Based on how bonds were defined in Ch. 4, which combination(s) of elements would result in the formation of a polar covalent bond? You may select more than one option. - Cu and C - Si and F - C and H - C and Br - S and Br

Answers

Answer 1

The combination(s) of elements that would result in the formation of a polar covalent bond are: Si and F, C and H, and S and Br.

A polar covalent bond is formed when two atoms with different electronegativities share electrons unequally, resulting in a partial positive and partial negative charge on the bonded atoms.

In the given combinations:

- Si and F: Fluorine (F) is highly electronegative, while silicon (Si) has a lower electronegativity. Their difference in electronegativity leads to the formation of a polar covalent bond.

- C and H: Carbon (C) and hydrogen (H) have different electronegativities. Although the difference is not as significant as in other combinations, a polar covalent bond can still be formed.

- S and Br: Bromine (Br) is more electronegative than sulfur (S), resulting in the formation of a polar covalent bond between them.

On the other hand:

- Cu and C: Copper (Cu) and carbon (C) have similar electronegativities, so they would form a nonpolar covalent bond.

- C and Br: Carbon (C) and bromine (Br) also have similar electronegativities, leading to the formation of a nonpolar covalent bond.

Therefore, Si and F, C and H, and S and Br combinations would result in the formation of polar covalent bonds due to the electronegativity differences between the atoms involved.

To learn more about polar covalent bond here:

https://brainly.com/question/32440903

#SPJ11


Related Questions

Which of the following is a strong acid in the group? Select one: a. HClO(aq) b. HClO2​(aq) c. HClO3​(aq) d. HF(aq) e. all are strong acids

Answers

Among the given options, the strong acid is HClO3₃ (aq), option C.

What are acids?

An acid is a substance that donates a hydrogen ion (H+) to another substance when dissolved in a solution. When dissolved in a solvent, acids produce hydrogen ions (H+), also known as protons, that bond with solvent molecules to create hydronium ions (H3O+).This is known as the Arrhenius definition of an acid.

What are strong acids?

Strong acids are chemicals that completely ionize in a water solution, meaning that all of the acid molecules dissociate to form hydrogen ions, or protons. Strong acids have a low pH and a higher concentration of H+ ions in a solution.

What is the pH scale?

The pH scale is a logarithmic scale that ranges from 0 to 14 and measures the concentration of H+ ions in a solution. The lower the pH, the more acidic the solution is. The pH of a neutral solution is 7, while the pH of an acidic solution is less than 7 and the pH of a basic solution is more than 7.

Among the given options, the strong acid is HClO3 (aq).HClO(aq) is a weak acid.HClO2​(aq) is a weak acid.HF(aq) is a weak acid.All of the acids listed are weak except for HClO3 (aq).HClO3​(aq) is the only strong acid in the given options.

So, option C is the correct answer.

To know more about strong acid click on below link :

https://brainly.com/question/29769012#

#SPJ11

Which of the following processes is/are endothermic? a. Particle movement slowing down b. An ice cube freezing c. A chemical reaction that absorbs heat d. A space heater giving off heat

Answers

The process that is endothermic from the given options is the process in option c (A chemical reaction that absorbs heat).

An endothermic process is one that absorbs heat from its surroundings, resulting in an increase in the internal energy of the system. In a chemical reaction that absorbs heat, the reactants take in energy from the surroundings, leading to a decrease in temperature.

The other processes mentioned are not endothermic:

a. Particle movement slowing down: This process refers to a decrease in the kinetic energy of particles, which is associated with a decrease in temperature. It is not an endothermic process, as it does not involve the absorption of heat.

b. An ice cube freezing: Freezing is an exothermic process, meaning it releases heat to the surroundings. As the water molecules in the ice rearrange and form a solid structure, they release energy in the form of heat.

d. A space heater giving off the heat: This is also an exothermic process. The space heater converts electrical energy into heat energy, which is released into the surrounding environment to warm it up.

Hence, the correct answer is option c. A chemical reaction that absorbs heat.

Learn more about the endothermic process here:

https://brainly.com/question/29555731

#SPJ 4

Consider the following unbalanced particulate representation of a chemical equation: 0+0→ C= black O=a red ​
Write a balanced chemical equation for this reaction, using the smallest integer coefficient No mere group attempte remain

Answers

We have two carbon atoms on both sides, two oxygen atoms on the reactant side (O2), and two oxygen atoms on the product side (2CO). By using the smallest integer coefficients, we have successfully balanced the equation.

To balance the chemical equation, we need to ensure that the number of each type of atom is the same on both sides of the equation. From the given unbalanced particulate representation, we can deduce that we have carbon (C) and oxygen (O) involved in the reaction.

The balanced chemical equation for this reaction is:

2C + O2 → 2CO

In this equation, we have two carbon atoms on both sides, two oxygen atoms on the reactant side (O2), and two oxygen atoms on the product side (2CO). By using the smallest integer coefficients, we have successfully balanced the equation.

To know more about integer visit-

https://brainly.com/question/33503847

#SPJ11

Match the following aqueous solutions with the appropriate letter from the column on the right. Assume complete dissociation of electrolytes. 1.0.13 mCr(NO 3

) 3

A. Lowest freezing point 2. 0.16 m(NH 4

) 2

S B. Second lowest freezing point 3. 0.18 mCr(NO 3

) 2

C. Third lowest freezing point 4.0.56 m Urea (nonelectrolyte) D. Highest freezing point Match the following aqueous solutions with the appropriate letter from the column on the right. Assume complete dissociation of electrolytes. 1.0.10 mK 2

S
2.0.11 mBaCl 2

3. 0.18mNaNO 3

4. 0.39 m Sucrose (nonelectrolyte) ​

A. Lowest freezing point B. Second lowest freezing point C. Third lowest freezing point D. Highest freezing point ​

Answers

Freezing point depression occurs when a solute is added to a solvent, reducing the freezing point of the solution compared to the pure solvent. The extent of freezing point depression depends on the concentration of the solute particles in the solution.

In this case, we are given different solutions and asked to match them with their respective freezing points. Let's go through each solution and determine their freezing points:

1. 0.13 mCr(NO3)3:
Cr(NO3)3 is an electrolyte that dissociates into ions when dissolved in water. Since it dissociates into 4 ions (1 Cr3+ and 3 NO3-), it will cause a greater freezing point depression compared to other electrolytes with fewer ions. Therefore, it will have the **lowest freezing point** (option A).

2. 0.16 m(NH4)2S:
(NH4)2S is also an electrolyte that dissociates into ions. However, it only produces 3 ions (2 NH4+ and 1 S2-). Since it has fewer ions compared to Cr(NO3)3, it will have a **second lowest freezing point** (option B).

