b. A locomotive of a train exerts a constant force of 280KN on a train while pulling
it at 50 km/h along a level track. What is:
[4 marks)
i. Workdone in quarter an hour and
[4 marks]

Answers

Answer 1

Answer:

Work-done in quarter an hour = 3.5 × 10⁶ J

Explanation:

Given:

Force (F) = 280 KN = 280,000 N

Velocity (V) = 50 km / h

Time (t) = 1 / 4 = 0.25 hour

Find:

Work-done in quarter an hour

Computation:

⇒ Displacement = Velocity (V) × Time

Displacement = 50 × 0.25

⇒ Displacement = 12.5 km

Work-done = Force (F) × Displacement

Work-done in quarter an hour = 280,000 × 12.5

Work-done in quarter an hour = 3,500,000

Work-done in quarter an hour = 3.5 × 10⁶ J


Related Questions

Two students are pushing their stalled car down the street. If the net force exerted on
the car by the students is 1000 N at an angle of 20° below horizontal, the horizontal
component of the force is:
(a) greater than 1000 N.
(b) less than 1000 N.
(c) sum of the pushing force and the weight of the students.
(d) (a) and (b)
(e) (a) and (c)

Answers

Answer:

B

Explanation:

Because the force has 2 components (horizontal and vertical), the horizontal component must be smaller than the total force. The Pythagorean theorem only adds positive values (because they're squared) so it makes sense. Using trigonometry, 100*cos(-20) yields a horizontal force of around 939.7N, which is less than 1000N.

A machinist turns the power on to a grinding wheel, which is at rest at time t = 0.00 s. The wheel accelerates uniformly for 10 s and reaches the operating angular velocity of 25 rad/s. The wheel is run at that angular velocity for 37 s and then power is shut off. The wheel decelerates uniformly at 1.5 rad/s2 until the wheel stops. In this situation, the time interval of angular deceleration (slowing down) is closest to: A machinist turns the power on to a grinding wheel, which is at rest at time t = 0.00 s. The wheel accelerates uniformly for 10 s and reaches the operating angular velocity of 25 rad/s. The wheel is run at that angular velocity for 37 s and then power is shut off. The wheel decelerates uniformly at 1.5 rad/s2 until the wheel stops. In this situation, the time interval of angular deceleration (slowing down) is closest to:__________.
a) 19 s
b) 17 s
c) 21 s
d) 23 s
e) 15 s

Answers

Starting from rest, the wheel attains an angular velocity of 25 rad/s in a matter of 10 s, which means the angular acceleration [tex]\alpha[/tex] is

[tex]25\dfrac{\rm rad}{\rm s}=\alpha(10\,\mathrm s)\implies\alpha=2.5\dfrac{\rm rad}{\mathrm s^2}[/tex]

For the next 37 s, the wheel maintains a constant angular velocity of 25 rad/s, meaning the angular acceleration is zero for the duration. After this time, the wheel undergoes an angular acceleration of -1.5 rad/s/s until it stops, which would take time [tex]t[/tex],

[tex]0\dfrac{\rm rad}{\rm s}=25\dfrac{\rm rad}{\rm s}+\left(-1.5\dfrac{\rm rad}{\mathrm s^2}\right)t\implies t=16.666\ldots\,\mathrm s[/tex]

which makes B, approximately 17 s, the correct answer.

The time interval of angular deceleration is 16.667 seconds, whose closest integer is 17 seconds. (B. 17 s.)

Let suppose that the grinding wheel has uniform Acceleration and Deceleration. In this question we need to need to calculate the time taken by the grinding wheel to stop, which is found by means of the following Kinematic formula:

[tex]t = \frac{\omega - \omega_{o}}{\alpha}[/tex] (1)

Where:

[tex]\omega_{o}[/tex] - Initial angular velocity, in radians per second.

[tex]\omega[/tex] - Final angular velocity, in radians per second.

[tex]\alpha[/tex] - Angular acceleration, in radians per square second.

[tex]t[/tex] - Time, in seconds.

If we know that [tex]\omega = 0\,\frac{rad}{s}[/tex], [tex]\omega_{o} = 25\,\frac{rad}{s}[/tex] and [tex]\alpha = -1.5\,\frac{rad}{s^{2}}[/tex], then the time taken by the grinding wheel to stop:

[tex]t = \frac{0\,\frac{rad}{s}-25\,\frac{rad}{s}}{-1.5\,\frac{rad}{s^{2}} }[/tex]

[tex]t = 16.667\,s[/tex]

The time interval of angular deceleration is 16.667 seconds. (Answer: B)

Please this related question: https://brainly.com/question/10708862

Chapter 24, Problem 20 GO A politician holds a press conference that is televised live. The sound picked up by the microphone of a TV news network is broadcast via electromagnetic waves and heard by a television viewer. This viewer is seated 2.9 m from his television set. A reporter at the press conference is located 4.1 m from the politician, and the sound of the words travels directly from the celebrity's mouth, through the air, and into the reporter's ears. The reporter hears the words exactly at the same instant that the television viewer hears them. Using a value of 343 m/s for the speed of sound, determine the maximum distance between the television set and the politician. Ignore the small distance between the politician and the microphone. In addition, assume that the only delay between what the microphone picks up and the sound being emitted by the television set is that due to the travel time of the electromagnetic waves used by the network.

