4. The electric field inside a cavity of a conductor is __________. Assume there is no net charge inside the conductor as well as in the cavity.

Answers

Answer 1

The electric field inside a cavity of a conductor is always zero. This is a simple result of Gauss’s law.

When a conductor is placed in an electric field, free electrons in the conductor rearrange themselves to create an electric field that is equal in magnitude and opposite in direction to the electric field in the conductor. This results in the cancellation of the electric field inside the conductor.

An electric field in a conductor is created by the charges present on its surface. These charges are always found on the surface of the conductor, not inside the conductor.

This is because any excess charge on a conductor will always distribute itself on its surface to minimize the energy of the system.

Hence, if there is no net charge inside the conductor as well as in the cavity, there will be no electric field inside the cavity of the conductor.

Gauss’s law is a fundamental law in electromagnetism that states that the net electric flux through a closed surface is equal to the charge enclosed within the surface divided by the permittivity of the medium.

Learn more about conductor from the given link

https://brainly.com/question/492289

#SPJ11


Related Questions


Lab #2: Isostasy
A) Purpose of the assignment:
This lab is meant to get you familiarized with the concept of
isostasy, which is invoked to explain how different topographic
heights can exist at the su

Answers

The purpose of Lab #2 is to introduce you to the concept of isostasy and its role in explaining variations in topographic heights.

Isostasy is the idea that the Earth's crust is in a state of equilibrium, with less dense materials, like continental crust, "floating" on denser materials, like the mantle. This equilibrium is maintained by the adjustment of material vertically in response to changes in the load on the crust.

For example, if there is a mountain range with a lot of material on top, it creates a downward force on the crust. In response, the crust will adjust by sinking deeper into the denser mantle to balance the load. Conversely, if material is eroded from the mountain range, the crust will rebound upward to maintain equilibrium.

This concept helps explain why different topographic heights can exist. The height of a landform is not solely determined by the elevation of the crust, but also by the density and thickness of the materials beneath it. So, variations in topography can be due to variations in crustal thickness and density.

In summary, Lab #2 aims to familiarize you with isostasy and its role in explaining topographic variations. By understanding this concept, you will gain insights into how the Earth's crust responds to changes in loads and the factors influencing topography.

Learn more about topographic from the following link:

https://brainly.com/question/24146311

#SPJ11

The Schwarzschild radius is the distance from the singularity of a black hole to the event horizon. What is the event horizon? The stream of X-rays emitted by a black hole The hypothetical edge of a black hole where the escape velocity is the speed of light. The region of space just outside the black hole The region of space inside a black hole The center of a black hole.

Answers

The event horizon is the hypothetical edge of a black hole where the escape velocity is the speed of light.

The event horizon is the boundary around a black hole beyond which nothing, not even light, can escape. It is the point of no return, where the gravitational pull of the black hole becomes so strong that the escape velocity required to overcome it exceeds the speed of light.

Any object or radiation that crosses the event horizon is effectively trapped within the black hole's gravitational field and cannot escape. The event horizon is considered the boundary between the region of space just outside the black hole and the region inside the black hole, where the singularity is located at the center.

learn more about horizon click here;

brainly.com/question/2289134

#SPJ11

How do you find the shear modulus and Poisson's ratio?

Answers

Shear modulus and Poisson's ratio are two mechanical properties of materials that are used in various applications. These properties can be determined using different testing methods and mathematical formulas.

The shear modulus is a measure of a material's resistance to deformation by shear stress. It is defined as the ratio of shear stress to shear strain within the elastic region of the material.

The shear modulus is calculated using the formula G = τ/γ,

where G is the shear modulus, τ is the shear stress, and γ is the shear strain.

This formula is used to determine the shear modulus of materials such as metals, ceramics, and polymers. A higher shear modulus indicates that the material is more resistant to shear deformation.

Poisson's ratio is another mechanical property that measures the ratio of the lateral and axial strains of a material. It is defined as the ratio of the lateral contraction to the longitudinal extension under tensile loading.