3. 0.18 mCr(NO3)2:
Cr(NO3)2 is another electrolyte that dissociates into ions. It produces 3 ions (1 Cr2+ and 2 NO3-). Since it has fewer ions compared to (NH4)2S, it will have a **third lowest freezing point** (option C).

4. 0.56 m Urea (nonelectrolyte):
Urea is a nonelectrolyte, which means it does not dissociate into ions when dissolved in water. Since it does not produce ions, it will not cause any freezing point depression. Therefore, it will have the **highest freezing point** (option D).

In summary, the matching between the aqueous solutions and their freezing points is as follows:

1. 0.13 mCr(NO3)3 - A. Lowest freezing point
2. 0.16 m(NH4)2S - B. Second lowest freezing point
3. 0.18 mCr(NO3)2 - C. Third lowest freezing point
4. 0.56 m Urea - D. Highest freezing point

To know more about Freezing Point Depression visit:

https://brainly.com/question/2292439

#SPJ11


12. Determine the number of moles of boric acid that react in the equation to produce 10 moles of water.

Answers

In the preceding equation, 6.67 moles of boric acid ([tex]H_3BO_3[/tex]) will react to generate 10 moles of water ([tex]H_2O[/tex]).

To determine the number of moles of boric acid that react in the equation to produce 10 moles of water, we need to examine the balanced chemical equation and use stoichiometry.

1. Begin by examining the balanced chemical equation for the reaction involving boric acid and water. Let's assume the equation is:

  [tex]3H_2O[/tex] + [tex]3H_2O[/tex] -> [tex]B_2O_3[/tex] + [tex]6H_2O[/tex]

2. From the balanced equation, we can see that 2 moles of boric acid (H3BO3) react with 3 moles of water ([tex]H_2O[/tex]) to produce 6 moles of water ([tex]H_2O[/tex]).

3. Use the given information that 10 moles of water ([tex]H_2O[/tex]) are produced. Since the stoichiometric ratio between boric acid and water is 2:3, we can set up a proportion to find the number of moles of boric acid:

  2 moles [tex]H_3BO_3[/tex] / 3 moles [tex]H_2O[/tex] = x moles [tex]H_3BO_3[/tex] / 10 moles [tex]H_2O[/tex]

4. Cross-multiply and solve for x:

  (2 moles [tex]H_3BO_3[/tex])(10 moles [tex]H_2O[/tex]) = (3 moles [tex]H_2O[/tex])(x moles [tex]H_3BO_3[/tex])

  20 moles [tex]H_2O[/tex] = 3x moles [tex]H_3BO_3[/tex]

5. Divide both sides of the equation by 3 to isolate x:

  x moles [tex]H_3BO_3[/tex] = (20 moles [tex]H_2O[/tex]) / 3

6. Calculate the value of x:

  x moles [tex]H_3BO_3[/tex] ≈ 6.67 moles [tex]H_3BO_3[/tex]

Therefore, approximately 6.67 moles of boric acid ([tex]H_3BO_3[/tex]) will react to produce 10 moles of water ([tex]H_2O[/tex]) in the given equation.

For more such questions on boric acid, click on:

https://brainly.com/question/28503610

#SPJ8

An arctic weather balloon is filled with 5.82 L. of helium pas inside a prep shed. The temperature inside the shed is 8 . ∘
C. The batioon is then taken outside, where the temperature is −32. ∘
C. Calculate the new volume of the balloon. You may assume the pressure on the balloon stays constant at exactly 1 atm. Be sure your answer has the correct number of significant digits.

Answers

The new volume of the balloon is 6.35 L.

To solve this problem, we can use the ideal gas law, which states that PV = nRT, where P is the pressure, V is the volume, n is the number of moles of gas, R is the gas constant, and T is the temperature in Kelvin.

First, we need to convert the temperatures from Celsius to Kelvin. The temperature inside the shed is 8°C, which is equivalent to 8 + 273.15 = 281.15 K. The temperature outside is -32°C, which is equivalent to -32 + 273.15 = 241.15 K.

Since the pressure is assumed to remain constant at 1 atm, we can rewrite the ideal gas law as V1/T1 = V2/T2, where V1 and T1 are the initial volume and temperature inside the shed, and V2 and T2 are the final volume and temperature outside.

Substituting the values, we have V1/281.15 K = V2/241.15 K. Rearranging the equation to solve for V2, we get V2 = V1 * T2 / T1.

Plugging in the values, V2 = 5.82 L * 241.15 K / 281.15 K ≈ 6.35 L.

Therefore, the new volume of the balloon is approximately 6.35 L.

To learn more about volume here:

https://brainly.com/question/28058531

#SPJ11

Calculate the [H3​O+]and [OH−]for a solution with the following pH values: 2.50 Express your answers using two significant figures separated by a comma. Part B 6.16 Express your answers using two significant figures separated by a comma. Part C 7.8 Express your answers using one significant figure separated by a comma. 

Answers

For a solution with a pH of 2.50, the [H₃O⁺] is 3.2 x 10⁻³ M, and the [OH⁻] is 3.1 x 10⁻¹² M.

For a solution with a pH of 6.16, the [H₃O⁺] is 2.3 x 10⁻⁷ M, and the [OH⁻] is 4.3 x 10⁻⁸ M.

For a solution with a pH of 7.8, the [H₃O⁺] is 1.6 x 10⁻⁸ M, and the [OH⁻] is 6.3 x 10⁻⁷ M.

To calculate the [H₃O⁺] and [OH⁻] for a given pH, we can use the relationship between pH, [H₃O⁺], and [OH⁻]. The pH is defined as the negative logarithm (base 10) of the [H₃O⁺] concentration: pH = -log[H₃O⁺].

1. For a solution with a pH of 2.50:

Using the pH value, we can calculate the [H₃O⁺] by taking the antilog of the negative pH value: [H₃O⁺] = 10^(-pH). Therefore, [H₃O⁺] = 10^(-2.50) = 3.2 x 10⁻³ M. Since water is neutral, we can calculate the [OH⁻] using the relationship: [H₃O⁺] × [OH⁻] = 1.0 x 10⁻¹⁴. Rearranging the equation, [OH⁻] = 1.0 x 10⁻¹⁴ / [H₃O⁺] = 1.0 x 10⁻¹⁴ / 3.2 x 10⁻³ = 3.1 x 10⁻¹² M.

2. For a solution with a pH of 6.16:

Using the same approach, we find [H₃O⁺] = 10^(-6.16) = 2.3 x 10⁻⁷ M. Similarly, [OH⁻] = 1.0 x 10⁻¹⁴ / [H₃O⁺] = 1.0 x 10⁻¹⁴ / 2.3 x 10⁻⁷ = 4.3 x 10⁻⁸ M.