Answers

Answer:

Therefore, the distance between politician and TV set is 2536km

Explanation:

Assuming that the TV signal is sent in a straight line from the camera to the TV receiver, which is very far from the truth.

The reporter hears the sound is

4.1 / 343 = 0.01195 s later

The viewer hears the sound from the TV is

2.9 / 343 = 0.00845s

the difference is 0.00845 sec

the question is how far the TV signal can travel in that time.

the distance between politician and TV set is

= 0.00845 * 3*10^8 m

= 2536 km

d = 2536km

Therefore, the distance between politician and TV set is 2536km

I need help physics​

Answers

A
Because the actual was greater than the estimated, therefore they underestimated the population in 2010
A would be the corrext answer you sure do have a lot of questions involving physics lol

You have just landed on Planet X. You take out a ball of mass 100 gg , release it from rest from a height of 16.0 mm and measure that it takes a time of 2.90 ss to reach the ground. You can ignore any force on the ball from the atmosphere of the planet. How much does the 100-g ball weigh on the surface of Planet X?

Answers

Answer:

0.173 N.

Explanation:

We will calculate the mass and then use the following calculations on the surface of planet X that is :

                           [tex]W=mg[/tex]

We would use the following equation to get the value of g for planet X that is :

                   [tex]y_f-y_i=v_{yi}t+\frac{1}{2}gt^2[/tex]

Then, put the values in the above equation.

                          [tex]16=0+\frac{1}{2}\times g\times(2.90)^2[/tex]

                           [tex]\bf\mathit{g=3.80\;m/s^2}[/tex]

Now, we will measure the ball weight on planet X's surface:

                          [tex]m=\frac{100}{1000} \;\;\;\;\;\;\;\;\;\;[1kg=1000g][/tex]

Then, we have to put the value in the above equation.

                        [tex]W=0.1\times 1.73=0.173\:N[/tex]

A Ferris wheel has radius 5.0 m and makes one revolution every 8.0 s with uniform rotation. A person who normally weighs 670 N is sitting on one of the benches attached at the rim of the wheel. What is the apparent weight (the normal force exerted on her by the bench) of the person as she passes through the highest point of her motion? ( type in your answer with no units in form xx0)

Answers

Answer:

The apparent weight of the person as she pass the highest point is  [tex]N = 458.8 \ N[/tex]

Explanation:

From the question we are told that

   The radius of the Ferris wheel is [tex]r = 5.0 \ m[/tex]

    The period of revolution is [tex]T = 8.0 \ s[/tex]

     The weight of the person is  [tex]W = 670 \ N[/tex]

   

Generally the speed of the wheel is mathematically represented as

      [tex]v = \frac{2 \pi r}{T }[/tex]

substituting values

      [tex]v = \frac{2 * 3.142 * 5}{8 }[/tex]

       [tex]v = 3.9 3 \ m/s[/tex]

The apparent weight (the normal force exerted on her by the bench) at the highest point is mathematically evaluated as

          [tex]N = mg - \frac{mv^2}{r}[/tex]

Where m is the mass of the person which is mathematically evaluated as

     [tex]m = \frac{W}{g}[/tex]

substituting values

    [tex]m = \frac{670}{9.8}[/tex]

    [tex]m = 68.37 \ kg[/tex]

So

    [tex]N = 68.37 * 9.8 - \frac{68.37 * {3.93}^2}{5}[/tex]

    [tex]N = 458.8 \ N[/tex]

A surveyor measures the distance across a river that flows straight north by the following method. Starting directly across from a tree on the opposite bank, the surveyor walks distance, D = 130 m along the river to establish a baseline. She then sights across to the tree and reads that the angle from the baseline to the tree is an angle θ = 25°. How wide is the river?

Answers

Answer:

The width of the river is  [tex]z = 60.62 \ m[/tex]

Explanation:

From the question we are told that

     The distance of the base line is D = 130 m

       The angle is  [tex]\theta = 25^o[/tex]

A diagram illustration the question is shown on the first uploaded image

    Applying Trigonometric Rules for Right-angled Triangle,

            [tex]tan 25 = \frac{z}{130}[/tex]

Now making  z the subject

           [tex]z = 130 * tan (25)[/tex]

          [tex]z = 60.62 \ m[/tex]

You are on a train traveling east at speed of 19 m/s with respect to the ground. 1)If you walk east toward the front of the train, with a speed of 1.5 m/s with respect to the train, what is your velocity with respect to the ground

Answers

Answer:

Vbg = 20.5 m/s

your velocity with respect to the ground Vbg = 20.5 m/s

Explanation:

Relative velocity with respect to the ground is;

Vbg = velocity of train with respect to the ground + your velocity with respect to the train

Vbg = Vtg + Vbt ......1

Given;

velocity of train with respect to the ground;

Vtg = 19 m/s

your velocity with respect to the train;

Vbt = 1.5 m/s

Substituting the given values into the equation 1;

Vbg = 19 m/s + 1.5 m/s

Vbg = 20.5 m/s

your velocity with respect to the ground Vbg = 20.5 m/s

If a cart of 8 kg mass has a force of 16 newtons exerted on it, what is its acceleration?