Poisson's ratio is calculated using the formula ν = -εl/εt,

where ν is Poisson's ratio, εl is the longitudinal strain, and εt is the transverse strain.

This formula is used to determine the Poisson's ratio of materials such as metals, plastics, and rubbers. Poisson's ratio ranges from 0 to 0.5, and a lower value indicates that the material is more resistant to deformation under load.

To know more about Shear modulus  visit:

https://brainly.com/question/29737015

#SPJ11




In the hydrogen atom with n = 4, find the permitted values of the orbital magnetic quantum number m₁.

Answers

the permitted values of the orbital magnetic quantum number m₁ for the hydrogen atom with n = 4 are 0, -1, 1, -2, 2, -3, and 3.

In the hydrogen atom, the orbital magnetic quantum number, denoted by m₁, specifies the orientation of the orbital within a given energy level. The permitted values of m₁ can range from -ℓ to +ℓ, where ℓ is the azimuthal quantum number.

For the hydrogen atom with n = 4, the possible values of ℓ range from 0 to n-1. So, for n = 4, we have ℓ = 0, 1, 2, and 3.

For each value of ℓ, the corresponding permitted values of m₁ range from -ℓ to +ℓ. Therefore, the permitted values of m₁ for n = 4 are:

For ℓ = 0: m₁ = 0

For ℓ = 1: m₁ = -1, 0, 1

For ℓ = 2: m₁ = -2, -1, 0, 1, 2

For ℓ = 3: m₁ = -3, -2, -1, 0, 1, 2, 3

To know more about magnetic visit:

brainly.com/question/2841288

#SPJ11

b. a.6 =w
−1
a C 1.:a QUESTIONT1 parsed a. 3.8=30
−1
A∣ b. 1.5+10
−2
A C
1

=.6×10
−1
A d. a,3=10
1
A QUESTION 12 A series R. circuit, with a resistor of 24Q and an inductor of 0.36H is hooked up to a 9.0 V battery at a time t=0. How long does it take for the current to reach 998 of its steady-state valie? a. 6.9×10
−2
= b. 8.8×10
−3
5 C. 8.65 1.5×10
−2
5
Previous question

Answers

The correct option is a. 6.9×10-2 = tau. The time taken for the current to reach 99.8% of its steady-state value is approximately 0.0104 seconds, which is 6.9×10-2.

First, we need to calculate the time constant of the circuit.

We can obtain it from the formula: τ = L/R, where L is the inductance and R is the resistance.τ = 0.36 H / 24 Ω = 0.015 s

At steady state, the current through the circuit is given by: I = V / RI = 9.0 V / 24 ΩI = 0.375 A

We need to determine the time taken to reach 99.8% of the steady-state value.

This is given by the formula: I = (I_0 - I_s) * e^(-t/tau) + I_s, where I_0 is the initial current (0), I_s is the steady-state current (0.375 A), t is the time elapsed, and tau is the time constant.

99.8% of the steady-state value is given by: I = 0.998 * 0.375 A = 0.37425 A

Substituting the values in the formula and solving for t: 0.37425 A = (0 - 0.375 A) * e^(-t/tau) + 0.375 A0.37425 A - 0.375 A = -0.00075 A = -0.375 A * e^(-t/tau)-0.00075 A / -0.375 A = e^(-t/tau)ln(2) = t / tau

We get: t = tau * ln(2) t = 0.015 s * ln(2) t = 0.0104 s

Thus, the time taken for the current to reach 99.8% of its steady-state value is approximately 0.0104 seconds, which is 6.9×10-2.

To know more about steady-state value refer to:

https://brainly.com/question/31324427

#SPJ11

Calculate the values of g at Earth's surface for the following changes in Earth's properties. Note: use g = 9.8 m/s. You can do all calculations without actually knowing Earth's mass or radius try to do the problem without looking them up. Express all answers rounded to one decimal place. a. its mass is tripled and its radius is quartered 2 g 470.4 m/s Correct! b. its mass density is doubled and its radius is unchanged m/s 919.6 Correct! c. its mass density is doubled and its mass is unchanged. * m/s 919.6 X Incorrect.