3. For a solution with a pH of 7.8:

Again, [H₃O⁺] = 10^(-7.8) = 1.6 x 10⁻⁸ M. And [OH⁻] = 1.0 x 10⁻¹⁴ / [H₃O⁺] = 1.0 x 10⁻¹⁴ / 1.6 x 10⁻⁸ = 6.3 x 10⁻⁷ M.

These calculations demonstrate how to determine the [H₃O⁺] and [OH⁻] concentrations based on the given pH values, using the relationships between pH, [H₃O⁺], and [OH⁻].

To know more about negative logarithm refer here:

https://brainly.com/question/30287515#

#SPJ11

Assuming the unknown is approximately 35%CaCO 3

by mass (unless otherwise specified by your instructor), compute the mass of that sample which should be dissolved in a volume of 250 mL in order that a 25.00 mL aliquot requires 20 mL of titrant (EDTA) be used.

Answers

The mass of the sample that should be dissolved is approximately 8.72 grams.

Given:

Volume of the sample solution: 250 mL

Volume of the aliquot (sample taken for titration): 25.00 mL

Volume of titrant (EDTA) used: 20 mL

Concentration of EDTA: 0.017 M

Moles of EDTA used in the titration:

Moles of EDTA = 20 mL × (1 L / 1000 mL) × 0.017 mol/L

Moles of EDTA = 0.00034 mol

Mass of CaCO₃ in the aliquot:

Mass of CaCO₃ = Moles of CaCO₃ × Molar mass of CaCO₃

Mass of CaCO₃ = 0.00034 mol × 100.09 g/mol

Mass of CaCO₃ = 0.034 g

Total moles in the sample:

Total moles in the sample = (35 g/L / 100.09 g/mol) × (250 mL / 1000 mL/L)

Total moles in the sample = 0.08722 mol

Mass of the sample dissolved:

Mass of the sample = (Mass of CaCO3 / Moles of CaCO3) × Total moles in the sample

Mass of the sample = (0.034 g / 0.00034 mol) × 0.08722 mol

Mass of the sample = 8.72 g

Therefore, the mass of the sample that should be dissolved is approximately 8.72 grams.

Learn more about EDTA from the link given below.

https://brainly.com/question/19578745

#SPJ4

A balloon is filled to a volume of 22.611 at a temperature of 27.1°C. If the pressure in the balloon is measured to be 2.200 atm, how many moles of gas are contained inside the balloon? mol

Answers

The number of moles of gas contained inside the balloon is 0.983 mol.

To find the number of moles of gas, we can use the ideal gas law equation, PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature.

Volume, V = 22.611 L

Temperature, T = 27.1°C = 27.1 + 273.15 K

Pressure, P = 2.200 atm

We need to convert the temperature to Kelvin since the ideal gas law requires temperature in Kelvin.

Using the ideal gas law equation, we can rearrange it to solve for the number of moles:

n = PV / RT

Substituting the given values and the ideal gas constant R = 0.0821 L·atm/(mol·K), we have:

n = (2.200 atm) * (22.611 L) / (0.0821 L·atm/(mol·K) * (27.1 + 273.15 K)

Calculating the expression, we find:

n ≈ 0.983 mol

learn more about moles here:

https://brainly.com/question/28239680

#SPJ11

What will be the pressure of 1.50 mol of an ideal gas at a temperature of 24.5 °C and a volume of 62.1 L? Use R=0.0821 atm. L/mol K atm

Answers

The pressure of 1.50 mol of an ideal gas at a temperature of 24.5 °C and a volume of 62.1 L is 1.66 atm.

To calculate the pressure of the gas, we can use the ideal gas law equation: PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature.

First, we need to convert the given temperature from Celsius to Kelvin by adding 273.15:

T = 24.5 °C + 273.15 = 297.65 K

Next, we rearrange the ideal gas law equation to solve for P:

P = (nRT) / V

Plugging in the values, we have:

P = (1.50 mol) * (0.0821 atm·L/mol·K) * (297.65 K) / (62.1 L) ≈ 1.66 atm

learn more about Ideal gas law here:

https://brainly.com/question/30458409

#SPJ11

Isopropyl alcohol is mixed with water to produce a solution that is 36.0% alcohol by volume. How many milliliters of each component are present in 815 mL of this solution? alcohol: water: 311.4 Incorr

Answers

Volume of water = 521.6 mL.The given concentration of isopropyl alcohol is 36.0% by volume.

Solution: To find out the required milliliters of each component, we will first find the number of milliliters of isopropyl alcohol and water present in the solution.

Volume fraction of isopropyl alcohol= 36.0%

By definition, volume fraction is the ratio of the volume of the solute (isopropyl alcohol) to the volume of the solution.

Volume fraction = (Volume of solute / Volume of solution) x 100We can write the above formula as,

Volume of solute = Volume fraction x Volume of solution Volume of isopropyl alcohol= 36.0% x 815 mL

Volume of isopropyl alcohol= 293.4 mL As we know, total volume of the solution is 815 mL.

So, Volume of water = Total volume of the solution - Volume of isopropyl alcohol Volume of water = 815 mL - 293.4 mL Volume of water = 521.6 mL.

To know more about concentration  visit:-

https://brainly.com/question/30862855

#SPJ11

A sample of hydrogen sulfide, H 2 S, has a mass of 81.75 g. Calculate the number of hydrogen sulfide molecules in the sample.

Answers

The number of hydrogen sulfide (H₂S) molecules in the sample with a mass of 81.75 g is approximately 1.45 × 10²³ molecules.

To calculate the number of molecules in a sample of hydrogen sulfide (H₂S), we need to use the molar mass and Avogadro's number.

The molar mass of hydrogen sulfide (H₂S) is calculated by adding the atomic masses of hydrogen (H) and sulfur (S) together:

Molar mass of H₂S = 2 × atomic mass of H + atomic mass of S = 2 × 1.00784 g/mol + 32.06 g/mol ≈ 34.0817 g/mol

Next, we calculate the number of moles of H₂S in the sample by dividing the given mass by the molar mass:

Number of moles of H₂S = 81.75 g / 34.0817 g/mol ≈ 2.4 mol

Finally, we use Avogadro's number, which states that there are approximately 6.02 × 10²³ entities (atoms, molecules, etc.) in one mole, to calculate the number of molecules:

Number of H₂S molecules = Number of moles × Avogadro's number

≈ 2.4 mol × 6.02 × 10²³ molecules/mol

≈ 1.45 × 10²⁴ molecules

learn more about molar mass here:

https://brainly.com/question/22997914

#SPJ11

What types of intermolecular forces are present in the following compound? CH 3

CH 2

Cl (Select all that apply.) induced dipole-induced dipole (London or dispersion) dipole-dipole hydrogen bonding

Answers

The intermolecular forces present in CH3CH2Cl are:

- Dipole-dipole interactions

- London dispersion forces

CH3CH2Cl is an organic compound with a chlorine atom bonded to the second carbon atom in the chain. This molecule exhibits both dipole-dipole interactions and London dispersion forces.