Answers

Answer:

Explanation:

From Newton's 2nd Law,

F = m×a

Where F is Force

m is mass

a is acceleration

Hence a= F/m

a= 16/8= 2m/s2

Suppose your hair grows at the rate of 1/55 inch per day. Find the rate at which it grows in nanometers per second. Because the distance between atoms in a molecule is on the order of 0.1 nm, your answer suggests how rapidly atoms are assembled in this protein synthesis.

Answers

Answer:5.35nm

Explanation:

Consider that 1 inch is = 0.0254m

we have,

1m= 1x10^9 nm  

While:

0.0254m = 2.54x10^7nm  

1/55 (2.54x10^7) = 4.6181 x 10^5nm  

1 day= 24 hrs  

= (24x60) when calculating in min  

= (24x60x60) calculating in seconds we have:

= 8.64x10⁴sec  

In 8.64x10^4 seconds, the hair grows by 4.6181 x 10^5nm

Therefore, the amount by which the hair grows in 1 second  will be;

= (4.6181 x 10^5)/(8.64x10^4)  

= 5.35nm  

The rate of growth will be 5.35nm

What is the frequency if 140 waves pass in 2 minutes?

Answers

Answer:

1.16 Hz

Explanation:

frequency, basically, is the number of wave on 1 second

so, in math we write like this

f = n/t

n = number of waves

t = time to do that (in sec)

f = 140/120 = 7/6 Hz

f = 1.16 Hz

In an RC-circuit, a resistance of R=1.0 "Giga Ohms" is connected to an air-filled circular-parallel-plate capacitor of diameter 12.0 mm with a separation distance of 1.0 mm. What is the time constant of the system?

Answers

Answer:

[tex]\tau = 1\ ms[/tex]

Explanation:

First we need to find the capacitance of the capacitor.

The capacitance is given by:

[tex]C = \epsilon_0 * area / distance[/tex]

Where [tex]\epsilon_0[/tex] is the air permittivity, which is approximately 8.85 * 10^(-12)

The radius is 12/2 = 6 mm = 0.006 m, so the area of the capacitor is:

[tex]Area = \pi * radius^{2}\\Area = \pi * 0.006^2\\Area = 113.1 * 10^{-6}\ m^2[/tex]

So the capacitance is:

[tex]C = \frac{8.85 * 10^{-12} * 113.1 * 10^{-6}}{0.001}[/tex]

[tex]C = 10^{-12}\ F = 1\ pF[/tex]

The time constant of a rc-circuit is given by:

[tex]\tau = RC[/tex]

So we have that:

[tex]\tau = 10^{9} * 10^{-12} = 10^{-3}\ s = 1\ ms[/tex]

Plaskett's binary system consists of two stars that revolve In a circular orbit about a center of mass midway between them. This statement implies that the masses of the two stars are equal . Assume the orbital speed of each star is |v | = 240 km/s and the orbital period of each is 12.5 days. Find the mass M of each star. (For comparison, the mass of our Sun is 1.99 times 1030 kg Your answer cannot be understood or graded.

Answers

Complete Question

The complete question is shown on the first uploaded image

Answer:

The mass is    [tex]M =1.43 *10^{32} \ kg[/tex]

Explanation:

From the  question we are told that

       The mass of the stars are [tex]m_1 = m_2 =M[/tex]

        The orbital speed of each star is  [tex]v_s = 240 \ km/s =240000 \ m/s[/tex]

         The orbital period is [tex]T = 12.5 \ days = 12.5 * 2 4 * 60 *60 = 1080000\ s[/tex]

The centripetal force acting on these stars is mathematically represented as

      [tex]F_c = \frac{Mv^2}{r}[/tex]

The gravitational force acting on these stars is mathematically represented as

      [tex]F_g = \frac{GM^2 }{d^2}[/tex]

So  [tex]F_c = F_g[/tex]

=>        [tex]\frac{mv^2}{r} = \frac{Gm_1 * m_2 }{d^2}[/tex]

=>      [tex]\frac{v^2}{r} = \frac{GM}{(2r)^2}[/tex]

=>      [tex]\frac{v^2}{r} = \frac{GM}{4r^2}[/tex]

=>    [tex]M = \frac{v^2*4r}{G}[/tex]

The distance traveled by each sun in one cycle is mathematically represented as

     [tex]D = v * T[/tex]

      [tex]D = 240000 * 1080000[/tex]

