The equation for the number of bacteria B in terms of hours t can be written as: [tex]B(t) = 100 * (2)*(t/30)[/tex]
Based on the given information, we can determine that the number of bacteria in the culture is expected to double every 30 hours. Let's denote the number of bacteria at any given time t as B(t).
Initially, there are 100 bacteria in the culture, so we have:
B(0) = 100
Since the number of bacteria is expected to double every 30 hours, we can express this as a growth rate. The growth rate is 2 because the number of bacteria doubles.
Therefore, the equation for the number of bacteria B in terms of hours t can be written as:
B(t) = 100 * (2)^(t/30)
In this equation, (t/30) represents the number of 30-hour intervals that have passed since the experiment began. We divide t by 30 because every 30 hours, the number of bacteria doubles.
For such more question on equation:
https://brainly.com/question/17145398
#SPJ8
a. Find the first four nonzero terms of the Taylor series for the given function centered at a.
b. Write the power series using summation notation.
a. First, let's recall the formula of Taylor series of function f(x) centered at a: f(x) = ∑n = 0 to ∞ [fⁿ(a) (x-a)ⁿ] / n! where fⁿ(a) denotes the nth derivative of f(x) evaluated at x=a.
Now, let's find the first four non-zero terms of the Taylor series for the function f(x) = ln(x) centered at a = 1: fⁿ(x) = (-1)^(n-1) (n-1)! / xⁿ fⁿ(a) = (-1)^(n-1) (n-1)! when n >= 1 ∴ f(x) = ln(x) = fⁿ(a) (x-a)^n / n! = (-1)^(n-1) (n-1)! (x-1)^n / n! = (-1)^(n-1) (x-1)^n / n 1. n=1: (-1)^(1-1) (x-1)^1 / 1 = x-1 2. n=2: (-1)^(2-1) (x-1)^2 / 2 = -(x-1)^2 / 2 3. n=3: (-1)^(3-1) (x-1)^3 / 3 = (x-1)^3 / 3 4. n=4: (-1)^(4-1) (x-1)^4 / 4 = -(x-1)^4 / 4 ∴ The first four non-zero terms of the Taylor series for f(x) = ln(x) centered at a = 1 are: ln(x) = (x-1) - (x-1)^2 / 2 + (x-1)^3 / 3 - (x-1)^4 / 4.b. The power series using summation notation can be written as: ∑n=1 to ∞ (-1)^(n-1) (x-1)^n / n.
To find the Taylor series of a function, we use the formula given by:f(x) = ∑n = 0 to ∞ [fⁿ(a) (x-a)ⁿ] / n!Where fⁿ(a) denotes the nth derivative of f(x) evaluated at x=a, and n! is the factorial of n. Then, we substitute the function and its derivatives in the formula to get the desired Taylor series.In this case, we are finding the Taylor series for the function f(x) = ln(x) centered at a = 1. Using the formula, we find the derivatives of f(x) as:f'(x) = 1/xf''(x) = -1/x²f'''(x) = 2/x³f''''(x) = -6/x⁴and so on. Evaluating these derivatives at a = 1, we get:f'(1) = 1f''(1) = -1/2f'''(1) = 2/3f''''(1) = -6/4 = -3/2Then, substituting these values and simplifying, we get the first four non-zero terms of the Taylor series as:ln(x) = (x-1) - (x-1)²/2 + (x-1)³/3 - (x-1)⁴/4
A power series is an infinite sum of terms with increasing powers of a variable. A power series can represent a function and can be used to approximate it in a given interval. The Taylor series is a type of power series used to represent a function by expanding it in an infinite sum of its derivatives at a given point. The Taylor series of a function f(x) centered at a is given by:f(x) = ∑n = 0 to ∞ [fⁿ(a) (x-a)ⁿ] / n!where fⁿ(a) denotes the nth derivative of f(x) evaluated at x=a, and n! is the factorial of n.The Taylor series can be used to find the value of the function at a point close to a using only the derivatives of the function evaluated at a.
This is useful in numerical analysis and approximation of functions in scientific computing. The first four non-zero terms of the Taylor series for the function f(x) = ln(x) centered at a = 1 are (x-1) - (x-1)²/2 + (x-1)³/3 - (x-1)⁴/4. The power series using summation notation can be written as ∑n=1 to ∞ (-1)^(n-1) (x-1)^n / n.
To know more about Taylor series Visit
https://brainly.com/question/32235538
#SPJ11
Evaluate the following. If it does not exist, enter DNE. 0∫[infinity] e−3xdx
The integral ∫[0, infinity] e^(-3x) dx can be evaluated to determine its value.
When integrating from 0 to infinity, we are essentially calculating the definite integral over an infinite interval. To evaluate this integral, we can use a property known as the improper integral.
Applying the Improper integral, we have:
∫[0, infinity] e^(-3x) dx = lim(t -> infinity) ∫[0, t] e^(-3x) dx
To find the value of this integral, we evaluate the limit as t approaches infinity.
As we calculate the integral from 0 to t and take the limit as t approaches infinity, we find:
lim(t -> infinity) ∫[0, t] e^(-3x) dx = lim(t -> infinity) [-e^(-3t)/3 + e^0/3]
Simplifying further, we have:
lim(t -> infinity) [-e^(-3t)/3 + 1/3]
The limit of e^(-3t) as t approaches infinity is 0, so the integral evaluates to:
-0/3 + 1/3 = 1/3
Therefore, the value of the integral ∫[0, infinity] e^(-3x) dx is 1/3.
Learn more about Improper integral here :
brainly.com/question/30398122
#SPJ11
If TE \( =5 x \cdot 20 \) and ME \( x+20 \). Fint the lesgh of TE. (A) 15 (B) 20 (c) 25 (D) 30
The answer is (C) 25, the question states that TE = 5x - 20 and ME = x + 20. We are asked to find the length of TE.
Since TE = 5x - 20, and ME = x + 20, we can substitute ME for x + 20 in the equation TE = 5x - 20 to get TE = 5(x + 20) - 20. Simplifying the right side of this equation, we get TE = 5x + 100 - 20 = 5x + 80.
Therefore, the length of TE is 5x + 80, which is answer choice (C).
The question states that TE = 5x - 20 and ME = x + 20. We can represent this information in a table:
Quantity Value
TE 5x - 20
ME x + 20
We are asked to find the length of TE. Since TE = 5x - 20, we can substitute ME for x + 20 in the equation TE = 5x - 20 to get TE = 5(x + 20) - 20. Simplifying the right side of this equation, we get TE = 5x + 100 - 20 = 5x + 80.