Dipole-dipole interactions: CH3CH2Cl is a polar molecule because the chlorine atom is more electronegative than the carbon and hydrogen atoms.

This creates a permanent dipole moment, with the chlorine atom being partially negative and the carbon and hydrogen atoms being partially positive.

The dipole-dipole interactions occur between the partially positive hydrogen atoms of one molecule and the partially negative chlorine atom of another molecule.

London dispersion forces: In addition to dipole-dipole interactions, CH3CH2Cl also experiences London dispersion forces.

These forces are caused by temporary fluctuations in electron distribution, resulting in the formation of temporary dipoles. These temporary dipoles induce dipoles in neighboring molecules, leading to attractive forces between them.

Hydrogen bonding: Although CH3CH2Cl contains hydrogen atoms, it does not have a hydrogen atom bonded directly to a highly electronegative atom such as nitrogen, oxygen, or fluorine.

Hydrogen bonding requires a hydrogen atom bonded to one of these highly electronegative atoms, so it is not present in CH3CH2Cl.

To know more about "Dipole moment" refer here:

https://brainly.com/question/14119304#

#SPJ11

What ions do Mg and S form?

Answers

Magnesium (Mg) typically forms the Mg2+ ion, losing two electrons to achieve a stable electron configuration. The ion Mg2+ has a 2+ charge because it has two fewer electrons than the neutral Mg atom.

Sulfur (S) can form two common ions: the sulfide ion (S2-) and the sulfate ion (SO42-). The sulfide ion is formed when sulfur gains two electrons, resulting in a 2- charge. The sulfate ion is formed when sulfur gains six electrons, resulting in a 2- charge as well.

Learn more about ions here : brainly.com/question/30799882
#SPJ11

Which variables would not effect the following equilibrium? CH4(g) + 2O2(g) CO2(g) + 2H2O(g)
Group of answer choices
Increase in partial pressure of CO2(g).
Increase in partial pressure of O2(g).
Increase in partial pressure of CH4(g).
Increase in total pressure.
Decrease in partial pressure of H2O(g).

Answers

Only the change in the concentration of the reactants will affect the equilibrium of the given reaction. Changes in pressure and temperature will not affect the equilibrium as long as the volume remains constant. Hence, options 1, 4, and 5 are correct choices.

The variables that would not affect the equilibrium of the given reaction are:

1. Increase in partial pressure of CO₂(g). - This will not affect the equilibrium because CO₂ is one of the products of the reaction and does not appear in the balanced equation as a reactant.

4. Increase in total pressure. - The equilibrium position is not influenced by changes in total pressure as long as the volume remains constant. This is based on Le Chatelier's principle, which states that changes in pressure only affect the equilibrium if the volume of the system changes.

5. Decrease in partial pressure of H₂O(g). - Decreasing the partial pressure of H₂O(g) will not affect the equilibrium because water (H₂O) is one of the products of the reaction and does not appear in the balanced equation as a reactant.

Therefore, options 1, 4, and 5 would not affect the equilibrium of the given reaction.

To know more about the Le Chatelier's principle refer here,

https://brainly.com/question/11307868#

#SPJ11

An aqueous solution containing 8.88 g of lead(II) nitrate is added to an aqueous solution containing 5.33 g of potassium chloride. Enter the balanced chemical equation for this reaction. Be sure to include all physical states. balanced chemical equation: What is the limiting reactant? lead(II) nitrate potassium chloride The percent yield for the reaction is 88.0%. How many grams of the precipitate are formed? precipitate formed: Taking into account the percent yield, how many grams of the excess reactant (the reactant that is not limiting) remain?

Answers

The balanced chemical equation for the reaction between lead(II) nitrate (Pb(NO₃)₂) and potassium chloride (KCl) is:

Pb(NO₃)₂(aq) + 2KCl(aq) → PbCl₂(s) + 2KNO₃(aq)

The limiting reactant is potassium chloride (KCl). The precipitate formed is lead(II) chloride (PbCl₂). Considering the percent yield of 88.0%, the grams of the precipitate formed would be calculated by multiplying the theoretical yield (based on the balanced equation) by the percent yield.

To determine the balanced chemical equation, we need to ensure that the number of atoms on both sides of the equation is balanced. For the reaction between lead(II) nitrate (Pb(NO₃)₂) and potassium chloride (KCl), the balanced equation is:

Pb(NO₃)₂(aq) + 2KCl(aq) → PbCl₂(s) + 2KNO₃(aq)

In this equation, the lead(II) nitrate reacts with potassium chloride to form lead(II) chloride as a precipitate and potassium nitrate in the aqueous phase.

To identify the limiting reactant, we compare the mole ratios of the reactants to the balanced equation. The coefficient in front of each compound indicates the mole ratio. In this case, the mole ratio of lead(II) nitrate to lead(II) chloride is 1:1, and the mole ratio of potassium chloride to lead(II) chloride is 2:1.

Since the mole ratio of potassium chloride to lead(II) chloride is greater than the mole ratio of lead(II) nitrate to lead(II) chloride, potassium chloride is the limiting reactant.

The precipitate formed in the reaction is lead(II) chloride (PbCl₂). The balanced equation indicates that 1 mole of lead(II) nitrate produces 1 mole of lead(II) chloride. To calculate the grams of the precipitate formed, we need to determine the number of moles of lead(II) chloride formed. This can be done by converting the mass of lead(II) nitrate (8.88 g) to moles using its molar mass.

Next, we need to consider the percent yield of 88.0%. The percent yield represents the ratio of the actual yield (experimental yield) to the theoretical yield (calculated from the balanced equation) multiplied by 100.

Since the percent yield is given, we can calculate the theoretical yield by multiplying the moles of lead(II) chloride formed by its molar mass. Then, we multiply the theoretical yield by the percent yield to obtain the actual yield.

To determine the grams of the excess reactant remaining, we subtract the moles of the limiting reactant consumed from the moles of the excess reactant initially present. This can be done by converting the mass of potassium chloride (5.33 g) to moles using its molar mass and comparing the mole ratios of the balanced equation.

Overall, by considering the balanced equation, the limiting reactant, the formation of the precipitate, and the percent yield, we can determine the grams of the precipitate formed and the grams of the excess reactant remaining in the reaction.