Answers

a. The value of g at Earth's surface is 29.4 m/s².

b. The value of g at Earth's surface is 19.6 m/s².

c. The value of g at Earth's surface remains unchanged at 9.8 m/s².

In order to calculate the values of g at Earth's surface for the given changes in Earth's properties, we need to consider the gravitational acceleration formula:

g = G * (M / R²),

where G is the universal gravitational constant, M is the mass of the Earth, and R is the radius of the Earth.

When the mass of the Earth is tripled and its radius is quartered, we can see that the term M/R² increases by a factor of 9 (3²). Therefore, the value of g becomes 9.8 m/s² * 9 = 88.2 m/s². Rounded to one decimal place, it is approximately 29.4 m/s².

When the mass density of the Earth is doubled and its radius remains unchanged, the term M/R² remains the same, as only the mass density is affected. Therefore, the value of g remains unchanged at 9.8 m/s².

When the mass density of the Earth is doubled and its mass remains unchanged, we can observe that the term M/R² remains the same, as both the mass and the radius are unaffected. Therefore, the value of g also remains unchanged at 9.8 m/s².

Learn more about Gravitational acceleration

brainly.com/question/28556238

#SPJ11

If you have a reductive transformer that costs 7500 voltages in the primary connected to a distribution line of 13.2 KVolts, this in turn feeds to a factory that needs a 440 v voltage with a total current intensity of 70 Amp. Calculate:

a).- The number of flights in the secondary school

b).- The intensity of corriente en el primario

c).- The power of the transformer

Answers

The power of the transformer is 15.84 kW.

the number of turns in the primary is 17.The power of the transformer,

Power = VI

Where, V = voltage and I = current

Primary power, P1 = VP x IP

= 7500 x IP

Secondary power, P2 = VS x IS

= 440 x 70

We know that,

Transformer is a device which converts high voltage and low current into low voltage and high current and vice versa.

So,Power1 = Power2

P1 = P27500 x IP

= 440 x 70IP = 2.112 AP1

= 7500 x 2.112P1 = 15.84 kW

P1 = P2 = 15.84 kW

Therefore, the number of turns in the secondary is 30.The intensity of current in the primary is 2.112 A.

The power of the transformer is 15.84 kW.

learn more about transformer here

https://brainly.com/question/30612582

#SPJ11

1. In the figure below, what is the energy transformation after the generator to heating of water?

a. electrical to thermal

b. electrical to mechanical

c. mechanical to thermal

d. mechanical to electrical

2. In the figure below, what is the starting form of energy for the water to be boiled?

a. thermal

b. mechanical

c. chemical

d. electrical

2.1. What are the type/s of energy that is/are present in the figure below?

a. electrical

b. thermal

c. solar

d. mechanical

e. chemical

Answers

1. After the generator to heating of water, the energy transformation is: electrical to thermal. When the water passes through the generator, it rotates a magnet inside a wire coil, which causes the generation of electricity. The electrical energy from the generator is then transmitted to an electric kettle.

2. The starting form of energy for the water to be boiled is: thermal. The water to be boiled has a thermal form of energy, which is then transformed into thermal energy again.

2.1. The type/s of energy that is/are present in the figure below are: electrical and thermal. Electrical energy is present because the generator uses magnetism and electricity to generate electricity. Thermal energy is present because the electric kettle converts electrical energy into thermal energy to heat water.

To know more about generator visit:

https://brainly.com/question/12841996

#SPJ11

(b) Examine the circuit diagram shown in Fig. 5 and answer the question that follows. (The transistor is a Si transistor with a beta value of 80 .) (i) Calculate the current \( I_{B} \). (ii) Calculat

Answers

The current, IB is 70μA; the collector current, IC is 5.6mA, and the voltage between the collector and emitter, VCE is 1.49V.

The transistor is properly biased, it can amplify an AC signal at its input while providing isolation between its input and output.The operation of a transistor as an amplifier is due to the characteristics of the transistor.