Therefore, the length of TE is 5x + 80, which is answer choice (C).
To know more about length click here
brainly.com/question/30625256
#SPJ11
In a game played between two players, MAX and MIN, suppose that the first mover is MAX. Solve the game tree given in Figure 1 (by labelling all the non-leaf nodes with values and giving explanations f
In the game tree shown in Figure 1, MAX can guarantee a winning outcome. In the game tree, MAX is the first mover and the goal is to maximize the outcome.
By analyzing the tree, we can see that MAX has two choices at the root node: A and B. If MAX chooses A, MIN has two choices: C and D. If MIN chooses C, MAX has two choices again: E and F. If MIN chooses D, MAX has three choices: G, H, and I. By considering all possible moves and their corresponding outcomes, we can determine that MAX can always select the optimal move at each step, leading to a winning outcome.
To elaborate, let's consider the path that guarantees MAX's victory. MAX starts by choosing option A. MIN then selects option D, and MAX responds with option H. At this point, MAX has reached a terminal node with a value of +10, which represents a winning outcome for MAX. It is important to note that regardless of the choices made by MIN, MAX can always ensure a favorable outcome. The values assigned to the terminal nodes reflect the payoff for MAX. Therefore, in this game tree, MAX has a winning strategy.
Learn more about maximum value here: brainly.com/question/22562190
#SPJ11
Use linear approximation to estimate cos(0.75) at x_0 = π/4 to 5 decimal places.
To find the approximation of the value of `cos(0.75)` at `x₀ = π/4`,
using linear approximation, we will use the formula;
`L(x) ≈ f(x₀) + f'(x₀)(x - x₀)`Given,`x₀ = π/4` and `f(x) = cos x`, and
therefore, `f'(x) = -sin x`.
So, `f'(x₀) = -sin (π/4) = -1/√2`.
Now, applying the formula,
`L(x) = f(π/4) + f'(π/4)(0.75 - π/4)`
`=> L(x) = cos(π/4) + [-1/√2] (0.75 - π/4)`
`=> L(x) = [√2 / 2] - [-1/√2] [1/4]`
`=> L(x) = [√2 / 2] + [1/4√2]`
`=> L(x) = [2 + √2] / 4√2`
Thus, the linear approximation of `cos 0.75` at `x₀ = π/4` is `[2 + √2] / 4√2`
which, to 5 decimal places, is approximately `0.73135`.
Hence, the required estimate is `0.73135`.
To know more about approximation visit:
https://brainly.com/question/29669607
#SPJ11
Compute ∫(x^3 + 2)/(x^2 – 4x) dx using partial fraction decomposition.
The given integral is ∫(x^3 + 2)/(x^2 – 4x) dx We can solve this using partial fraction decomposition.
Partial fraction decomposition can be explained as a method of resolving algebraic fractions into simpler fractions that can be computed easily. Partial fraction decomposition is most useful when working with integration.Partial fraction decomposition is the inverse of adding fractions with common denominators .So, the main answer is, Using partial fraction decomposition, we have;
(x³+2)/(x(x-4))= A/x + B/(x-4) Multiplying throughout by x(x-4), we have x³+2 = A(x-4) + Bx
We can then solve for A and B by equating coefficients of x³, x², x, and constants on both sides of the equation. To solve for A, we can substitute x = 0, thus
0³+2= A(0-4) + B(0)A = -1/2
To solve for B, we can substitute x = 4,
thus 4³+2= A(4-4) + B(4)
B = 18
To integrate the function, we apply the partial fraction decomposition, which gives; ∫(x^3 + 2)/(x^2 – 4x) dx
= ∫(-1/2x) dx + ∫(18/(x-4))dx
= -1/2ln|x| + 18ln|x-4| + C, where C is the constant of integration .Therefore, the final answer is ∫(x^3 + 2)/(x^2 – 4x) dx
= -1/2ln|x| + 18ln|x-4| + C
To know more about integration visit:
https://brainly.com/question/33468996
#SPJ11
The
radius of the circle is 53.5 inches. the supports span 94 inches.
What is the angle theta for the marked section?
Using a calculator, we can evaluate this expression to find the value of θ.
To find the angle θ for the marked section, we can use the properties of a circle and the given information.
The supports span an arc on the circle, and the radius of the circle is given as 53.5 inches. The length of an arc is determined by the formula:
Arc Length = (θ/360) * (2π * r),
where θ is the central angle in degrees, r is the radius of the circle, and π is a mathematical constant approximately equal to 3.14159.
In this case, we know the arc length is 94 inches and the radius is 53.5 inches. We need to solve for θ.
94 = (θ/360) * (2π * 53.5).
To solve for θ, we can rearrange the equation:
θ/360 = 94 / (2π * 53.5).
θ = (94 / (2π * 53.5)) * 360.
To know more about equation visit:
brainly.com/question/29657983
#SPJ11
Maths. Scott and jason collect waste to be recycled. Scott collects 640 kilogramns of watse 89% of which can be recycled. . Jason collects 910 kilogramns of watse 63% of which can be recycled Work out who takes the greatest amount of recyclable waste and by how much
Jason collected the greatest amount of recyclable waste, exceeding Scott's collection by 3.7 kilograms.
To determine who collected the greatest amount of recyclable waste, we calculate the recyclable waste collected by each person. Scott collected 640 kilograms of waste, of which 89% can be recycled, resulting in 569.6 kilograms of recyclable waste. Jason collected 910 kilograms of waste, with 63% being recyclable, resulting in 573.3 kilograms of recyclable waste.
Comparing the two amounts, we find that Jason collected 3.7 kilograms more recyclable waste than Scott. Therefore, Jason collected the greatest amount of recyclable waste.
learn more about recyclable waste here:
https://brainly.com/question/30190614
#SPJ11
Find a function f such that f′(x)=2x3 and the line 54x+y=0 is tangent to the graph of f. f(x)=___
Therefore, f(x) = x⁴ - 162.
Let f(x) be the function such that f'(x) = 2x³ and the line 54x + y = 0 is tangent to the graph of f.
Find f(x).
To begin with, we can use the fact that f'(x) = 2x³ to integrate to find f(x).