To know more about potassium chloride refer here:

https://brainly.com/question/31104976#

#SPJ11

a student performs a reaction that makes aluminum oxide. according to her calculations, she should expect to make 85.3 grams. she actually produces 61 grams. what is her percent yield?

Answers

Answer:

72%

Explanation:

Percent yield is the amount a reaction yields compared to what the reaction is expected to yield.

Defining Percent Yield

In every reaction, we can calculate how much the reaction should produce using stoichiometry. The closer the yield is to 100%, the more successful the reaction was. If the percent yield is too low, then we know that there was an error in the lab or that one of the samples used in the experiment was impure. Additionally, the percent yield cannot be over 100% due to the law of conservation of mass. If the calculated percent yield was over 100%, then we know that there was an error in the experiment as well.

Calculating Percent Yield

Percent yield is calculated using a formula. The percent yield formula is as follows:

[tex]\displaystyle \frac{\rm actual \ yield}{\rm expected\ yield} *100\%[/tex]

In this reaction, the expected yield is 85.3g and the actual yield is 61g. So, we can plug these values into the formula.

[tex]\displaystyle \frac{61}{85.3} *100\%[/tex]  = 72%

Remember to round to significant figures (sig figs) for percent yield. Since the actual yield has 2 sig figs, so should the percent yield. The percent yield for the reaction is 72%. This shows that there was likely some form of error in the experiment because the percent yield is notably lower than 100%.

14. Draw the structures corresponding to the following names: a) Cyclohexylamine b) \( N, N- \) Dimethylbutylamine

Answers

The amino group is bonded to the carbon atom in the ring, which is designated as 1-amino-cyclohexane. When naming this compound, we begin by identifying the longest chain, which is five carbon atoms long.

(a) Cyclohexylamine:The structure corresponding to the name Cyclohexylamine is shown below: The prefix cyclo- indicates a cyclic compound with six carbons in this case, and the suffix -amine denotes that it is an amine compound. The amino group is bonded to the carbon atom in the ring, which is designated as 1-amino-cyclohexane.

(b) \(N,N-\) Dimethylbutylamine:When naming this compound, we begin by identifying the longest chain, which is five carbon atoms long. The -yl ending comes from the pentane, and the amine group (-NH2) replaces a hydrogen atom on one of the carbon atoms. Since we have two methyl groups on nitrogen, we must include N,N-dimethyl at the start of the name. The nitrogen atom must be included in the main chain's numbering, thus the name is 2-(N,N-dimethylamino)pentane:Notice that the carbon atom bearing the amino group is now denoted as carbon number 2, not carbon number 1, since we are now numbering from the left-hand side to the right-hand side of the molecule.

To know more about compound:

https://brainly.com/question/14117795


#SPJ11

A binary compound contains chromium and iodine and has a mass of 8.301 grams. If the compound contains 12.05% chromium, calculate the mass of iodine used to form the compound and it's empirical formula.

Answers

The empirical formula of the compound is [tex]CrI_3[/tex], indicating that it contains one chromium atom and three iodine atoms.

To calculate the mass of iodine used to form the compound, we first need to determine the mass of chromium present. Since the compound contains 12.05% chromium, we can calculate it as follows:

Mass of chromium = (12.05% / 100) * 8.301 grams

= 0.1205 * 8.301 grams

= 1.0004 grams

Next, we can calculate the mass of iodine by subtracting the mass of chromium from the total mass of the compound:

Mass of iodine = Total mass of compound - Mass of chromium

= 8.301 grams - 1.0004 grams

= 7.3006 grams

To determine the empirical formula, we need to convert the masses of chromium and iodine to moles by dividing them by their respective atomic masses. The atomic mass of chromium is 51.996 grams/mol, and the atomic mass of iodine is 126.904 grams/mol.

Moles of chromium = Mass of chromium / Atomic mass of chromium

= 1.0004 grams / 51.996 grams/mol

= 0.01924 mol

Moles of iodine = Mass of iodine / Atomic mass of iodine

= 7.3006 grams / 126.904 grams/mol

= 0.05751 mol

Now, we need to find the simplest whole number ratio between the moles of chromium and iodine. Dividing both values by the smaller value (0.01924 mol), we get:

Moles of chromium = 1.0000 = 1

Moles of iodine = 0.05751 / 0.01924 = 2.992 = 3

To know more about empirical formula refer here

https://brainly.com/question/32125056#

#SPJ11

Draw Lewis structures for each of the following structures and assign formal charges to each atom: a) SF 2

b) NH​2OH(N and O are bonded to one another)

Answers

The Lewis structure for SF₂ shows sulfur (S) bonded to two fluorine (F) atoms, with each atom having a formal charge of 0, while the Lewis structure for NH₂OH displays nitrogen (N) bonded to two hydrogen (H) atoms and an oxygen (O) atom, with all atoms having a formal charge of 0.

A) The Lewis structure of SF₂ is as follows:

F

|

S-F

The formal charges for each atom can be determined by comparing the number of valence electrons in the Lewis structure with the number of valence electrons in the neutral atom. In SF₂, sulfur (S) has six valence electrons and each fluorine (F) has seven valence electrons. Since the sulfur atom is bonded to two fluorine atoms, it uses two of its valence electrons for bonding, leaving four valence electrons. Each fluorine atom contributes one electron to the bond.

To assign formal charges, we use the formula: Formal charge = (Number of valence electrons in the neutral atom) - (Number of lone pair electrons) - (Number of shared electrons/2)

For SF₂, each fluorine atom has a formal charge of 0, while the sulfur atom has a formal charge of 0.

b) The Lewis structure of NH₂OH is as follows:

H

|

H - N - O - H

|

H

The formal charges can be determined similarly. Nitrogen (N) has five valence electrons, each hydrogen (H) has one valence electron, and oxygen (O) has six valence electrons. Nitrogen forms three bonds and has one lone pair of electrons, while oxygen forms two bonds and has two lone pairs of electrons.

The formal charges for each atom in NH₂OH are as follows: Nitrogen: 0, Oxygen: 0, and each Hydrogen: 0.

learn more about Lewis structure here:

https://brainly.com/question/6694938

#SPJ11

9 4.55g of zinc is reacted with 50c * m ^ 3 of 2.25mol / d * m ^ 3 dilute hydrochloric acid.

The equation for the reaction is shown.

Zn + 2HCl -> ZnC*l_{2} + H_{2}

Which volume of hydrogen gas, at room temperature and pressure, is produced in the reaction?