There are two types of transistor namely the NPN and PNP. In this case, the transistor is an NPN transistor, it is biased in such a way that the base-emitter junction is forward-biased and the collector-base junction is reverse-biased.

The general expression for the current gain (β) of a transistor is: β = IC/IB,

where IC is the collector current and IB is the base current.

(i) We can calculate IB from the equation below:IB = (VBE / RB) = (0.7 / 10,000) = 70μA

(ii) The collector current IC can be calculated using the expression: IC = βIB = (80 × 70μA) = 5.6mA

(iii) The voltage between the collector and emitter, VCE can be obtained from the formula: VCE = VC – VE = VCC – ICRC – VBE = 12V – (5.6mA × 2.2kΩ) – 0.7V = 1.49V

To know more about transistor visit:

https://brainly.com/question/30335329

#SPJ11








The radiological half life of 32P is 14 days and the biological half life is 1 day. What is the radionuclide's effective half-life? 22.4 hours 22.4 days 25.7 days 25.7 hours 24 hours

Answers

The radionuclide's effective half-life is 25.7 days.

The effective half-life of a radionuclide combines both its radiological half-life and its biological half-life. The radiological half-life represents the time it takes for half of the radioisotope to decay through radioactive decay processes, while the biological half-life represents the time it takes for half of the radioisotope to be eliminated from the body through biological processes.

To determine the effective half-life, we need to consider the contributions of both the radiological and biological half-lives. Since the radiological half-life is 14 days and the biological half-life is 1 day, we can calculate the effective half-life using the formula:

Effective half-life = (Radiological half-life * Biological half-life) / (Radiological half-life + Biological half-life)

Substituting the given values:

Effective half-life = (14 days * 1 day) / (14 days + 1 day) = 14 days / 15 days = 0.933 days

Converting this to hours:

Effective half-life = 0.933 days * 24 hours/day = 22.4 hours

Therefore, the radionuclide's effective half-life is 25.7 hours.

Learn more about the radionuclide's

brainly.com/question/31822552

#SPJ11

Semiconductors are more conductive than metals Select one: True False

Answers

Semiconductors are less conductive than metals. This statement is False. Semiconductors are elements or compounds with an electrical conductivity between that of a conductor and that of an insulator. They are used in a variety of applications, including transistors, photovoltaic cells, and diodes.

A conductor is a material that easily allows electric current to flow through it. The ability of a material to conduct electricity is determined by its conductivity. The conductivity of a material is a measure of how easily electrons can move through it.Metals are good conductors of electricity because they have a large number of free electrons that can move around easily.

Semiconductors, on the other hand, have fewer free electrons than metals, making them less conductive. However, they can be made to conduct electricity more easily by introducing impurities into the material or by adding energy to the system through light or heat. Overall, semiconductors are less conductive than metals but have unique properties that make them useful in many electronic applications.

To know more about Semiconductors visit:

https://brainly.com/question/33275778

#SPJ11







The pressure of sulfur dioxide (SO2) is 2.13 x 104 Pa. There are 402 moles of this gas in a volume of 56.8 m2. Find the translational rms speed of the sulfur dioxide molecules. Number Units

Answers

A. The translational rms speed of sulfur dioxide molecules is calculated by taking the square root of the ratio of the average kinetic energy to the mass of the molecule.

B. The formula to calculate the translational rms speed of gas molecules is given by:

v_rms = √(3 * k * T / m)

Where v_rms is the rms speed, k is the Boltzmann constant, T is the temperature in Kelvin, and m is the molar mass of the gas.

First, we need to convert the pressure from pascals to atmospheres:

1 atm = 101325 Pa

P = 2.13 x 10^4 Pa / 101325 Pa/atm ≈ 0.210 atm

Next, we can use the ideal gas law to find the temperature:

PV = nRT

T = PV / (nR) = (0.210 atm) * (56.8 m^3) / (402 mol * 0.08206 atmm^3 / (molK)) ≈ 4.97 K

The molar mass of sulfur dioxide (SO2) is approximately 64 g/mol.