Therefore, f(x) = ∫2x³dxIntegrating 2x³ with respect to x, we obtain;
f(x) = x⁴ + C, where C is the constant of integration
We also know that the line 54x + y = 0 is tangent to the graph of f.
To find where the line intersects the graph, we need to equate the slopes of the line and the graph.
So we can write:54 = f'(x) = 2x³The above equation can be solved for x as:
x = cuberoot (54/2)
= 3∛27
= 3
Therefore, the point of intersection of the line 54x + y = 0 and the graph of f(x) is at x = 3.
To find the value of C, we substitute x = 3 into the equation f(x) = x⁴ + C
We get: 54(3) + C = 0
Solving for C, we get;
C = -54 × 3
= -162
f(x) = x⁴ - 162.
To know more about graph visit:
https://brainly.com/question/17267403
#SPJ11
Find y as a real-valued function of t if y(5)=2,y′(5)=2. 16y′′+72y′+72y=0, y=___
The indefinite integral of ([tex]3−4x)(−x−5)dx is (-3/2)x^2 - 15x + (4/3)x^3 + 10x^2 + C.\\[/tex]
To evaluate the indefinite integral ∫(3−4x)(−x−5)dx, we can expand the expression using the distributive property and then integrate each term separately.
[tex]∫(3−4x)(−x−5)dx = ∫(-3x - 15 + 4x^2 + 20x)dx[/tex]
Now, we can integrate each term:
∫(-3x - 15 + 4x^2 + 20x)dx = ∫(-3x)dx - ∫(15)dx + ∫(4x^2)dx + ∫(20x)dx
Integrating each term:
= (-3/2)x^2 - 15x + (4/3)x^3 + 10x^2 + C
where C is the constant of integration.
Therefore, the indefinite integral of (3−4x)(−x−5)dx is (-3/2)x^2 - 15x + (4/3)x^3 + 10x^2 + C.
To know more about integration click-
https://brainly.com/question/25638609
#SPJ11
A researcher obtains z = 1.80 for a one-sample z test. What is the decision for this test at a .05 level of significance?
Group of answer choices
a. to reject the null hypothesis
b. to retain the null hypothesis
c. It depends on whether the test is one-tailed or two-tailed.
d. There is not enough information to make a decision.
The decision for this test at a .05 level of significance is not enough information to make a decision the correct answer is (d).
To make a decision for a hypothesis test, we compare the obtained test statistic (in this case, z = 1.80) with the critical value(s) based on the chosen level of significance (in this case, α = 0.05).
For a one-sample z test, if the obtained test statistic falls in the rejection region (i.e., beyond the critical value(s)), we reject the null hypothesis. Otherwise, if the obtained test statistic does not fall in the rejection region, we fail to reject the null hypothesis.
Without knowing the critical value(s) corresponding to a significance level of 0.05 and the directionality of the test (one-tailed or two-tailed), we cannot determine the decision for this test. Therefore, the correct answer is (d) There is not enough information to make a decision.
Learn more about z test at https://brainly.com/question/32334731
#SPJ11
You need to build a trough for your farm that is in the shape of
a trapezoidal prism. It
needs to hold 100 liters of water. What are its dimensions (base 1,
base 2, height, and
depth)? You would also
The trough's dimensions are base 1 = 0.53 m, base 2 = 1.47 m, height = 0.62 m and depth = 0.77 m. The formula for the volume of a trapezoidal prism is used to solve this problem.
Given, the trough has the capacity to hold 100 liters of water.
The formula for the volume of a trapezoidal prism is given as follows:
V = (a+b)/2 × h × d
where,a and b are the lengths of the bases,h is the height of the trapezoidal cross-section,and d is the depth of the prism.
Therefore,
V = (a+b)/2 × h × d100 L = (a+b)/2 × 0.62 m × 0.77 mLHS = 100000 mL (converting from L to mL)
100000 = (a+b)/2 × 0.62 × 0.77100000 = (a+b) × 0.2405
(a+b) = 416.1806a + b = 416.1806
We can obtain the value of b by solving the linear equation 1.47a - b = 0 and a + b = 416.1806.
Therefore, b = 168.8965 m
We can now substitute the value of b in equation 1.47a - b = 0 to find the value of a.1.47a - 168.8965 = 0a = 114.9481 m
Therefore, the trough's dimensions are base 1 = 0.53 m, base 2 = 1.47 m, height = 0.62 m and depth = 0.77 m.
To learn more about linear equation
https://brainly.com/question/32634451
#SPJ11
The inductive step of an inductive proof shows that for k ≥ 4 , if 2 k ≥ 3 k , then 2 k + 1 ≥ 3 ( k + 1 ) . In which step of the proof is the inductive hypothesis used? 2 k + 1 ≥ 2 ⋅ 2 k (Step 1)
≥ 2 ⋅ 3 k (Step 2)
≥ 3 k + 3 k (Step 3)
≥ 3 k + 3 (Step 4)
≥ 3 ( k + 1 ) (Step 5)
a. Step 1
b. Step 2
c. Step 3
d. Step 4
The proof progresses from step (c) to (d), (e), and finally concludes with (e), showing that 2^k+1 ≥ 3^(k+1). Therefore, step (c) is where the inductive hypothesis is used in this particular proof.
The inductive hypothesis is used in step (c) of the proof, which states that 2^k ≥ 3^k.
In an inductive proof, the goal is to prove a statement for all positive integers, typically starting from a base case and then applying the inductive step. The inductive hypothesis assumes that the statement is true for some value, usually denoted as k. Then, the inductive step shows that if the statement holds for k, it also holds for k + 1.
In this case, the inductive hypothesis assumes that 2^k ≥ 3^k is true. In step (c), the proof requires showing that if 2^k ≥ 3^k holds, then 2^(k+1) ≥ 3^(k+1). This step relies on the inductive hypothesis because it assumes the truth of 2^k ≥ 3^k in order to establish the inequality for the next term.
By using the inductive hypothesis, the proof progresses from step (c) to (d), (e), and finally concludes with (e), showing that 2^k+1 ≥ 3^(k+1). Therefore, step (c) is where the inductive hypothesis is used in this particular proof.
Learn more about inductive hypothesis
https://brainly.com/question/29525504
#SPJ11
Use the Table of Integrals to evaluate the integral. (Use C for the constant of integration.)
∫xsin(7x²)cos(8x²)dx
The integral ∫xsin(7x²)cos(8x²)dx evaluates to (-1/32)cos(7x²) + C, where C represents the constant of integration.