A 1.35d * m ^ 3

B 1.67d * m ^ 3

C 2.7d * m ^ 3

D 3.34d * m ^ 3

Answers

The volume of hydrogen gas produced in the reaction is approximately 0.67 m³. None of the given option is correct.

To determine the volume of hydrogen gas produced in the reaction, we need to calculate the number of moles of hydrogen gas first. Then, we can use the ideal gas law to convert the number of moles to volume at room temperature and pressure.

From the balanced chemical equation:

Zn + 2HCl -> ZnCl₂ + H₂

We can see that 1 mole of zinc reacts with 2 moles of hydrochloric acid to produce 1 mole of hydrogen gas.

Given:

Mass of zinc (Zn) = 4.55 g

Molar mass of zinc (Zn) = 65.38 g/mol

Concentration of hydrochloric acid (HCl) = 2.25 mol/dm³

Volume of hydrochloric acid (HCl) = 50 cm³ = 50 × 10⁻³ dm³

First, we calculate the number of moles of zinc:

Number of moles of zinc (Zn) = Mass / Molar mass = 4.55 g / 65.38 g/mol

Since the ratio between zinc and hydrogen gas is 1:1, the number of moles of hydrogen gas produced is also equal to the number of moles of zinc.

Now, we can convert the number of moles of hydrogen gas to volume using the ideal gas law:

PV = nRT

Assuming room temperature (around 298 K) and pressure (around 1 atm), we can rearrange the equation to solve for volume (V):

V = nRT / P

Plugging in the values:

V = (Number of moles of hydrogen gas) × (Ideal gas constant) × (Temperature) / (Pressure)

Calculating the volume of hydrogen gas:

V = (4.55 g / 65.38 g/mol) × (0.0821 dm³·atm/mol·K) × (298 K) / (1 atm)

V ≈ 0.67 dm³

Converting to the desired units:

V ≈ 0.67 × 10³ cm³ = 0.67 × 10³ × 10⁻³ m³ = 0.67 m³

None of the given answer options match the calculated volume, so it seems there might be an error in the provided options.

For more such questions on hydrogen gas

https://brainly.com/question/19813237

#SPJ8

What is the empirical formula for a sample that contains 0.9 mol
of C, 1.8 mol of H, and 0.90 mol of Cl?
Fill in the coefficient for each atom below
C
Cl
H

Answers

The empirical formula for the sample is: C1H2Cl1

To determine the empirical formula, we need to find the simplest whole number ratio of atoms in the compound.

Given that we have 0.9 mol of C, 1.8 mol of H, and 0.90 mol of Cl, we need to find the ratio by dividing each value by the smallest value among them.

In this case, the smallest value is 0.9 mol.

Dividing each value by 0.9 mol:

C: 0.9 mol ÷ 0.9 mol = 1

H: 1.8 mol ÷ 0.9 mol = 2

Cl: 0.9 mol ÷ 0.9 mol = 1

Therefore, the empirical formula for the sample is: C1H2Cl1

For such more questions on empirical formula

https://brainly.com/question/1603500

#SPJ8

during the oxidation of isocitrate, is decarboxylated to form a-ketoglutarate. a) hydroxyethyl-tpp b) carboxybiotin c) oxalosuccinate d) succinyl-phosphate e) none of the above

Answers

The correct answer is e) none of the above.

Isocitrate is transformed into alpha-ketoglutarate by the enzyme isocitrate dehydrogenase during the oxidation of isocitrate in the tricarboxylic acid (TCA) cycle. Decarboxylation is the process by which a CO₂ molecule is removed during this reaction. The right cofactor or intermediate involved in this reaction is not indicated by any of the answer choices given in the question.

Nicotinamide adenine dinucleotide (NAD⁺), which is reduced to NADH during the reaction, is the proper cofactor involved in the iso  citrate dehydrogenase reaction. Alpha-ketoglutarate is produced when isocitrate is oxidized, and CO₂ is produced as a byproduct of this reaction.

To know more about citrate :

https://brainly.com/question/31594252

#SPJ4

you have 115.0 ml of a solution of h2so4, but you don't know its concentration. if you titrate the solution with a 2.41-m solution of koh and reach the endpoint when 104.7 ml of the base are added, what is the concentration of the acid?

Answers

The concentration of the sulfuric acid (H₂SO₄) solution is approximately 1.09665 M.

To determine the concentration of the sulfuric acid (H₂SO₄) solution, we can use the concept of stoichiometry and the volume of the titrant (KOH) needed to reach the endpoint.

Given;

Volume of H₂SO₄ solution = 115.0 ml

Concentration of KOH solution = 2.41 M

Volume of KOH solution added to reach the endpoint = 104.7 ml

First, we need to determine the number of moles of KOH added to the solution;

Moles of KOH = Concentration of KOH × Volume of KOH solution

Moles of KOH = 2.41 M × (104.7 ml / 1000) [Convert ml to liters]

Moles of KOH = 0.25203 moles

According to the balanced chemical equation between H₂SO₄ and KOH, the stoichiometric ratio is 1:2. This means that for every 1 mole of H₂SO₄, 2 moles of KOH are required to neutralize it.

Since 2 moles of KOH are needed to neutralize 1 mole of H₂SO₄, the number of moles of H₂SO₄ in the solution is half of the moles of KOH added.

Moles of H₂SO₄ = 0.25203 moles / 2

Moles of H₂SO₄ = 0.126015 moles

To calculate the concentration of the H₂SO₄ solution, we divide the moles of H₂SO₄ by the volume of the solution in liters:

Concentration of H₂SO₄ = Moles of H₂SO₄ / Volume of H₂SO₄ solution

Concentration of H₂SO₄ = 0.126015 moles / (115.0 ml / 1000) [Convert ml to liters]

Concentration of H₂SO₄ = 1.09665 M

Therefore, the concentration of the sulfuric acid (H₂SO₄) solution is approximately 1.09665 M.

To know more about concentration here

https://brainly.com/question/30862855

#SPJ4

an ideal gas is allowed to expand from 2.60 l to 24.7 l at constant temperature. by what factor does the volume increase?

Answers

The volume increases by a factor of 9.5. This means that the final volume is 9.5 times larger than the initial volume.

To calculate the factor by which the volume increases, we need to compare the initial volume (V1) to the final volume (V2) of the gas by ideal gas law.

Given:

Initial volume (V1) = 2.60 L

Final volume (V2) = 24.7 L

The factor by which the volume increases can be determined by dividing the final volume by the initial volume:

Volume increase factor = V2 / V1

Plugging in the given values:

Volume increase factor = 24.7 L / 2.60 L

Calculating the volume increase factor:

Volume increase factor = 9.5

Therefore, the volume increases by a factor of 9.5. This means that the final volume is 9.5 times larger than the initial volume.