      [tex]D = 2.592*10^{11} \ m[/tex]

Now this can also be represented as

      [tex]D = 2 \pi r[/tex]

Therefore

                  [tex]2 \pi r= 2.592*10^{11} \ m[/tex]

=>   [tex]r= \frac{2.592*10^{11}}{2 \pi }[/tex]

=>    [tex]r= 4.124 *10^{10} \ m[/tex]

So  

       [tex]M = \frac{v^2*4r}{G}[/tex]

=>    [tex]M = \frac{(240000)^2*4*(4.124*10^{10})}{6.67*10^{-11}}[/tex]

=>    [tex]M =1.43 *10^{32} \ kg[/tex]

       

     

An object, with mass 70 kg and speed 21 m/s relative to an observer, explodes into two pieces, one 4 times as massive as the other; the explosion takes place in deep space. The less massive piece stops relative to the observer. How much kinetic energy is added to the system during the explosion, as measured in the observer's reference frame

Answers

Answer:

K = 3.9 kJ

Explanation:

The kinetic energy ([tex]K_{T}[/tex]) added is given by the difference between the final kinetic energy and the initial kinetic energy:

[tex] K_{T} = K_{f} - K_{i} [/tex]  

The initial kinetic energy is:

[tex] K_{i} = \frac{1}{2}m_{1}v_{1}^{2} [/tex]

Where m₁ is the mass of the object before the explosion and v₁ is its velocity

[tex] K_{i} = \frac{1}{2}m_{1}v_{1}^{2} = \frac{1}{2}70 kg*(21 m/s)^{2} = 1.54 \cdot 10^{4} J [/tex]

Now, the final kinetic energy is:

[tex] K_{f} = \frac{1}{2}m_{2}v_{2}^{2} + \frac{1}{2}m_{3}v_{3}^{2} [/tex]

Where m₂ and m₃ are the masses of the 2 pieces produced by the explosion and v₁ and v₂ are the speeds of these pieces

Since m₂ is 4 times as massive as m₃ and v₃ = 0, we have:

[tex] K_{f} = \frac{1}{2}*\frac{4}{5}m_{1}v_{2}^{2} + \frac{1}{2}*\frac{1}{5}m_{1}*0 [/tex]   (1)          

By conservation of momentum we have:

[tex] p_{i} = p_{f} [/tex]

[tex] m_{1}v_{1} = m_{2}v_{2} + m_{3}v_{3} [/tex]  

[tex] m_{1}v_{1} = \frac{4}{5}m_{1}v_{2} + \frac{1}{5}m_{1}*0 [/tex]

[tex] v_{2} = \frac{5}{4}v_{1} [/tex]     (2)

By entering (2) into (1) we have:

[tex] K_{f} = \frac{1}{2}*\frac{4}{5}m_{1}(\frac{5}{4}v_{1})^{2} = \frac{1}{2}*\frac{4}{5}70 kg(\frac{5}{4}*21 m/s)^{2} = 1.93 \cdot 10^{4} J [/tex]  

Hence, the kinetic energy added is:

[tex] K_{T} = K_{f} - K_{i} = 1.93 \cdot 10^{4} J - 1.54 \cdot 10^{4} J = 3.9 \cdot 10^{3} J [/tex]  

Therefore, the kinetic energy added to the system during the explosion is 3.9 kJ.

I hope it helps you!

A car travels around an oval racetrack at constant speed. The car is accelerating:________.
A) at all points except B and D.
B) at all points except A, B, C, and D.
C) everywhere, including points A, B, C, and D.
D) nowhere, because it is traveling at constant speed.
2) A moving object on which no forces are acting will continue to move with constant:_________
A) Acceleration
B) speed
C) both of theseD) none of these

Answers

Answer:

1A,2D,3B

Explanation:

hope this helps

A student drives 105.0 mi with an average speed of 61.0 mi/h for exactly 1 hour and 30
minutes for the first part of the trip. What is the distance in miles traveled during this
time?

Answers

Answer:

91.5 miles

Explanation:

61 miles per hour so 61(x amount of hours)

so 61 x 1.5 hours is 91.5 miles

Having aced your Physics 2111 class, you get a sweet summer-job working in the International Space Station. Your room-mate, Cosmonaut Valdimir tosses a banana at you at a speed of 16 m/s. At exactly the same instant, you fling a scoop of ice cream at Valdimir along exactly the same path. The collision between banana and ice cream produces a banana split 8.2 m from your location 1.4 s after the banana and ice cream were launched.