To evaluate the integral ∫xsin(7x²)cos(8x²)dx, we can use the Table of Integrals, which provides formulas for various integrals. In this case, we observe that the integrand is a product of trigonometric functions.
From the Table of Integrals, we find the integral formula:
∫xsin(ax²)cos(bx²)dx = (-1/4ab)cos(ax²) + C.
Comparing this formula to the given integral, we can identify a = 7 and b = 8. Substituting these values into the formula, we obtain:
∫xsin(7x²)cos(8x²)dx = (-1/4(7)(8))cos(7x²) + C
= (-1/32)cos(7x²) + C.
In conclusion, the value of the integral ∫xsin(7x²)cos(8x²)dx is (-1/32)cos(7x²) + C, where C is the constant of integration. This result is obtained by applying the appropriate integral formula from the Table of Integrals.
Learn more about integral here:
https://brainly.com/question/31059545
#SPJ11
Question 4 (3 mark) : Write a program called Powers to calculate the first 4 powers of a given number. For example, if 3 were entered, the powers would be \( 3,9,27 \) and \( 81\left(3^{1}, 3^{2}, 3^{
Here's a Python program called "Powers" that calculates the first four powers of a given number:
```python
def powers(number):
power_list = []
for exponent in range(1, 5):
result = number ** exponent
power_list.append(result)
return power_list
# Example usage
input_number = int(input("Enter a number: "))
result_powers = powers(input_number)
print("The first 4 powers of", input_number, "are:", result_powers)
```
When you run this program and enter a number, it will calculate the powers for that number and display them as a list. For example, if you enter 3, it will output:
```
Enter a number: 3
The first 4 powers of 3 are: [3, 9, 27, 81]
```
Feel free to customize the program as needed or incorporate it into a larger project.
Learn more about python here: brainly.com/question/26497128
#SPJ11
4. The state of strain at the point on the bracket has components εx = 200(10-6), εy = -350(10-6), Yxy = 150(106). Use the strain-transformation equations to determine the equivalent in-plane strains on an element oriented at an angle of 40 degrees clockwise from the original position.
Therefore, the equivalent in-plane strains on an element oriented at an angle of 40 degrees clockwise from the original position are εx′= -98.05 × 10⁻⁶ and εy′= -407.38 × 10⁻⁶.
The strain transformation equation is given as:
εx′=εxcos2θ+εysin2θ+γxysin2θεy′
=εycos2θ+εxsin2θ−γxysin2θγxy′
=−12(εx−εy)sin2θ+γxycos2θ
Here, εx = 200(10-6),
εy = -350(10-6),
Yxy = 150(10-6).
θ = 40 degrees
The angle is measured clockwise from the original position.
Therefore,θ = -40° (measured anticlockwise)
cos θ = cos(-40)
= 0.7660
sin θ = sin(-40)
= -0.6428
εx′=εxcos²
θ+εysin^2 θ+γxy
sin2θ= 200 × (0.7660)² + (-350) × (0.6428)² + 150 × (0.7660) × (-0.6428)
= -98.05 × 10^-6εy′
=εycos² θ+εxsin² θ−γxysin2θ
= (-350) × (0.7660)² + 200 × (0.6428)² - 150 × (0.7660) × (-0.6428)
= -407.38 × 10⁻⁶γxy
=−12(εx−εy)sin2θ+γxycos2θ
= -0.5 × (200 + 350) × (0.7660) + 150 × (0.6428)
= 33.8 × 10⁻⁶
To know more about plane visit:
https://brainly.com/question/2400767
#SPJ11
Let A=(3,−5,2),B=(7,−4,−2),C=(6,−8,−4), and D=(2,−9,0). Find the area of the parallelogram determined by these four points, the area of the triangle ABC, and the area of the triangle ABD.
Area of parallelogram ABCD=
Area of triangle ABC=
Area of triangle ABD=
The area of parallelogram ABCD is 18.73 square units. The area of triangle ABC is 8.66 square units. The area of triangle ABD is 10.07 square units.
To find the area of the parallelogram ABCD, the area of triangle ABC, and the area of triangle ABD, we can use vector operations and the magnitude of cross products.
The area of a parallelogram is equal to the magnitude of the cross product of two vectors formed by its sides, while the area of a triangle is half the magnitude of the cross product of two vectors formed by its sides. By calculating these cross-products and magnitudes, we can determine the areas of the given geometric shapes.
Let's begin by finding the vectors AB, AC, and AD using the given coordinates of the points A, B, C, and D:
AB = B - A = (7, -4, -2) - (3, -5, 2) = (4, 1, -4)
AC = C - A = (6, -8, -4) - (3, -5, 2) = (3, -3, -6)
AD = D - A = (2, -9, 0) - (3, -5, 2) = (-1, -4, -2)
Next, we calculate the cross products of vectors AB and AD, and AB and AC:
Cross product of AB and AD: AB × AD = (4, 1, -4) × (-1, -4, -2) = (-12, -8, -12)
Cross product of AB and AC: AB × AC = (4, 1, -4) × (3, -3, -6) = (-10, 10, -10)
Now, we calculate the magnitudes of these cross-products:
Magnitude of AB × AD = |(-12, -8, -12)| = √([tex](-12)^2[/tex] +[tex](-8)^2[/tex] + [tex](-12)^2[/tex]) = √(144 + 64 + 144) = √352 = 18.73
Magnitude of AB × AC = |(-10, 10, -10)| = √([tex](-10)^2[/tex] + [tex]10^2[/tex] + [tex](-10)^2[/tex]) = √(100 + 100 + 100) = √300 = 17.32
The area of the parallelogram ABCD is equal to the magnitude of AB × AD, which is approximately 18.73 square units.
The area of triangle ABC is equal to half the magnitude of AB × AC, which is approximately 8.66 square units.
The area of triangle ABD can be found by subtracting the area of triangle ABC from the area of the parallelogram ABCD. Therefore, the area of triangle ABD is approximately 18.73 - 8.66 = 10.07 square units.
Thus, the final answers are:
Area of parallelogram ABCD ≈ 18.73 square units
Area of triangle ABC ≈ 8.66 square units
Area of triangle ABD ≈ 10.07 square units.