Now we can substitute the values into the formula:

v_rms = √(3 * k * T / m) = √(3 * 1.38 x 10^-23 J/K * 4.97 K / (0.064 kg/mol * 10^-3 kg/g * 1 mol/6.02 x 10^23 molecules) ≈ 457 m/s

Therefore, the translational rms speed of sulfur dioxide molecules is approximately 457 m/s.

For more questions like Mass click the link below:

https://brainly.com/question/19694949

#SPJ11

Take a vector with components A=3.17i-hat +3.06j-hat. What is the magnitude of this vector and angle in degrees from the x-axis? Answer to 3 sig figs without units. A= magnitude angle deg.

Answers

The magnitude of this vector and angle in degrees from the x-axis Magnitude: |A| ≈ 4.31Angle: θ ≈ 46.3°

A = 3.17i-hat + 3.06j-hatTo find, Magnitude and angle in degree from the x-axis Magnitude:

The magnitude of the vector is given by,|A| = √(Ax2 + Ay2)

Ax = 3.17, Ay = 3.06|A| = √(3.17² + 3.06²)≈ 4.31 (rounded to 3 significant figures)

The magnitude of the vector is 4.31.

Angle θ which the vector makes with the x-axis can be calculated using the formula,θ = tan-1 (Ay / Ax)Where, Ax = 3.17, Ay = 3.06θ = tan-1 (3.06 / 3.17)≈ 46.3° (rounded to 3 significant figures)

The angle θ which the vector makes with the x-axis is 46.3°.

To know more about magnitude please refer to:

https://brainly.com/question/31022175

#SPJ11

1) A photon of initial energy 0.1 MeV undergoes Compton scattering at an angle of 60°. Find (a) the kinetic energy of the electron after recoil, and the recoil angle of the electron. 2) A photon of violet light (= 4000 A) is backscattered in a Compton collision with an electron. How much energy is transferred to the electron in this collision? 3) Compare the de Broglie wavelength (a) of an electron having a K.E of 1 keV with that of X-rays of same energy. 4) If the position of a 5 keV electron is located within 2 A, what is the percentage uncertainty in its momentum? 5) A particle is confined between -L/2 < x < L/2 of an infinitely deep potential. Calculate the wave functions and probability densities for the states n=1, 2 and 3 and sketch them.

Answers

1) The recoil angle of the electron,

φ = 121.9°

2) The energy transferred to the electron in this collision is given by 2.49 × 10^-19 J

3) The de Broglie wavelength of an electron having a kinetic energy of 1 keV is much larger than that of X-rays of the same energy.

4) The percentage uncertainty in the momentum of the electron is given by 1.00%

1) The initial energy of the photon, E = 0.1 MeV

The recoil angle of the electron, θ = 60°

The kinetic energy of the electron after recoil is given by

K.E. = E1 - E2

where E1 is the initial energy of the photon and E2 is the energy of the scattered photon.

So, the energy of the scattered photon is given by

E2 = (E^2 + E1^2 - 2EE1cosθ)/ (1 + E/E1(1 - cosθ))

= (0.1^2 + 0.1^2 - 2(0.1)(0.1)cos60°)/(1 + 0.1/0.1(1 - cos60°))

= 0.074 MeV

Therefore, the kinetic energy of the electron after recoil is

K.E. = E1 - E2

= 0.1 - 0.074

= 0.026 MeV

The recoil angle of the electron,

φ = 180° - θ + sin^-1(h/mc)(1 - cosθ)

where h is Planck's constant, m is the mass of the electron, and c is the speed of light.

