and integrity of the message, including checking for spam or malware content. The MTA may also handle tasks such as managing message queues, handling message retries in case of delivery failures, and implementing security measures like encryption and authentication.

Learn more about Mail Transfer Agent (MTA)

brainly.com/question/31934325

#SPJ11

Biasing circuitries for a typical current steering DAC Q: Draw the basic 8-bit DAC which must include the biasing circuitries and the DAC resistor string.

Answers

A current-steering DAC is a type of DAC that converts digital values into an analog signal by utilizing a current switching network.

The output of the current-steering DAC is determined by the digital input bits, and the range of output current that can be generated by the DAC is determined by the current source/sink that feeds the current switch network. Here is a basic 8-bit DAC diagram with the biasing circuitries and DAC resistor.

The DAC resistor ladder consists of a series of resistors that generate a reference current for each bit. The current is then switched by current switches that are turned on or off based on the digital input bits. The current switching is performed by transistors that act as switches, with a control voltage that turns the transistor on or off.

To know more about DAC visit:

https://brainly.com/question/33352228

#SPJ11

A 0.2 m long cylindrical wall, with a thermal conductivity of k = 50 W/m K, has inner and outer radii of r = 10 mm and r. = 15 mm, respectively, per the diagram below. The outer surface of the wall has 4 longitudinal fins running the entire axial length of the wall (see a diagram of the uniform cross-section below), each with thickness t = 5 mm and extending to an outer radius of r = 50 mm. The inner and outer surfaces of the cylinder are exposed to fluids with bulk temperatures of Too and T., respectively, where Tool > To.o. The convective heat transfer coefficient for both the inner and outer surfaces is h = 100 W/m²K. The thermal conductivity of the fins may be assumed to be the same as that for the cylindrical wall. (a) Draw a resistor diagram of the system. (b) Calculate the fin efficiency, n. (c) Calculate the overall array efficiency, no. (d) Calculate the overall array thermal resistance, Rt.

Answers

Resistor diagram of the systemin order to represent the heat transfer through the wall and the fins, the resistor network diagram for this system can be drawn.

The cylindrical wall will have two resistances, one for the inner surface and another for the outer surface.

Similarly, four resistances will be there for the fins.

Let's draw the resistor diagram of the system:

Fin efficiency, n

The fin efficiency can be calculated by using the following formula:

$$n = \frac{{\text{T}}{{\text{b}}_{\text{o}}} - \text{T}}{{\text{T}}{{\text{b}}_{\text{o}}} - \text{T}\exp \left( { - \text{mL}} \right)}$$

Where Tb, o is the bulk temperature of the outer fluid, T is the temperature at the fin tip, m is the heat transfer rate from the fin tip to the surrounding fluid, L is the length of the fin.

Using the formula above and substituting the given values, we can calculate the fin efficiency.

Hence,  n = 0.938c) Overall array efficiency, no

The overall array efficiency is given by the following formula:

$$n_{\text{o}} = \frac{n}{1 + \frac{\text{L}}{\text{t}}\left( {\frac{{\text{h}}{{\text{P}}_{\text{f}}}}}{{\text{kA}}} \right)}$$

Where L/t is the number of fins per unit length, P f is the perimeter of the fins and A is the cross-sectional area of the cylinder wall.

So, the overall array thermal resistance is 0.002228 Ω.

To know more about represent visit:

https://brainly.com/question/31291728

#SPJ11

Butterworth filter has cutoff frequency 10 rad/s and GS at w = 20 rad/s. When creating under resistor inductor topology, it can't be implemented. Reason: hardware doesn't allow filter order but wS must be rad/s. Calculate cutoff frequency for filter to work.

Answers

The cutoff frequency for the filter to work is 18.69 rad/s.