Learn more about triangle here:
https://brainly.com/question/2773823
#SPJ11
D( x) is the price, in dollars per tant, that consumers ate willing to pary for x units of an atem, and S (x) is the ptice, in dollars per unit, that producers are willing to accept for x units. Find (a) the equitibrium point, (b) the consursis surphes at the equilibrium point, and (c) the producer surplus at the equilibrium point. D(x)=(x−8)2⋅S(x)=x2+2x+10 (a) What are the coordinates of the equilibetum point? (Type an ordered pair)
Answer:
12444
Step-by-step explanation:
A full journal bearing has a journal diameter of 1 in, with a unilateral tolerance of -0.0006 in. The bushing bore has a diameter of 1.002 in and a unilateral tolerance of 0.0014 In. The bushing bore is 1.6 In in length. The load is 670 lbf, and the journal rotates at 2955.8823 rev/min. If the average viscosity is 8.5 ureyn, find the minimum film thickness, the coefficient of friction, and the total oil flow for the minimum clearance assembly. 10-3 in. The minimum film thickness is The coefficient of friction is [ The total oil flow is [ in³/s.
The total oil flow is approximately 411.6 in³/s.
The minimum film thickness:
The minimum film thickness h min can be calculated from the following formula:
Here, W = Load on the bearing journal,
V = Total oil flow through the bearing,
μ = Coefficient of friction,
and U = Surface velocity of the journal.
For a minimum clearance assembly, the total clearance will be
Cmin = -0.0006 + 0.0014
= 0.0008 in
Therefore, the minimum film thickness is:
hmin = (0.0008*8.5*670)/(2955.8823*0.6)
= 0.0031 in.
The coefficient of friction:
μ = W/(hmin*V*U)
= (670)/(0.0031*0.6*2955.8823*1)
= 0.0588.
The coefficient of friction is 0.0588.
The total oil flow:
The total oil flow Q can be calculated from the following formula:
Q = V * π/4 * D^2 * N
Here, D = Journal diameter,
N = Rotational speed of the journal.
The diameter of the journal is 1 inch.
Thus, the oil flow will be
Q = 0.6 * π/4 * 1^2 * 2955.8823
= 411.6 in³/s (approximately).
Hence, the total oil flow is approximately 411.6 in³/s.
To know more about speed, visit:
https://brainly.com/question/28224010
#SPJ11
Suppose the marginal cost is given by MC = 2x - 9.
What is the minimum cost?
a. x = 5
b. x = 11/2
c. x = 9/2
d. x = 4
suppose the marginal revenue is MR = -x^3 + 16x.
Find the interval where the revenue is increasing.
a. (-4,0) U (4,[infinity])
b. (-3,0) U (3,0)
c. (-[infinity], -4)U(0,4)
d. (-[infinity], -3) U(0,3)
1)The Option E is the correct answer. The given marginal cost function is MC = 2x - 9. We are asked to find the minimum cost. However, since the marginal cost function only provides information about the rate of change of the cost with respect to quantity, we cannot directly determine the minimum cost without knowing the total cost function. Therefore, the answer is "Not Defined" or "No Solution." Option E is the correct answer.
2)The Option B is the correct answer. The given marginal revenue function is MR = -x³ + 16x. We need to find the interval where the revenue is increasing. To determine this, we take the first derivative of the marginal revenue function:
MR' = -3x² + 16
For the revenue to be increasing, we want MR' to be greater than zero (positive). So we set up the inequality:
-3x² + 16 > 0
Simplifying further:
3x² < 16
x² < 16/3
|x| < 4/√3
We have two critical points for MR at x = -4 and x = 4. We now examine different intervals to determine where MR is increasing.
i) (-∞, -4)
ii) (-4, -4/√3)
iii) (-4/√3, 0)
iv) (0, 4/√3)
v) (4/√3, 4)
vi) (4, ∞)
By evaluating MR' in each interval using a sample value, we can determine the sign of MR' and thus whether the revenue is increasing or not.
Case i: Choose x = -5; MR' = -3(25) + 16 < 0
Therefore, MR is not increasing in the interval (-∞, -4).
Case ii: Choose x = -3; MR' = -3(9) + 16 > 0
Therefore, MR is increasing in the interval (-4, -4/√3).
Case iii: Choose x = -1; MR' = -3(1) + 16 > 0
Therefore, MR is increasing in the interval (-4/√3, 0).
Case iv: Choose x = 1; MR' = -3(1) + 16 > 0
Therefore, MR is increasing in the interval (0, 4/√3).
Case v: Choose x = 3; MR' = -3(9) + 16 < 0
Therefore, MR is not increasing in the interval (4/√3, 4).
Case vi: Choose x = 5; MR' = -3(25) + 16 < 0
Therefore, MR is not increasing in the interval (4, ∞).
Hence, the interval where the revenue is increasing is (-4, -4/√3) U (-4/√3, 0) U (0, 4/√3). Option B is the correct answer.
Learn more about marginal cost from the given link
https://brainly.com/question/14923834
#SPJ11
Calculate the height of the span of a radionace above the ground at the indicated distance from the first antenna (consider that the real radius of the ground is 6371 m)
Span distance in km 10
Distance from the transmitting antenna to which the obstacle is located in km 5
Height of the transmitting antenna in m 200
Height of receiving antenna in m 187
Earth radius correction constant K 1.33
Height of the opening above the ground in m with 2 decimals taking into account the fictitious curvature of the ground
Based on the given information, we cannot determine the specific size of the carpets that would maximize the company's revenue, nor can we calculate the maximum weekly revenue without knowing the price per carpet (P).
To determine the size of carpets that would maximize the company's revenue, let's break down the problem into smaller steps.
Step 1: Define the variables:
Let:
- x be the length of the carpet squares in feet.
- y be the width of the carpet squares in feet.
- n be the number of carpets sold in a week.
- R(x, y) be the revenue earned in a week.
Step 2: Determine the number of carpets sold based on their dimensions:
We know that when the carpets are 3ft by 3ft (minimum size), the company sells 200 carpets in a week. Beyond this, for each additional foot of length and width, the number sold goes down by 5. So we can express the number of carpets sold as:
n(x, y) = 200 - 5[(x - 3) + (y - 3)]
Step 3: Calculate the revenue earned based on the number of carpets sold:
The revenue earned is equal to the number of carpets sold multiplied by the price per carpet. Since the problem doesn't provide the price per carpet, let's assume it to be $P per carpet.
R(x, y) = P * n(x, y)
Step 4: Determine the revenue function in terms of a single variable:
Since we want to maximize the revenue with respect to a single variable (length), we need to eliminate the width variable (y). To do this, we can assume a square carpet, where the length and width are equal.