To know more about ideal gas law:

https://brainly.com/question/32388025

#SPJ4

Draw structures for the two fragments ions of highest mass from the
following molecule.
Draw structures for the two fragment ions of highest mass from the following molecule. - Explicitly draw all \( \mathrm{H} \) atoms. - Define the charge on your fragment using the square bracket tool.

Answers

Due to the limitations of text-based format, I cannot provide the structures for the two fragment ions of highest mass from the given molecule, but I can offer guidance on identifying cleavage sites and using square brackets to denote charge.

I apologize, but I am unable to draw structures as a text-based AI model. However, I can describe the process and provide some general guidance.

To determine the fragment ions of the highest mass, you would need to identify the possible cleavage sites within the molecule. Cleavage usually occurs at weaker bonds, such as single bonds or functional group connections.

Once you identify the cleavage sites, you can determine the resulting fragments and their respective masses.

To denote the charge on a fragment, you can use the square bracket notation, where the charge is indicated inside the brackets. For example, [M+H]+ represents a fragment with a positive charge, where M is the fragment.

To accurately draw the structures, it would be helpful to use specialized chemical drawing software or consult a chemistry resource.

To know more about text-based forma refer here

brainly.com/question/29869851#

#SPJ11

The standard reduction potential E0D2|D+,red for the reaction:
2D+(aq) + 2e- -> D2 (g)
where D is deuterium, is -0.0034V at 25°C.
Consider the following Cell:
Pt(s) | D2(g) | D+(aq) || H+(aq) | H2(g) | Pt(s)
for which we have the following Cell reaction:
2H+(aq) + D2(g) -> 2D+(aq) + H2(g)
a) Determine E0cell
b) Sketch a schematic of the physical design of the Cell. Label the appropriate electrodes "+" and "-".

Answers

The standard cell potential (E₀cell) for the given cell is -0.0017V, and the physical design consists of a Pt|D₂|D⁺ anode and a H⁺|H₂|Pt cathode.

a) To determine E₀cell, we can use the formula:

E₀cell = E₀cathode - E₀anode

Given that the reduction potential E₀D₂|D⁺,red is -0.0034V, we can identify it as the cathode reaction. The anode reaction is the reverse of the cell reaction:

H⁺(aq) + H₂(g) -> 2H⁺(aq) + D₂(g)

Since the cell reaction involves the sum of the cathode and anode reactions, the reduction potential of the anode reaction must be the negative of E₀cell:

E₀anode = -E₀cell

Thus, E₀cell = E₀cathode - E₀anode = E₀D₂|D⁺,red - (-E₀cell) = E₀D₂|D⁺,red + E₀cell

Substituting the given value of E₀D₂|D⁺,red as -0.0034V:

E₀cell = -0.0034V + E₀cell

Rearranging the equation, we find:

E₀cell - E₀cell = -0.0034V

2E₀cell = -0.0034V

E₀cell = -0.0017V

Therefore, the standard cell potential E₀cell is -0.0017V.

b) The schematic of the physical design of the cell can be represented as follows:

Pt(s) | D₂(g) | D⁺(aq) || H⁺(aq) | H₂(g) | Pt(s)

The "+" and "-" symbols indicate the direction of electron flow. In case, the electrons flow from left to right. Therefo, the left electrode (Pt(s) | D₂(g) | D⁺(aq)) is the anode, and the right electrode (H⁺(aq) | H₂(g) | Pt(s)) is the cathode.

To know more about cell potential refer here

brainly.com/question/15570309#

#SPJ11

the half-life of caesium-137 is about 30 years. what percent of an initial sample will remain in 100 years? round your answer to the nearest tenth. do not include the percent sign in answer.

Answers

Total, 12.5 percent of the initial sample of caesium-137 will remain after 100 years.

To calculate the percent of an initial sample that will remain after a certain time period, we can use the half-life of the radioactive isotope.

Given;

Half-life of caesium-137 = 30 years

Time period = 100 years

To determine the percent of the initial sample remaining after 100 years, we need to find the number of half-lives that have passed in that time period.

Number of half-lives = Time period / Half-life

Number of half-lives = 100 years/30 years

Number of half-lives ≈ 3.33

Since we cannot have a fraction of a half-life, we round this value down to 3.

After three half-lives, the remaining fraction of the initial sample can be calculated using the equation;

Remaining fraction = [tex](1/2)^{Number of half-lives}[/tex]

Remaining fraction = (1/2)³

Remaining fraction = 1/8 ≈ 0.125

To convert this fraction to the percentage, we multiply by 100;

Percent remaining = 0.125 × 100 ≈ 12.5

Therefore, approximately 12.5 percent of the initial sample of caesium-137 will remain after 100 years.

To know more about half-life here

https://brainly.com/question/24710827

#SPJ4

Use only dimensional analysis to solve this problem. Include a number, unit, and substance in the numerator and the denominator for every conversion fraction used. A solution is prepared by dissolving solid iron(III) bromide in water. If the solution has a concentration of 0.438MFeBr 3

then how many grams of iron(III) bromide were dissolved in a 75.0 mL sample of this solution?

Answers

The mass (in grams) of iron(III) bromide, FeBr₃ dissolved in the 75.0 mL solution is 9.72 grams

How do i determine the mass of FeBr₃ dissolved in the solution?

First, we shall obtain the mole of FeBr₃ in the solution. Details below:

Volume = 75.0 mL = 75 / 1000 = 0.075 LMolarity of FeBr₃ = 0.438 MMole of FeBr₃ =?

Mole of FeBr₃ = molarity × volume

= 0.438 × 0.075

= 0.03285 mole

Finally, we shall determine the mass of FeBr₃ in the solution. Details below:

Mole of FeBr₃ = 0.03285 moleMolar mass of FeBr₃ = 295.85 g/molMass of FeBr₃ = ?

Mass of FeBr₃ = Mole × molar mass

= 0.03285 × 295.85

= 9.72 grams

Thus, the mass of iron(III) bromide, FeBr₃ dissolved in the solution is 9.72 grams

Learn more about mass:

https://brainly.com/question/21940152

#SPJ4

Give a reasonable Lewis structure, including formal charges, for HNC (N.B. N is the central atom). H,N, and C are in groups 1,5 , and 4 and their atomic numbers are 1,7 , and 6.

Answers

The Lewis structure for HNC, with formal charges, is as follows: H : C ≡ N :

In the Lewis structure of HNC, we first determine the total number of valence electrons. Hydrogen (H) has 1 valence electron, nitrogen (N) has 5 valence electrons, and carbon (C) has 4 valence electrons. Thus, the total number of valence electrons is 1 + 5 + 4 = 10.