1. How fast did you toss the ice cream?

2. How far were you from Valdimir when you tossed the ice cream?

Answers

Answer:

a

The speed is   [tex]s = 5.857 m/s[/tex]

b

The distance is  [tex]D = 22.4 \ m[/tex]

Explanation:

From the question we are told that

     The speed of the banana is  [tex]v = 16 \ m/s[/tex]

   The distance from my  location is  [tex]d = 8.2 \ m[/tex]  

     The time taken is  [tex]t = 1.4 \ s[/tex]

The speed of the ice cream is

          [tex]s = \frac{d}{t}[/tex]

substituting values

        [tex]s = \frac{8.4}{1.4}[/tex]

        [tex]s = 5.857 m/s[/tex]

The distance of separation between i and Valdimir is the same as the distance covered by the banana

   So  

          [tex]D = v * t[/tex]

substituting values

        [tex]D = 16 * 1.4[/tex]

        [tex]D = 22.4 \ m[/tex]

     

A 1,269 kg rocket is traveling at 413 m/s with 2,660 kg of fuel on board. If the rocket fuel travels at 1,614 m/s relative to the rocket, what is the rockets final velocity after it uses half of its fuel?

Answers

Answer:

About 2104m/s

Explanation:

[tex]F=ma \\\\F=\dfrac{2660kg}{2}\cdot 1614m/s=2,146,620N \\\\2,146,620N=1,269kg\cdot a \\\\a\approx 1691m/s \\\\v_f=v_o+at=413m/s+1691m/s=2104m/s[/tex]

Hope this helps!

A 148 g ball is dropped from a tree 11.0 m above the ground. With what speed would it hit the ground

Answers

Answer:

14.68m/s

Explanation:

As per the question, the data provided is as follows

Mass = M = 0.148 kg

Height = h = 11 m

Initial velocity = U = 0 m/s

Final velocity = V

Gravitational force = F

Mass = M

Based on the above information, the speed that hit to the ground is

As we know that

Work to be done = Change in kinetic energy

[tex]F ( S) = (\frac{1}{2} ) M ( V^2 - U^2 )[/tex]

[tex]M g h = (\frac{1}{2} ) M ( V^2 - U^2 )[/tex]

[tex]g h = (\frac{1}{2} ) ( V^2 - U^2 )[/tex]

[tex]V^2 - U^2 = 2gh[/tex]

[tex]V^2 - 0 = 2gh[/tex]

[tex]V = \sqrt{2 g h}[/tex]

[tex]= \sqrt{2\times9.8\times11}[/tex]

= 14.68m/s

What do you call a group of sea turtles?

Answers

Answer:

a bale

Explanation:

a bale is a group of turtles

Answer:

A bale or nest

Explanation:

An alpha particle has a charge of +2e and a mass of 6.64 x 10-27 kg. It is accelerated from rest through a potential difference of 1.2 x 106 V and then enters a uniform magnetic field whose strength is 2.2 T. The alpha particle moves perpendicular to the field. Calculate (a) the speed of the alpha particle, (b) the magnitude of the magnetic force exerted on it, and (c) the radius of its circular path.

Answers

Answer:

a) v = 1.075*10^7 m/s

b) FB = 7.57*10^-12 N

c) r = 10.1 cm

Explanation:

(a) To find the speed of the alpha particle you use the following formula for the kinetic energy:

[tex]K=qV[/tex]          (1)

q: charge of the particle = 2e = 2(1.6*10^-19 C) = 3.2*10^-19 C

V: potential difference = 1.2*10^6 V

You replace the values of the parameters in the equation (1):

[tex]K=(3.2*10^{-19}C)(1.2*10^6V)=3.84*10^{-13}J[/tex]

The kinetic energy of the particle is also:

[tex]K=\frac{1}{2}mv^2[/tex]       (2)

m: mass of the particle = 6.64*10^⁻27 kg

You solve the last equation for v:

[tex]v=\sqrt{\frac{2K}{m}}=\sqrt{\frac{2(3.84*10^{-13}J)}{6.64*10^{-27}kg}}\\\\v=1.075*10^7\frac{m}{s}[/tex]

the sped of the alpha particle is 1.075*10^6 m/s

b) The magnetic force on the particle is given by:

[tex]|F_B|=qvBsin(\theta)[/tex]

B: magnitude of the magnetic field = 2.2 T

The direction of the motion of the particle is perpendicular to the direction of the magnetic field. Then sinθ = 1

[tex]|F_B|=(3.2*10^{-19}C)(1.075*10^6m/s)(2.2T)=7.57*10^{-12}N[/tex]

the force exerted by the magnetic field on the particle is 7.57*10^-12 N

c) The particle describes a circumference with a radius given by:

[tex]r=\frac{mv}{qB}=\frac{(6.64*10^{-27}kg)(1.075*10^7m/s)}{(3.2*10^{-19}C)(2.2T)}\\\\r=0.101m=10.1cm[/tex]

the radius of the trajectory of the electron is 10.1 cm

The speed, magnetic force and radius are respectively; 10.75 * 10⁶ m/s; 7.57 * 10⁻¹² N; 0.101 m

What is the Magnetic force?