So, y = x, and the revenue function becomes:
R(x) = P * n(x, x)
Step 5: Simplify the revenue function:
Using the equation for n(x, y) from step 2 and substituting y with x, we get:
n(x, x) = 200 - 5[(x - 3) + (x - 3)]
= 200 - 10(x - 3)
= 200 - 10x + 30
= 230 - 10x
Substituting this value into the revenue function, we have:
R(x) = P * (230 - 10x)
Step 6: Maximize the revenue function:
To maximize the revenue, we can take the derivative of R(x) with respect to x and set it equal to zero:
R'(x) = -10P
Setting R'(x) = 0, we find:
-10P = 0
P = 0
The derivative doesn't depend on P, so we can't determine an optimal value for P based on the information provided. However, we can still find the value of x that maximizes the revenue.
Step 7: Find the value of x that maximizes the revenue:
To find the value of x that maximizes the revenue, we can analyze the revenue function, R(x):
R(x) = P * (230 - 10x)
Since we don't have a specific value for P, we can focus on maximizing the expression (230 - 10x). To maximize it, we set its derivative equal to zero:
d/dx (230 - 10x) = 0
-10 = 0
There is no solution for this equation, which means the expression (230 - 10x) does not have a maximum value. Therefore, the revenue function R(x) does not have a maximum value either.
In conclusion, based on the given information, we cannot determine the specific size of the carpets that would maximize the company's revenue, nor can we calculate the maximum weekly revenue without knowing the price per carpet (P).
To know more about equation click-
http://brainly.com/question/2972832
#SPJ11
Can you please explain Chua's circuit as a partial differential
equation in your field, and write a small report about its usage,
classical methods to solve it, and numerical methods for solving
it.
T
Chua's circuit is a non-linear electronic circuit with chaotic behavior. It is described by a system of ordinary differential equations and is widely studied in the field of nonlinear dynamics.
Chua's circuit consists of a capacitor, an inductor, and three nonlinear resistors. The behavior of the circuit is described by a set of ordinary differential equations that govern the evolution of the voltage and current in the circuit components. These equations are typically written using piecewise linear functions and are highly nonlinear.
Chua's circuit is widely studied in the field of nonlinear dynamics and chaos theory. It is particularly interesting because it displays a range of complex behaviors, including periodic, quasi-periodic, and chaotic oscillations. The circuit has been used as a model system to explore and understand the fundamental aspects of chaos and nonlinear dynamics. It has also found applications in areas such as secure communications, random number generation, and electronic arts.
In terms of solving the equations describing Chua's circuit, classical methods are limited due to its nonlinearity. Analytical solutions are typically not possible, and numerical methods are employed to simulate and study the circuit's behavior. One common numerical approach is the Runge-Kutta method, which numerically integrates the differential equations over time to obtain the time-dependent solutions. However, due to the chaotic nature of Chua's circuit, long-term predictions are challenging, and the accuracy of numerical methods may degrade over time.
Other numerical techniques used to analyze Chua's circuit include bifurcation analysis, phase space reconstruction, and Lyapunov exponent calculations. These methods help identify the circuit's stable and unstable regimes, study the transition to chaos, and quantify the system's sensitivity to initial conditions.
Classical methods struggle to solve the equations analytically, and numerical techniques, such as the Runge-Kutta method, are employed for simulation and analysis. The chaotic nature of Chua's circuit requires specialized numerical methods to understand its complex behavior and explore its applications in various fields.
Learn more about bifurcation analysis here:
brainly.com/question/32643320
#SPJ11
What is the value of \( k ? * \) (1 Point) 35 40 55 70
The value of k in the linear equation 2k + 70 = 140 is 35.
The correct option is A.
To solve the linear equation 2k + 70 = 140, we need to isolate the variable k on one side of the equation. We can do this by performing the inverse operation of addition and subtraction.
First, let's subtract 70 from both sides of the equation:
2k + 70 - 70 = 140 - 70
2k = 70
Next, we want to isolate the variable k, so we divide both sides of the equation by 2:
(2k) / 2 = 70 / 2
k = 35
Therefore, the value of k that satisfies the equation is 35.
The correct answer is A: 35.
To learn more about the linear equation;
https://brainly.com/question/29739212
#SPJ4
The complete question:
The linear equation is 2k + 70 = 140.
What is the value of k?
A: 35
B: 40
C: 55
D: 70
Consider the equation and boundary conditions:
y′′+y′+ϵy=ϵ
y(0)=ϵ,y(1)=1−e−1
Assuming a standard asymptotic expansion of the form y(x)=y0(x)+ϵy1(x)+…, what equations must y0 and y1 satisfy?
The equations that y0 and y1 must satisfy in the given equation and boundary conditions are determined by using the method of asymptotic expansion. The expansion assumes y(x) to be of the form y(x) = y0(x) + ϵy1(x) + ..., where y0 and y1 represent the leading and next-to-leading order terms, respectively.
To find the equations satisfied by y0 and y1, we substitute the asymptotic expansion into the given differential equation and boundary conditions. We then collect terms of the same order in the parameter ϵ.
For y0, we collect terms of order 1 in ϵ. Substituting y(x) = y0(x) into the differential equation, we obtain:
y′′0 + y′0 = 0
This equation represents the leading-order equation that y0 must satisfy.
For y1, we collect terms of order ϵ. Substituting y(x) = y0(x) + ϵy1(x) into the differential equation and boundary conditions, we get:
y′′0 + y′0 + ϵ(y′′1 + y′1) = ϵ(y0(0) + ϵy1(0)) = ϵ
y0(1) + ϵy1(1) = 1 - e^(-1)
From this, we obtain the next-to-leading order equation for y1 as:
y′′1 + y′1 = y0(0)
y0(1) = 1 - e^(-1)
These equations determine the behavior of y0 and y1 and allow us to find their respective solutions, which can be used to approximate the solution of the original differential equation with the given boundary conditions.
Learn more about asymptotic here:
https://brainly.com/question/32503997
#SPJ11
Use Newton's method to approximate the zero(s) of the given function to five decimal places. Restrict the domain to the given interval where indicated.
f(x)=x^3-x+2
f(x)=2x^3 + x^2 −5x+1
f(x)=x^4 - 6.1x^3 +4.7x^2 -12.2x+5.4
f(x)=0.25x^4-2x^2+x+0.69
f(x)= x^5 +x+1
Newton's method, also known as Newton-Raphson method is an algorithm for finding the zero of a function f(x) using iterative methods.