The cutoff frequency for the filter to work can be calculated as follows Cutoff frequency (fc) = GS / (√(2^1/N-1)) where,

N = filter order

GS = stop-band gainw

S = rad/s

cutoff frequency of Butterworth filter (fc) = 10 rad/s

Gain at stopband (GS) = w = 20 rad/s

Hardware doesn't allow filter order but wS must be rad/s

We need to calculate the cutoff frequency (fc) for the filter to work. Cutoff frequency of Butterworth filter is given by the formula,fc = GS / (√(2^1/N-1)) Let's calculate the filter order 'N' using the given formula,

N = 2 ((wS / w) ^ 2)Substituting the values in the above equation, we get,

N = 2 ((wS / w) ^ 2)

= 8

The filter order is 8. Substituting the given values in the formula for cutoff frequency, fc = GS / (√(2^1/N-1))

fc = 20 / (√(2^1/8-1))

fc = 20 / (√(2^1/7))

fc = 20 / (√(2^0.143))

fc = 20 / (√1.141)

fc = 20 / 1.07

fc = 18.69 rad/s

Hence, the cutoff frequency for the filter to work is 18.69 rad/s.

Learn more about frequency visit:

brainly.com/question/4290297

#SPJ11

. Determine the LRC and VRC for the following message (use even parity for LRC and odd parity for VRC) ASCII sp CODE

Answers

The message given is: ASCII sp CODELRC Calculation:The LRC is the Longitudinal Redundancy Check which is a form of redundancy check that is used for detecting errors in data transmission.

The LRC is obtained by summing the 8-bit binary numbers in each of the columns. The LRC is calculated for all the columns of the message. If the result is greater than 8 bits, then it is divided by 256 and the remainder is taken. Then the 1's complement of the remainder is taken.The LRC calculation for the message is as follows:ASCII sp CODELRC1st column = A 2nd column = S 3rd column = C 4th column = I 5th column = sp 6th column = C 7th column = O 8th column = DBinary representation00000001 01010011 01000011 01001001 00100000 01000000 01000011 01001111 01000100Sum of each column1 0 0 1 1 1 1 0Dividing the sum by 256 gives 0 and a remainder of 232232's 1's complement is 23FLRC = 23FVRC Calculation:VRC stands for Vertical Redundancy Check.

DBinary representation00000001 01010011 01000011 01001001 00100000 01000011 01001111 01000100Sum of each column1 0 0 1 1 1 1 0Dividing the sum by 256 gives 0 and a remainder of 232232's 1's complement is 23FLRC = 23FVRC Calculation:In the VRC method, each column of the message is checked for odd parity. The 8-bit binary number for each character in the column is added and the sum is checked for odd parity. If the sum is even, a 1 is added to the column, and if it is odd, a 0 is added. The VRC for each column is calculated using this method. The VRC for the message is as follows:ASCII sp CODEVRC1st column = A 2nd column = S 3rd column = C 4th column = I 5th column = sp 6th column = C 7th column = O 8th column = DBinary representation00000001 01010011 01000011 01001001 00100000 01000011 01001111 01000100Sum of each column1 3 1 2 1 1 2

To know more about transmission  visit:

https://brainly.com/question/30900522

#SPJ11

(a) Using the log graph paper attached at the end of this examination paper, sketch the system Bode-plot (using piecewise-linear approximations) of an open-loop system with the following transfer func

Answers

To sketch the Bode plot of an open-loop system with the given transfer function using piecewise-linear approximations, follow these steps.

Step 1: Rewrite the transfer function in pole and zero form. The given transfer function is G(s) = (s + 1)/(s^2 + 4s + 3). Rearranging, we have G(s) = 1/(s + 3), with one pole at s = -3 and no zeros.

Step 2: Determine the magnitude and phase angles of the transfer function. The magnitude is given by Magnitude = 20log(1/|s + 3|) = 20log(1) - 20log(|s + 3|), and the phase angle is -90°.

Step 3: Draw the straight-line approximations of the Bode plot. The magnitude plot is a straight line with a slope of -20 dB/decade starting slightly before the pole frequency of 1 rad/s and extending to the end of the b. The phase plot is a horizontal line at -90° from slightly before the pole frequency to the end of the graph. The resulting sketch of the Bode plot is shown in the provided image. Thus, the system Bode plot of the open-loop system with the given transfer function using piecewise-linear approximations has been sketched.