A) We know that the formula for kinetic energy can be expressed as;

K = qV

where;

q is charge of the particle = 2e = 2(1.6 × 10⁻¹⁹ C) = 3.2 × 10⁻¹⁹ C

V is potential difference = 1.2 × 10⁶ V

K = 3.2 × 10⁻¹⁹ *  1.2 × 10⁶

K = 3.84 × 10⁻¹³ J

Also, formula for kinetic energy is;

K = ¹/₂mv²

where v is speed

Thus;

v = √(2K/m)

v = √(2 * 3.84 × 10⁻¹³)/(6.64 * 10⁻²⁷)

v = 10.75 * 10⁶ m/s

B) The magnetic force is given by the formula;

F_b = qvB

F_b = (3.2 × 10⁻¹⁹ * 10.75 * 10⁶ * 2.2)

F_b = 7.57 * 10⁻¹² N

C) The formula to find the radius is;

r = mv/qB

r = (6.64 * 10⁻²⁷ * 10.75 * 10⁶)/(1.6 × 10⁻¹⁹ * 2.2)

r = 0.101 m

Read more about magnetic field at; https://brainly.com/question/7802337

A sound level of 96 dB is how many times as intense as one of 90 dB?

Answers

Answer:

A sound level of 96 dB is 4 times as intense as one of 90 dB

Explanation:

The formula of the intensity level of sound in decibels is given as follows:

Intensity Level = 10 log₁₀(I/I₀)

where,

I = Intensity of Sound

I₀ = Reference Intensity Level = 10⁻¹² W/m²

Therefore, for 96 dB sound level:

96 = 10 log₁₀(I₁/10⁻¹²)

log₁₀(I₁/10⁻¹²) = 96/10

I₁/10⁻¹² = 10^9.6

I₁ = (10⁻¹²)(4 x 10⁹)

I₁ = 0.004 W/m²

For 90 dB sound level:

90 = 10 log₁₀(I₂/10⁻¹²)

log₁₀(I₂/10⁻¹²) = 90/10

I₂/10⁻¹² = 10^9

I₂ = (10⁻¹²)(10⁹)

I₂ = 0.001 W/m²

Therefore,

I₁/I₂ = 0.004/0.001

I₁ = 4 I₂

Hence, the sound level of 96 dB is 4 times as intense as one of 90 dB.

A factory worker pushes a 30.0 kg crate a distance of 3.7 m along a level floor at constant velocity by pushing downward at an angle of 30∘ below the horizontal. The coefficient of kinetic friction between the crate and floor is 0.25.

Required:
a. What magnitude of force must the worker apply?
b. How much work is done on the crate by this force?
c. How much work is done on the crate by friction?
d. How much work is done on the crate by the normal force? By gravity?
e. What is the total work done on the crate?

Answers

Answer:

a) [tex]F = 210.803\,N[/tex], b) [tex]W_{F} = 779.971\,J[/tex], c) [tex]W_{f} = 235.683\,J[/tex], d) [tex]W_{N} = 0\,J[/tex]; [tex]W_{g} = 544.289\,J[/tex], e) [tex]W_{net} = 0\,J[/tex]

Explanation:

a) The net force exerted on the crate is:

[tex]\Sigma F = F - m\cdot g \cdot \sin \theta - \mu_{k}\cdot m\cdot g \cdot \cos \theta = 0[/tex]

The magnitud of the force that the work must apply to the crate is:

[tex]F = m\cdot g \cdot \sin \theta + \mu_{k}\cdot m\cdot g \cdot \cos \theta[/tex]

[tex]F = (30\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot \sin 30^{\circ} + 0.25 \cdot (30\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot \cos 30^{\circ}[/tex]

[tex]F = 210.803\,N[/tex]

b) The work done on the crate due to the external force is:

[tex]W_{F} = (210.803\,N)\cdot (3.7\,m)[/tex]

[tex]W_{F} = 779.971\,J[/tex]

c) The work done on the crate due to the external force is:

[tex]W_{f} = (63.698\,N)\cdot (3.7\,m)[/tex]

[tex]W_{f} = 235.683\,J[/tex]

d) The work done on the crate due the normal force is zero, since such force is perpendicular to the motion direction.

[tex]W_{N} = 0\,J[/tex]

And, the work done by gravity is:

[tex]W_{g} = (147.105\,N)\cdot (3.7\,m)[/tex]

[tex]W_{g} = 544.289\,J[/tex]

e) Lastly, the total work done is:

[tex]W_{net} = W_{F} - W_{f} - W_{g} - W_{N}[/tex]

[tex]W_{net} = 779.971\,J - 235.683\,J - 0\,N - 544.289\,J[/tex]

[tex]W_{net} = 0\,J[/tex]

A sulfur dioxide molecule has one sulfur
atom and two oxygen atoms. Which is its
correct chemical formula?
A. SO2
C. S2O2
B. (SO)
D. S20

Answers

Answer:

a. SO2

Explanation:

Aparticlewhosemassis2.0kgmovesinthexyplanewithaconstantspeedof3.0m/s along the direction r = i + j . What is its angular momentum (in kg · m2/s) relative to the point (0, 5.0) meters?

