Differentiate the function.
y = (4x − 1)^2 (4 -x^5)^4
dy/dx=
Answer:
[tex]\displaystyle y' = -4(4x - 1)(4 - x^5)^3(22x^5 - 5x^4 - 8)[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
BracketsParenthesisExponentsMultiplicationDivisionAdditionSubtractionLeft to RightDistributive Property
Algebra I
Terms/CoefficientsFactoringCalculus
Derivatives
Derivative Notation
Derivative of a constant is 0
Basic Power Rule:
f(x) = cxⁿ f’(x) = c·nxⁿ⁻¹Derivative Rule [Product Rule]: [tex]\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]
Derivative Rule [Chain Rule]: [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]
Step-by-step explanation:
Step 1: Define
Identify
y = (4x - 1)²(4 - x⁵)⁴
Step 2: Differentiate
Product Rule: [tex]\displaystyle y' = \frac{d}{dx}[(4x - 1)^2](4 - x^5)^4 + (4x - 1)^2\frac{d}{dx}[(4 - x^5)^4][/tex]Chain Rule [Basic Power Rule]: [tex]\displaystyle y' = [2(4x - 1)^{2 - 1} \cdot \frac{d}{dx}[(4x - 1)]](4 - x^5)^4 + (4x - 1)^2[4(4 - x^5)^{4 - 1} \cdot \frac{d}{dx}[(4 - x^5)]][/tex]Simplify: [tex]\displaystyle y' = [2(4x - 1) \cdot \frac{d}{dx}[(4x - 1)]](4 - x^5)^4 + (4x - 1)^2[4(4 - x^5)^3 \cdot \frac{d}{dx}[(4 - x^5)]][/tex]Basic Power Rule: [tex]\displaystyle y' = [2(4x - 1) \cdot 4x^{1 - 1}](4 - x^5)^4 + (4x - 1)^2[4(4 - x^5)^3 \cdot -5x^{5 - 1}][/tex]Simplify: [tex]\displaystyle y' = [2(4x - 1) \cdot 4](4 - x^5)^4 + (4x - 1)^2[4(4 - x^5)^3 \cdot -5x^4][/tex]Multiply: [tex]\displaystyle y' = 8(4x - 1)(4 - x^5)^4 - 20x^4(4x - 1)^2(4 - x^5)^3[/tex]Factor: [tex]\displaystyle y' = 4(4x - 1)(4 - x^5)^3 \bigg[ 2(4 - x^5) - 5x^4(4x - 1) \bigg][/tex][Distributive Property] Distribute 2: [tex]\displaystyle y' = 4(4x - 1)(4 - x^5)^3 \bigg[ 8 - 2x^5 - 5x^4(4x - 1) \bigg][/tex][Distributive Property] Distribute -5x⁴: [tex]\displaystyle y' = 4(4x - 1)(4 - x^5)^3 \bigg[ 8 - 2x^5 - 20x^5 + 5x^4 \bigg][/tex][Brackets] Combine like terms: [tex]\displaystyle y' = 4(4x - 1)(4 - x^5)^3(-22x^5 + 5x^4 + 8)[/tex]Factor: [tex]\displaystyle y' = -4(4x - 1)(4 - x^5)^3(22x^5 - 5x^4 - 8)[/tex]Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e
In your own words, explain the steps you would need to take to find slope from data in a table.
Answer:
Sample Answer: Start by choosing two data points. Calculate the difference between the second y value and the first y value. Then divide that by the difference between the second x value and the first x value.