To know more about frequency visit:

https://brainly.com/question/29739263

#SPJ11

The output characteristic of a Bipolar Junction Transistor (BJT) is usually represented as a family of graphs of I, as a function of Vce, at increasing values of I (0) Sketch the output characteristic of a typical BJT, and clearly label the saturation and active regions. (ii) Show how a graph of Ic as a function of It can be derived from the output characteristic, by considering points at a constant value of Vce, e.g +5 V. Show how the current gain he can be obtained from this second graph.

Answers

A Bipolar Junction Transistor (BJT) is a type of transistor that has three regions: the base, the emitter, and the collector. The current gain for this region of the graph is 80.

A Bipolar Junction Transistor (BJT) is a type of transistor that has three regions: the base, the emitter, and the collector. The output characteristic of a BJT can be represented as a family of graphs of I as a function of Vce at increasing values of I. The saturation region and the active region are labeled on the sketch.

Output Characteristic of a BJT: In the graph, the blue line represents the collector-emitter voltage (Vce) and the red line represents the collector current (Ic). The graph shows that the transistor is in the active region for the most part. The transistor enters the saturation region when the Vce is reduced to the point that the collector current cannot increase anymore. Show how a graph of Ic as a function of It can be derived from the output characteristic, by considering points at a constant value of Vce, e.g +5 V: We can derive a graph of Ic as a function of It from the output characteristic by considering points at a constant value of Vce.

For example, let's consider a constant value of Vce = 5V, and plot the collector current as a function of the base current (It) for this value of Vce. This will give us a graph of Ic as a function of It for Vce = 5V. From the graph, we can calculate the current gain (hFE) as follows: hFE = ΔIc/ΔIt

Where ΔIc is the change in collector current and ΔIt is the change in base current. For example, let's consider the region of the graph where the base current is between 0.04 mA and 0.06 mA. We can calculate the current gain (hFE) as follows: hFE = ΔIc/ΔIt = (4.8 mA - 3.2 mA) / (0.06 mA - 0.04 mA) = 80

Thus, the current gain for this region of the graph is 80.

To know more about Bipolar Junction Transistor refer to:

https://brainly.com/question/31656386

#SPJ11

FILL THE BLANK.
When Saverio moved his family to the suburbs, he most likely __________.

Answers

When Saverio moved his family to the suburbs, he most likely sought a quieter and more family-friendly environment,  with access to better schools and a sense of community.

What were some potential motivations for Saverio to move his family to the suburbs?

When Saverio moved his family to the suburbs, it can be inferred that he was likely looking for a change in living environment.

Moving to the suburbs often suggests a desire for a quieter and less crowded area compared to urban or city living.

Suburbs typically offer a more family-friendly atmosphere with lower crime rates, larger houses or properties, and a focus on community. Additionally, suburbs often provide access to better schools and amenities that cater to families, such as parks, recreational facilities, and local services.

The decision to move to the suburbs is often driven by the desire for a better quality of life, a sense of safety, and a more suitable environment for raising a family.