Answers

Answer:

[tex]\vec{L}=-30\frac{kgm^2}{s}\hat{k}[/tex]

Explanation:

In order to calculate the angular momentum of the particle you use the following formula:

[tex]\vec{L}=\vec{r}\ X\ \vec{p}[/tex]       (1)

r is the position vector respect to the point (0 , 5.0), that is:

r = 0m i + 5.0m j    (2)

p is the linear momentum vector and it is given by:

[tex]\vec{p}=m\vec{v}=(2.0kg)(3.0m/s)(\hat{i+\hat{j}})=6\frac{kgm}{s}(\hat{i}+\hat{j})[/tex]   (3)

the direction of p comes from the fat that the particle is moving along the i + j direction.

Then, you use the results of (2) and (3) in the equation (1) and solve for L:

[tex]\vec{L}=-30\frac{kgm^2}{s}\hat{k}[/tex]

The angular momentum is -30 kgm^2/s ^k

. A ball weighs 120g on the earth surface,

i) What is its mass on the surface of the moon? 1mk

Answers

Answer:

WEIGHT ON MOON IS 0.2004N

Explanation:

mass of the body=120g=[tex]\frac{120}{1000}[/tex]kg=0.12kg (we will convert g into kg)

gravity on moon=1.67m/s²( to find the mass of anybody on another we should know its gravity)

as we know that (from the formula of weight)

weight=mass×gravity

w=mg

w=0.12kg²×1.67m/s²

w=0.2004N

A hornet circles around a pop can at increasing speed while flying in a path with a 12-cm diameter. We can conclude that the hornet's wings must push on the air with force components that are Group of answer choices down and backwards. down, backwards, and outwards. down and inwards. down and outwards. straight down.

Answers

Answer:

down, backwards, and outwards.

Explanation:

For a hornet that is accelerating in flight, this means that there is a net forward motion at a relatively constant vertical height above the ground.

For this flight, the wings beat downwards to counter the weight of the hornet due to gravity, keeping it at that height above the floor.

For the hornet to accelerate forward, there has to be a net backwards force by the wing on the air. This backwards force accelerates tr forward due to the absence of an equal opposing force in the opposite direction save for a little drag.

The wings also beat with forces directed outwards to provide centripetal force to keep the hornet stable. The absence of this would cause it to spiral out of control.

You are watching an object that is moving in SHM. When the object is displaced 0.560 m to the right of its equilibrium position, it has a velocity of 2.45 m/s to the right and an acceleration of 8.60 m/s2 to the left. Part A How much farther from this point will the object move before it stops momentarily and then starts to move back to the left

Answers

Answer:

2.95m

Explanation:

The farthest distance the object can move is the radius of the circle of which the Simple harmonic motion is assumed to be a part

But V = w× r; where V is velocity,

w is angular velocity and r is radius.

Also,

a= w2r; where a is linear acceleration

but a = v× r ; by comparing both equations

Hence r = a/v =8.6/2.45 =3.51m

But the horizontal distance of the motion is given by:

X = rcosx ; where x is the angle

X is the distance covered.

We know that the maximum value of cos x is 1 which is 0°

When the object moves in a fashion directly parallel to an horizontal distance, maximum distance would be reached and hence:

X = r=3.51m

Meaning the object needs to travel 3.51-0.56=2.95m further.

Note: the acceleration of the motion is constant whether it is swinging towards the left or right.

When the object is displaced 0.560 m to the right of its equilibrium position, it has a velocity of 2.45 m/s to the right and an acceleration of 8.60 m/s2 to the left and the amplitude of motion A = 0.732 m.

What is Amplitude of motion?

The distance between the central and extreme points for a moving particle is known as the amplitude of motion.

The given data to find the amplitude of motion,

Object displaced = 0.560 m

Velocity = 2.45 m/s

Acceleration = 8.60 m/s²

Starting with sine:

x(t) = Asin(ωt)

so that t = 0, x = 0

x(t) = 0.56 m = Asin(ωt)

v(t) = x(t)'= 2.45 m/s = Aωcos(ωt)

a(t) = v(t)'= -8.60 m/s² = -Aω²sin(ωt)

x(t) / a(t) = Asin(ωt) / -Aω²sin(ωt)

0.56m / -8.60 m/s² = -1 / ω²

ω² = 15.3571 rad^2/s^2

ω = 3.91881 rad/s  

x(t) / v(t) = Asin(ωt) / Aωcos(ωt)

0.560m / 2.45m/s = tan(3.91t) / 3.91rad/s

0.8937= tan(3.91t)

t = 0.176 s  

x(0.176) = Asin(3.59×0.176)

0.65 m= Asin(0.631)

A = 0.732 m is the amplitude of motion.

To know more about Amplitude of motion,

https://brainly.com/question/12967589

#SPJ2

g A top-fuel dragster starts from rest and has a constant acceleration of 44.0 m/s2. What are (a) the final velocity of the dragster at the end of 2.1 s, (b) the final velocity of the dragster at the end of of twice this time, or 4.2 s, (c) the displacement of the dragster at the end of 2.1 s, and (d) the displacement of the dragster at the end of twice this time, or 4.2 s?