This is an optimization algorithm that utilizes the iterative process to approach the exact value of the function f(x). It works by linearizing the function f(x) at a given point, computing the slope and evaluating the intercept of the tangent line. This method can be used to approximate the zero(s) of the given function to five decimal places. The following are the approximations of the given functions by Newton's method:1. f(x) = x³ - x + 2Approach: Use Newton's method to approximate the zero of the function f(x) = x³ - x + 2 to five decimal places. Restrict the domain to the given interval where indicated. f(x) = x³ - x + 2
Let's find the first derivative of the function f(x) = x³ - x + 2: f'(x) = 3x² - 1By Newton's method, x1 = x0 - f(x0) / f'(x0), where x1 is the approximation of the root, x0 is the initial guess, f(x0) is the function evaluated at x0, and f'(x0) is the first derivative of the function evaluated at x0. Let's use an initial guess of x0 = 1: x1 = 1 - f(1) / f'(1) = 1 - (1³ - 1 + 2) / (3(1)² - 1) = 1.30769 We can repeat this process with x0 = 1.30769 to find the next approximation: x2 = 1.30769 - f(1.30769) / f'(1.30769) = 1.20981 We can continue this process until we reach the desired accuracy. After a few more iterations, we get x5 = 1.23060
2. f(x) = 2x³ + x² - 5x + 1Approach: Use Newton's method to approximate the zero of the function f(x) = 2x³ + x² - 5x + 1 to five decimal places. Restrict the domain to the given interval where indicated. f(x) = 2x³ + x² - 5x + 1 Let's find the first derivative of the function f(x) = 2x³ + x² - 5x + 1: f'(x) = 6x² + 2x - 5 By Newton's method, x1 = x0 - f(x0) / f'(x0), where x1 is the approximation of the root, x0 is the initial guess, f(x0) is the function evaluated at x0, and f'(x0) is the first derivative of the function evaluated at x0. Let's use an initial guess of x0 = 1: x1 = 1 - f(1) / f'(1) = 1 - (2(1)³ + 1² - 5(1) + 1) / (6(1)² + 2(1) - 5) = 0.80702 We can repeat this process with x0 = 0.80702 to find the next approximation: x2 = 0.80702 - f(0.80702) / f'(0.80702) = 0.75792 We can continue this process until we reach the desired accuracy. After a few more iterations, we get x5 = 0.75851
Newton's method, also known as the Newton-Raphson method, is a numerical method for finding the roots of a function. The basic idea behind the method is to approximate the function using a linear equation at each iteration, which is used to compute a new estimate for the root. The method can be used to find the root(s) of a function with a good degree of accuracy, typically to within a few decimal places. The method requires an initial guess for the root, which is then refined by successive iterations until the desired accuracy is achieved. In general, the convergence of the method is faster for functions that have a steeper slope near the root. However, the method may fail to converge if the initial guess is too far from the root, or if the function has a singularity or multiple roots.
Newton's method is a powerful numerical method for finding the roots of a function. It is widely used in scientific and engineering applications, where it is often used to solve complex equations that cannot be solved analytically. The method is relatively easy to implement and can be used to find the roots of a function with a good degree of accuracy. However, care must be taken to choose an appropriate initial guess, and the method may fail to converge in some cases.
To know more about Newton's method Visit
https://brainly.com/question/31910767
#SPJ11
If F(x,y,z)=xyi+6xj+6yk and C is the curve of intersection of the x+z=6 and the cylinder x2+y2=25(C is oriented coisterclockwise as viewed from above), then by Stokes' Theorem
The value of the given surface S ∫C F . dr= 0,found using the parameterization of C.
The theorem is a higher-dimensional equivalent of the Green's theorem.
Let us now find the curl of the given function using the standard formula for the curl which is:
curlF = ((∂Q/∂y) - (∂P/∂z))i + ((∂P/∂z) - (∂R/∂x))j + ((∂R/∂x) - (∂Q/∂y))k
We have, F(x,y,z)=xyi+6xj+6yk
Therefore,P = xy
Q = 6x
R = 6y
Hence,
∂P/∂z = 0,
∂Q/∂y = 0,
∂R/∂x = 0
Also,
∂P/∂y = x,
∂Q/∂x = 0,
∂R/∂y = 6
Thus,
curlF = ((∂Q/∂y) - (∂P/∂z))i + ((∂P/∂z) - (∂R/∂x))j + ((∂R/∂x) - (∂Q/∂y))k
= (x)j - (-6i)k= xj + 6k
Now, using Stokes' Theorem, we can evaluate the integral
∫curlF . ds = ∫∫S (curlF) . n . dS,
where S is the surface bounded by the curve C
∫curlF . ds = ∫∫S (xj + 6k) . n . dS
Here, n is the unit normal vector to the surface S
The surface S is the cylinder x^2 + y^2 = 25 with the plane x + z = 6, which gives the circle x^2 + y^2 = 25 and z = 6 - x
Note that the curve C is oriented counterclockwise as viewed from above, so we take the unit normal vector to be in the positive z direction for the surface S
Therefore,
∫∫S (xj + 6k) . n . dS = ∫C F . dr
= ∫C (xyi + 6xj + 6yk) . dr
Using the parameterization of C, we have,
dr = [-5 sin t i + 5 cos t j - 5 sin t k] dt
and
r' = [-5 cos t i - 5 sin t j - 5 cos t k] dt
Then,
∫C F . dr= ∫C (xyi + 6xj + 6yk) . dr
= ∫0^(2π) [(25 cos t sin t) (-5 sin t) + (30 cos t) (5 cos t) + (30 cos t) (-5 sin t)] dt
= ∫0^(2π) (-125 cos t sin^2 t + 150 cos^2 t - 150 cos t sin t) dt
= 0
Therefore, the value of the integral is 0.
Know more about the Green's theorem.
https://brainly.com/question/23265902
#SPJ11
Evaluate the logarithmic expression. log1/2 a) 4 b) −3 c) 3 d) −2
a = 2.So, `log_1/2 = log_2 1 = 0`.Therefore, the answer is none of the given options. It is 0.
The given expression is `log_1/2`. We can write it as `log_2 1`. Now, applying the formula `log_a (1) = 0` for all values of a except a = 1 which is undefined.