Learn more about environment

brainly.com/question/5511643

#SPJ11

Other Questions
Suppose that you are working as a CFO of MNO Company. You were asked to evaluate the feasibility of purchasing machinery. Assume that the required rate of return, was 8%. The following are the estimated cash outflows and inflows of that machinery: What is the profitability index of the project? Select one: a. 3.5 b. 1.7 c. 4.7 d. 1.1 e. 1.9 Question # 1During the decade of the 1990s Jamaica experienced unprecedented melt down in its financialinstitutions. Discuss the factors that give rise to this melt down and explain the part it played inJamaica anemic economic growth.Question # 2Trace the development of the CSME and explain the likely effect it has on the Jamaica FinancialInstitutions and by extent the Jamaican Economy.Question # 3Identify any three financial markets world -wide and outline:a. Their historical developmentb. Their impact {positive and negative} on the economy in which they operate. Find the value of y. Express your answer in simplest radical form. a y = 483 b y = 12 c y = 123 d y = 122 Two algonthms A. B sort the same problem When you go through each algonthm and break them down into their primitive operations, each can be represented as below A= n + 100m2 - 10n + 50 B= 10r? - 212 + nlogn - 200 For very large values of n which of these algorithms explain why B will run in the shortest time to solve the problem Given 2y + 16 = 5x y(0) = 3.6 the value of y(3) using Euler's method and a step size of h = 1.5 is How do you find these What is the measure of segment DC?What is the measure of segment C'B'?What is the measure of segment AD?What is the measure of segment A'B'?What is the measure of angle C?What is the measure of angle A'?What is the measure of angle D'?What is the measure of angle B'?What is the measure of angle A? (Choose the correct answer to complete the sentence) The Representative Concentration Pathways that the IPCC uses have a number after them that is equal to the Radiative Forcing Blackbody Radiation Infrared Radiation Longwave Radiation Question 5 1 pts (True or False) Our best estimates suggest that future warming will be proportional to the cumulative CO emissions. True False Research another countrys elder care system and addressbeliefs, spiritual issues, and cultural issues that are alsofactors in the delivery and provision of health care to thispopulation. 1) Solve the following difference equation using the transform methodz:y(k+2)+y(k)=x(k)wherex(k)is the discrete unit step function andy(k)=0fork If there are two radio waves have the frequencies: 1000 Khz and 80 Mhz respectively. Find their wavelength and explain the effect of the wavelength on how much deep each of them can go in the ocean.Five channels, each with a 100 kHz bandwidth, are to be multiplexed together What is the minimum bandwidth of the link if there is a need for a guard band of 1 kHz between the channels to prevent interference? Draw the five channels configuration and find the lowest frequency if the highest frequency= is 1000 KHz Which statements are true regarding ventilation?Air moves from high pressure (atmosphere) to low pressure (lungs) in inhalationthe diaphragm must contract to allow inhalationthe thoracic cavity expands due to skeletal muscles contraction to allow for inhalationmechanical ventilation is needed when the patient can't change the size of their own thoracic cavity Assume that a company has an ROE of 16 percent, a growth rate of 4 percent, and a payout ratio of 65 percent. The company also has a cost of equity of 12 percent. a. What is the forward price-book multiple? Select- b. What is the trailing price-book multiple? Power flow equations are nonlinear. True O False Around 20 000 toness of municipal solid waste (MSW) is produced at the Vunato Disposal Site in Lautoka per annum.a) If the organic fraction of MSW is 42.5%, estimate the total volume of biogas (in litres) that may be produced from this feedstock. b) If the same feedstock is used to generate electricity through a gas turbine - powered power plant where the efficiencies of the gas turbine and the generator are 25% and 80% respectively, what is the total electrical energy that can be generated annually. Compare this energy output with the original energy content of the MSW and comment. An experiment was conducted in which a six-sided die was rolled 20 times. The outcomes of the experiment are listedin the table below. Use the table to answer the questions.Value of Die Frequency1523456Your answers should be exact decimal values.The probability that a die will land on 5 isThe probability that a die will land on 1 isIf a probability is unlikely, then the probability is less than41244 Evaluate:Find the missing terms.56(2)n-1n = 1 The Tesla.m Electricity Inc. plans to install 3, 10 MW diesel/natural gas generators at a location along the East Bank .. This power station will be connected to the existing 69kV transmission system via a 13.8/69 kV substation and a 69 kV transmission line. 13.8 kV feeders will be installed at the substation.Outline the protection requirements for the new system as follows:Discuss the design criteria for the protection systemOutline what fault studies will be necessaryPresent a list of relays for each of the main equipmentIdentify manufacturers' products that can be used what happens when you remove an electron from an atom What was the significance of the discovery that Jupiter had its own moon system? It revealed just how well telescopes could magnify things for us. It was direct evidence that not all celestial objects T/F. Associated value encompasses the entire customer experience with the company.