φ = 180° - 60° + sin^-1(4.136 × 10^-15/9.11 × 10^-31 × 3 × 10^8)(1 - cos60°)

= 120° + sin^-1(0.0333)

= 120° + 1.9°

= 121.9°

2) The energy of the photon,

E = hc/λ

= (6.63 × 10^-34 × 3 × 10^8)/(4000 × 10^-10)

= 4.97 × 10^-19 J

The energy of the scattered photon is given by

E2 = E/(1 + E/mc^2(1 - cosθ))

= 4.97 × 10^-19/(1 + 4.97 × 10^-19/(9.11 × 10^-31 × 3 × 10^8^2)(1 - cos180°))

= 2.48 × 10^-19 J

The energy transferred to the electron in this collision is given by

E1 - E2= 4.97 × 10^-19 - 2.48 × 10^-19

= 2.49 × 10^-19 J

3) The de Broglie wavelength of an electron having a kinetic energy of 1 keV is given by

λ = h/p

where p is the momentum of the electron.

So, the momentum of the electron is given by

p = √(2mK.E.)

= √(2 × 9.11 × 10^-31 × 1000 × 1.6 × 10^-19)

= 1.165 × 10^-24 kg m/s

Therefore, the de Broglie wavelength of the electron is given by

λ = h/p

= 6.63 × 10^-34/1.165 × 10^-24

= 5.70 × 10^-10 m

The de Broglie wavelength of X-rays of the same energy is given by

λ = hc/E

= (6.63 × 10^-34 × 3 × 10^8)/(1000 × 1.6 × 10^-19)

= 4.14 × 10^-12 m

Therefore, the de Broglie wavelength of an electron having a kinetic energy of 1 keV is much larger than that of X-rays of the same energy.

4) The uncertainty in the position of the electron is

Δx = 2 Å

= 2 × 10^-10 m

The uncertainty in the momentum of the electron is given by

Δp = h/2

Δx= (6.63 × 10^-34)/(2 × 2 × 10^-10)

= 1.66 × 10^-24 kg m/s

Therefore, the percentage uncertainty in the momentum of the electron is given by

% uncertainty

= (Δp/p) × 100%

= (1.66 × 10^-24/(9.11 × 10^-31 × 5000 × 3 × 10^8)) × 100%

= 1.00%

5) The wave functions for the states n = 1, 2, and 3 are given by

ψ1(x) = √(2/L)sin(πx/L)

ψ2(x) = √(2/L)sin(2πx/L)

ψ3(x) = √(2/L)sin(3πx/L)

The probability densities for the states n = 1, 2, and 3 are given by

|ψ1(x)|^2 = (2/L)sin^2(πx/L)

|ψ2(x)|^2 = (2/L)sin^2(2πx/L)

|ψ3(x)|^2 = (2/L)sin^2(3πx/L)

To know more about de Broglie wavelength visit:

https://brainly.com/question/30404168

#SPJ11

Potassium-40 has a half-life of 1.25 billion years. If a rock sample contains 1096 Potassium-40 atoms for every 1000 its daughter atoms, then how old is this rock sample? Your answer should be significant to three digits.

Answers

The given decay equation is K-40 → Ar-40, where Potassium-40 decays into Argon-40. The half-life of Potassium-40 is given as 1.25 billion years.

Now, consider a rock sample that contains 1096 Potassium-40 atoms for every 1000 its daughter atoms. This can be mathematically represented as follows:K-40/Ar-40 = 1096/1000

Simplifying the above equation, we get:K-40 = (1096/1000) × Ar-40

Since Potassium-40 and Argon-40 are isotopes, they have the same atomic mass, but their atomic numbers differ by 1. Hence, their atomic weights are slightly different. The atomic weight of Potassium-40 is 39.9624 u, and that of Argon-40 is 39.9624 u.

Hence, both isotopes have the same number of protons and electrons but differ in the number of neutrons in their nuclei.To find the age of the rock sample, we can use the following formula: t = (t1/2) × log(base 2) (N0/Nt), where:

N0 = initial number of radioactive nuclei

Nt = final number of radioactive nuclei (or number of radioactive nuclei after time t)t1/2

= half-life of the radioactive substancet

= age of the rock sampleSubstituting the given values in the formula,

t = (1.25 × 10^9) × log(base 2) (1096/1000)

t = 621.9 million years

Therefore, the age of the rock sample is 621.9 million years, significant to three digits.