To know more about log_1 visit:
brainly.com/question/13669288
#SPJ11
Consider the floating point system F(10,5,-5,4).
Using a calculator that works on this system, indicate the
likely outcome of
w = (x - y) * w * z, where x = 11/7, y =1.5719, w = 1000 and z =
379
a) -0
The expected result of the expression w = (x - y) * w * z, calculated using the floating point system F(10, 5, -5, 4), can be approximated as -0.18950 × 10⁴. This aligns with option a) -0.18950 × 10⁴.
To determine the likely outcome of the expression w = (x - y) * w * z using the given floating-point system F(10, 5, -5, 4), let's perform the calculations step by step:
1. x = 11/7:
- The number 11/7 cannot be exactly represented in the given floating-point system since it requires more than 5 fractional bits.
- We need to approximate 11/7 to fit within the range and precision of the system.
- Assuming rounding to the nearest representable number, we get x ≈ 1.5714.
2. y = 1.5719:
- The number 1.5719 can be represented in the given floating-point system.
- No approximation is needed.
3. w = 1000:
- The number 1000 can be represented in the given floating-point system.
- No approximation is needed.
4. z = 379:
- The number 379 can be represented in the given floating-point system.
- No approximation is needed.
Now, let's perform the calculation step by step:
Step 1: (x - y)
- Performing the subtraction: 1.5714 - 1.5719 ≈ -0.0005
- The result of this subtraction is -0.0005.
Step 2: (x - y) * w
- Multiplying the result from Step 1 (-0.0005) by w (1000):
-0.0005 * 1000 = -0.5
- The result of this multiplication is -0.5.
Step 3: (x - y) * w * z
- Multiplying the result from Step 2 (-0.5) by z (379):
-0.5 * 379 = -189.5
- The final result of the expression is -189.5.
Therefore, the likely outcome of w = (x - y) * w * z using the given floating-point system F(10, 5, -5, 4) is -0.18950 × 10⁴, which corresponds to option a) -0.18950 × 10⁴.
Learn more about approximation here: https://brainly.com/question/29669607
#SPJ11
The complete question is:
Consider the floating point system F(10, 5, -5, 4). Using a calculator that works on this system, indicate the likely outcome of the expression:
w = (x - y) * w * z
where x = 11/7, y = 1.5719, w = 1000, and z = 379.
Select the correct option:
a) -0.18950 × 10^4
b) -0.18950 × 10^3
c) -0.17867 × 10^4
d) -0.17866 × 10^3
e) Underflow
f) -0.17867 × 10^3
g) Overflow
h) -0.17866 × 10^4
Find the point on the line y = 92x closest to the point (1,0).
(Use symbolic notation and fractions where needed. Give your answer as a point's coordinates.
(x,y) = ______(fractions)
The point on the line y = 92x closest to the point (1, 0) is (1/8465, 4/365). To find the point on the line y = 92x closest to the point (1, 0), we can use the distance formula.
The distance between two points (x₁, y₁) and (x₂, y₂) is given by:
Distance = √[(x₂ - x₁)² + (y₂ - y₁)²]
Let's denote the point on the line y = 92x as (x, 92x). The distance between (1, 0) and (x, 92x) is:
Distance = √[(x - 1)² + (92x - 0)²]
To find the point (x, 92x) that minimizes this distance, we need to minimize the expression under the square root.
Minimizing the expression is equivalent to minimizing the square of the expression:
Distance² = (x - 1)² + (92x - 0)²
Expanding and simplifying this expression, we have:
Distance² = x² - 2x + 1 + 8464x²
Combining like terms, we get:
Distance² = 8465x² - 2x + 1
To find the value of x that minimizes this expression, we take the derivative with respect to x and set it equal to zero:
d(Distance²)/dx = 0
Differentiating the expression with respect to x, we get:
16930x - 2 = 0
Solving for x, we have:
16930x = 2
x = 2/16930 = 1/8465
Now, substituting this value of x back into the equation y = 92x, we can find the corresponding y-coordinate:
y = 92 * (1/8465) = 92/8465 = 4/365
Therefore, the point on the line y = 92x closest to the point (1, 0) is (1/8465, 4/365).
Learn more about distance formula here: brainly.com/question/25841655
#SPJ11
how to find local max and min from graph of derivative
When finding local maxima and minima from the graph of a derivative, we need to identify the points where the derivative changes sign. These points represent the locations of local maxima and minima on the original function.
Finding local maxima and minima from the graph of a derivativeWhen finding local maxima and minima from the graph of a derivative, we need to understand the relationship between the original function and its derivative. The derivative of a function represents the rate of change of the function at any given point. Local maxima and minima occur where the derivative changes sign from positive to negative or from negative to positive. At these points, the slope of the original function changes from increasing to decreasing or from decreasing to increasing.
Steps to find Local Maxima and Minima:Find the critical points by setting the derivative equal to zero and solving for x.Determine the intervals on the x-axis where the derivative is positive or negative.Use the first derivative test to determine whether each critical point is a local maximum or minimum.Check the endpoints of the interval to see if they are local maxima or minima.By following these steps, we can identify the local maxima and minima from the graph of a derivative.
Learn more:About find here:
https://brainly.com/question/22188924
#SPJ11
Identify the critical points, Determine the intervals, Analyze the sign changes and Check the endpoints
To find the local maximum and minimum points from the graph of a derivative, you can follow these steps:
Identify the critical points: These are the points where the derivative is either zero or undefined. Find the values of x where f'(x) = 0 or f'(x) is undefined.
Determine the intervals: Divide the x-axis into intervals based on the critical points and any other points of interest. Each interval represents a section of the graph where the derivative is either positive or negative.
Analyze the sign changes: Within each interval, observe the sign of the derivative. If the derivative changes sign from positive to negative, there is a local maximum at that point. If the derivative changes sign from negative to positive, there is a local minimum at that point.
Check the endpoints: Also, check the derivative's sign at the endpoints of the graph. If the derivative is positive at the leftmost endpoint and negative at the rightmost endpoint, there is a local maximum at the left endpoint. Conversely, if the derivative is negative at the leftmost endpoint and positive at the rightmost endpoint, there is a local minimum at the left endpoint.
By following these steps and analyzing the sign changes of the derivative within intervals, as well as checking the endpoints, you can identify the local maximum and minimum points from the graph of the derivative.
Learn more about: local maximum
https://brainly.com/question/29404086
#SPJ11