Next, we arrange the atoms, with the central atom being nitrogen (N). Since carbon (C) is more electronegative than hydrogen (H), we place carbon as a terminal atom and connect it to nitrogen with a triple bond.

We distribute the remaining electrons around the atoms, starting with the terminal atoms. Hydrogen (H) needs 2 electrons to complete its valence shell, so we place one electron pair (two electrons) around each hydrogen atom.

After placing the electrons, we check the formal charges. The formal charge of an atom can be calculated by subtracting the assigned electrons (lone pairs plus half of the bonding electrons) from the total valence electrons of that atom. In this case, the formal charges on the atoms are: H = 0, N = 0, and C = 0.

Thus, the resulting Lewis structure for HNC, with formal charges, is as shown above.

learn more about Lewis structure here:

https://brainly.com/question/32194427

#SPJ11

Other Questions
Thetenure system, which protects employees from arbitrary dismissal,is most associated with which approach to organizationalmanagement?A. Action ResearchB. BereaucracyC. Scientific Management Find the lower limit of 90% confidence interval.An SRS of 49 students was taken from high schools in a particular state. The average test score of the sampled students was 74 with a standard deviation of 9.1. Give the lower limit of the interval approximation. features of personality that make people different from one another and that can be used to describe their characteristics are called . action-descriptive verbs trait-descriptive adjectives differential pronouns trait-differentiating adverbs A manufacturer guarantees a product for 2 years. The time to fallure of the product after it is sold is given by the probabilty density function below, where f is time in months. What is the probability that the product will last at least 2 years? [Hint Recall that the total area under the probability density function curve is 1 .] t(t)={ 0.014e 0.014t0if t0otherwise The probability is (Type an integer or decimal rounded to two decimal places as needed.) For a quadratic equation ax2+bx+c = 0 (where a, b and c are coefficients), it's roots is given by the formula:The value of the discriminant (b2-4ac) determines the nature of roots. Write a C++ program that reads the values of a, b and c from the user and performs the following:-a. If the value of the discriminant is positive, program should print out that the equation has two real roots and prints the values of the two roots.b. If the discriminant is equal to 0, the roots are real and equal.c. if the value of the discriminant is negative, then the equation has two complex roots. "Suppose that you enter into a six-month forward contract ona non-dividend-paying stock when the stock price is $27.29 and therisk-free interest rate (with continuous compounding) is 7% perannum.Wh" What do you mean by phase in a soil mass? What is the difference between void ratio and porosity? 2. What is the consistency of soil? What are the different consistency limits? 3. Classify soils on the basis of their method of formation? What factors control the soil formation? Two stars are in a binary system. One is known to have a mass of 0.800 solar masses. If the system has an orbital period of 51.7 years, and a semi-major axis of 3.44E+9 km, what is the mass of the other star? elow is the transition function for the e-NFA M = ({p.gr. a), (a,b), 6.g. (r)). Use the "standard" algorithms to give a DFA that accepts the same language. Be sure to indicate which state(s) are initial and which are final. Which word is on the page with guide words downward / draft? A. Dowdy B. Drab C. Drag D. Downsize A soft tennis ball is dropped onto a hard floor from a height of 1.60 m and rebounds to a height of 1.28 m. (Assume that the positive direction is upward.)(a)Calculate its velocity (in m/s) just before it strikes the floor. (answer is -5.6)(b)Calculate its velocity (in m/s) just after it leaves the floor on its way back up. (answer is 5.01)(c)Calculate its acceleration (in m/s2) during contact with the floor if that contact lasts 3.50 ms. (answer is 3031)(d)How much (in m) did the ball compress during its collision with the floor, assuming the floor is absolutely rigid? ( I don't know this one) 11) Identify the element that has a ground state electronic configuration of [Ar] \( 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10} 4 \mathrm{p}^{1} \). A) \( \mathrm{Al} \) B) B C) Ga D) In Does ISO sensibilty in photography have a unit of measurement?Ex: like lux, or nit, etc... Given cos 8= 9 41' find sin 8 and cot 0. Show that the equation, 2 + e = 0 has exactly one real root. In a petrochemical unit ethylene, chlorine and carbon dioxide are stored on site for polymers pro- duction. Thus: Task 1 [Hand calculation] Gaseous ethylene is stored at 5C and 25 bar in a pressure vessel of 25 m. Experiments conducted in a sample concluded that the molar volume at such conditions is 7.20 x 10-4mmol-. Two equations of state were proposed to model the PVT properties of gaseous ethylene in such storage conditions: van der Waals and Peng-Robinson. Which EOS will result in more accurate molar volume? In your calculations, obtain both molar volume and compressibility factor using both equations of state. Consider: T = 282.3 K, P = 50.40 bar, = 0.087 and molar mass of 28.054 g mol-. [9 Marks] Task 2 [Hand calculation] 55 tonnes of gaseous carbon dioxide are stored at 5C and 55 bar in a spherical tank of 4.5 m of diameter. Assume that the Soave-Redlich-Kwong equation of state is the most accurate EOS to describe the PVT behaviour of CO in such conditions: i. Calculate the specific volume (in mkg-) of CO at storage conditions. [6 Marks] ii. Calculate the volume (in m) occupied by the CO at storage conditions. Could the tank store the CO? If negative, calculate the diameter (minimum) of the tank to store the gas. [4 Marks] For your calculations, consider: T = 304.2 K, Pe = 44.01 g mol- 73.83 bar, w= 0.224 and molar mass of A recipe required 1/4th Cup nuts 1/8 cup of Candy piece and one third cup of dry fruit what is the total weight in the cup of nuts candy pieces and dry fruit the recipe required Thunder Limited Liability Company (Thunder LLC.) entered into a five-year contract with Lopes Mart to provide Lopes Mart with 500 widgets to sell every semester. Due to supply chain issues, Thunder LLC. was unable to provide Lopes Mart with 500 widgets during fall semester of year two of the contract. This leaves Lopes Mart without widgets to sell during the semester causing lost profits for Lopes Mart. 1. Briefly explain mediation, arbitration, and litigation. 2. Choose whether mediation, arbitration, or litigation is the best way to resolve the dispute between Thunder LLC. and Lopes Mart. Support your stance with research and explain why. Find the solution of the given initial value problem: y"+y' = sec(t), y(0) = 6, y'(0) = 3, y'(0) = 4. y(t) = 2+4 cos(t) + 4 sin(t) t cos(t) + sin(t) In(cos(t)) X A machine costing $57,300 with a 4-year life and $51,861 depreciable cost was purchased January 1. Compute the yearly depreciation expense using straight-line depreciation. Round your answer to the nearest whole dollar. X per year Feedback Check My Work Incorrect