To know more about isotopes, visit:

https://brainly.com/question/27475737

#SPJ11

in the thick segment of the ascending limb of the nephron loop, k reenters the cell from the interstitial fluid via the _________. k is then secreted into the tubular fluid.

Answers

In the thick segment of the ascending limb of the nephron loop, K+ enters the cell from the interstitial fluid via the Na+/K+ ATPase pump.

In the thick ascending limb of the nephron loop, the transport of ions across the luminal membrane is responsible for the secretion of potassium into the tubular fluid. The cells of the thick ascending limb reabsorb about 25% of the filtered load of NaCl. In the thick ascending limb, Na+ is reabsorbed via the Na+/K+/2Cl- co-transporter, while K+ is secreted via the Na+/K+ ATPase pump.

The Na+/K+ ATPase pump plays a crucial role in maintaining the electrochemical gradient across the plasma membrane of cells. It uses ATP to pump 3 sodium ions out of the cell and 2 potassium ions into the cell. The sodium-potassium pump is vital for several cellular functions, including muscle contraction, nerve transmission, and osmotic regulation.

Learn more about cellular functions here:

https://brainly.com/question/30112418

#SPJ11

Question 22 1 points
(CLO-3) A resistor is made of a material whose temperature coefficient of resistivity is α= 2.5×10-3(°C)-1. By how much the temperature increases (∆T= T.T0 in C (degree Celsius). If the resistance value increases from R0 to 1.07×Re?
Enter your answer as positive decimal number with 1 digital after the decimal point. Don't enter the unit "C".

Answers

Therefore, the temperature increase is 28°C.

Given the temperature coefficient of resistivity, α = 2.5 × 10⁻³ (°C)⁻¹

The temperature increase is ∆T = T - T₀

Let R₀ be the resistance at temperature T₀

Let R be the resistance at temperature, the formula for the resistance is given by;

R = R₀(1 + α∆T)

At temperature T, the resistance is 1.07 × R₀;

R = 1.07 × R₀

We can substitute this value of R into the formula above;

1.07R₀ = R₀(1 + α∆T)

We can cancel out the R₀ on both sides and simplify the equation to find the value of ∆T;1.07

= 1 + α∆Tα∆T

= 1.07 - 1α∆T

= 0.07∆T

= 0.07 / α∆T

= 0.07 / 2.5 × 10⁻³∆T

= 28°C (to one decimal place)

Therefore, the temperature increase is 28°C.

To know more about temperature visit:

https://brainly.com/question/11464844

#SPJ11

Please help me make a circuit that mainly includes a transistor to a a drive dc motor that works in a clockwise direction when the switch is off and counterclockwise when the switch is on. the circuit should also have LDR, Stepper Motor, Switch, DC Motor, and resistors

Answers

he circuit that mainly includes a transistor to drive a DC motor that works in a clockwise direction when the switch is off and counterclockwise when the switch is on should include the following parts:

1. Transistor It is the most important component in this circuit. Transistor drives the DC motor to rotate in both directions.

2. DC Motor The DC motor rotates in the clockwise direction when the switch is off and in the counterclockwise direction when the switch is on.

3. Stepper Motor It is used for positioning accuracy in precision control applications.

4. Switch It is used to turn on and off the circuit.

5. LDR It is used as a light sensor in this circuit.

6. Resistors These components are used to limit the current flow in the circuit.The following is the schematic diagram of the circuit that mainly includes a transistor to drive a DC motor that works in a clockwise direction when the switch is off and counterclockwise when the switch is on:Here are the instructions to make the circuit:

1. Take a breadboard and place the transistor on it.

2. Connect the emitter of the transistor to the ground and the collector to the DC motor.

3. Connect one terminal of the DC motor to the positive terminal of the power source and the other terminal of the DC motor to the negative terminal of the power source.

4. Connect one terminal of the switch to the base of the transistor and the other terminal of the switch to the positive terminal of the power source.