Answers

The dragster's velocity v at time t with constant acceleration a is

[tex]v=at[/tex]

since it starts at rest.

After 2.1 s, it will attain a velocity of

[tex]v=\left(44.0\dfrac{\rm m}{\mathrm s^2}\right)(2.1\,\mathrm s)[/tex]

or 92.4 m/s.

Doubling the time would double the final velocity,

[tex]v=a(2t)=2at[/tex]

so the velocity would be twice the previous one, 184.8 m/s.

The dragster undergoes a displacement x after time t with acceleration a of

[tex]x=\dfrac12at^2[/tex]

if we take the starting line to be the origin.

After 2.1 s, it will have moved

[tex]x=\dfrac12\left(44.0\dfrac{\rm m}{\mathrm s^2}\right)(2.1\,\mathrm s)^2[/tex]

or 88 m.

Doubling the time has the effect of quadrupling the displacement, since

[tex]x=\dfrac12a(2t)^2=4\left(\dfrac12at^2\right)[/tex]

so after 4.2 s it will have moved 352 m.

first law of equilibrium

Answers

Answer:

For an object to be an equilibrium it must be experiencing no acceleration.

Explanation:

Hope it helps.

Other Questions
What is chemical energy, and where is it found ineveryday life? What statement was true about the English and French colonies?A) Both colonies encouraged religious freedom.B) Both countries had urban populations who moved to the colonies.OC) New France had a smaller populationD) Neither nation wanted the colonists to run their own colonies. gbhujiklbvnhjkml dxfcgvhj A children's roller coaster is limited to riders whose height is at least 30 inches and at most 48 inches. Write two inequalities that represent the height h of riders for the roller coaster. Ellen thinks that if a line has no slope, then it never touches the y-axis. Which line proves that her statement is incorrect?A. x = 0B. y = 0C. x = 1D. y = 1 Mr. Grove's argument is to provide additional incentives to U.S. firms for domestic investment in more mass production. If implemented, this would have the largest impact on firms using which of the four integration-responsiveness strategies?A) Transnational strategy because such incentives help differentiation.B) Multi-domestic strategy because incentives would increase global responsiveness.C) Global-standardization strategy because incentives would lower domestic costs.D) International strategy because these incentives would reduce pressure for responsiveness globally.E) Global-standardization strategy because incentives align with the death-of-distance. Q 2.20: In a survey, there are two categories of respondents, employed and unemployed people, and two options, A and B. The proportion of those who have chosen option B is greater than 0.5 among the total number of the respondents, but is lower than 0.5 among the unemployed respondents. We know that 314 employed and 512 unemployed people chose option A and 356 employed chose option B. How many unemployed people chose option B A marketing consultant was hired to visit a random sample of five sporting goods stores across the state of California. Each store was part of a large franchise of sporting goods stores. The consultant taught the managers of each store better ways to advertise and display their goods. The net sales for 1 month before and 1 month after the consultant's visit were recorded as follows for each store (in thousands of dollars):_________.Before visit: 57.1 94.6 49.2 77.4 43.2After visit: 63.5 101.8 57.8 81.2 41.9Do the data indicate that the average net sales improved? (Use a= 0.05) Which theory suggests that the moon and the earth formed at the same time from dust from the solar nebula that formed the Sun? Please answer this correctly The invention of photography was initially important because:A. it provided fun and entertainment for thousands of people.B. it enabled people to communicate more information faster.C. it gave farmers a means of keeping track of farm goods andequipmentD. it helped artists, scientists, and journalists communicate in a newway. The solubility of N2 in water at a particular temperature and at a N2 pressure of 1 atm is 6.8 104 mol L1. Calculate the concentration of dissolved N2 in water under normal atmospheric conditions where the partial pressure of N2 is 0.78 atm. Help me with this question please Choose the statement about THEME that is NOT accurate.O a. A theme is what the story is about.o b. A theme is an author's message to a reader.O c. Theme is what a story is trying to say about life.O d. A theme is a thread of deeper meaning that runs through a story. Which verb form correctly completes this sentence? Es posible que el problema _______ si no cuidamos el medio ambiente. A. vuelvas B. volvamos C. vuelvan D. vuelva Which option lists the correct steps to apply a style?A. Select the text, click the Home tab, and in the Styles Gallery, click to select a style to apply.B. Select the text, click the Insert tab, and in the Formatting Gallery, click to select a style to apply.C. Select the text, click the Home tab, and in the Font group, select a font, font size, and type to apply.D. All of the options listed above are correct. please help thank youuu! How much water can a rectangular pool hold if it has a length of 30 feet, a width of 25 feet, and is 8 feet deep? HELP ASAP PLEASE!!! Explain how you will benefit most from improving your math skills. What is the solution for x in the equation? 4x 3 + 5 = 2x + 7 8x