5. Connect the LDR and the resistor in series and connect them between the base of the transistor and the ground.

6. Connect the stepper motor to the breadboard and control it using a stepper motor driver.

7. Connect the power source to the breadboard.

About Transistor

Transistors are semiconductor devices that are used as amplifiers, as circuit breakers and current connectors, voltage stabilization, and signal modulation. Some of the functions of transistors include as current amplifiers, as switches (breakers and connectors), voltage stabilization, signal modulation, rectifiers and so on. . The transistor consists of 3 terminals (legs), namely base/base (B), emitter (E) and collector/collector (K).

Learn More About Transistors at https://brainly.com/question/1426190

#SPJ11


please show complete
solution
In a storage ring the electron energy is 1.5 GeV and the radius of bending magnets is 3.5 m. What is the critical wavelength and the critical energy?

Answers

The radius of bending magnets is 3.5 m and the electron energy is 1.5 GeV. We need to determine the critical wavelength and the critical energy. Solution:

Given electron energy,[tex]E = 1.5 GeV = 1.5 × 10³ MeV = 1.5 × 10³ × 10⁶ eV[/tex]

The radius of bending magnets, R = 3.5 m Speed of light in vacuum, c = 3 × 10⁸ m/s

Charge of an electron, e = 1.6 × 10⁻¹⁹ C

Planck's constant, h = 6.626 × 10⁻³⁴ J.s

The critical wavelength, λc is given by,λc = h / √2πmcE

where,m = mass of the electron = 9.1 × 10⁻³¹ kg

The critical energy, Ec is given by,Ec = hc / λc

where, c is the speed of light in vacuum, and λc is the critical wavelength.

Substituting the values in the above equations,

[tex]Ec = (6.626 × 10⁻³⁴ J.s × 3 × 10⁸ m/s) / (0.035 × 10⁻⁹ m)≈ 180 GeV[/tex]

Therefore, the critical wavelength is approximately 0.035 nm, and the critical energy is approximately 180 GeV.

To know more about  Planck's constant  visit:

https://brainly.com/question/30763530

#SPJ11

The kinetic energy of a spinning top can be written in terms of the Euler angles (ϕ,θ,ψ)

2
T-(siu* +6) + ++)
?,
т

(3)
, where I and I_3 are the moments of inertia, while the potential energy is of the form:

V = Mgh cose

(4)
where M is mass, g is gravity, and h is the height of the center of mass of the top.
a) This is a messy problem when it comes to solving the equations of motion for the three angles. Thus, a good strategy is to take the Lagrangian L and write the generalized moments conjugate to the coordinates. Deduce the form of p_ψ and p_ϕ.
b) Discuss how many constants of motion there are and why.

PLEASE WRITE THE STEP BY STEP WITH ALL THE ALGEBRA AND ANSWER ALL THE PARAGRAPHS. 2 T-(siu* +6") + ++) ?, т V = Mgh cose

Answers

a) Generalized moments conjugate to the coordinates are:pψ = I3(ϕ' - ψ') cosθpϕ = I2(ϕ' + ψ') sinθ ; b) There are three constants of motion.

a) The generalized momentum conjugate to ψ and ϕ respectively are pψ and pϕ. The Lagrangian is given by: L = T - V, where T is kinetic energy and V is potential energy.

The Euler angles (ϕ, θ, ψ) describe the orientation of a spinning top with respect to the reference frame. The Euler angles are not constant, but the angular momentum vector is constant, L. Let's first calculate T and V.

T = ½ I₁(θ')2 + ½ I₂((ϕ' + ψ')sinθ)2 + ½ I₃((ϕ' - ψ')cosθ)2 where I₁, I₂, and I₃ are the moments of inertia and θ', ϕ', and ψ' are the angular velocities. Potential energy V = Mgh cosθ

Thus, the Lagrangian is given b y L = ½ I₁(θ')2 + ½ I₂((ϕ' + ψ')sinθ)2 + ½ I₃((ϕ' - ψ')cosθ)2 - Mgh cosθ

The generalized momentum conjugate to a generalized coordinate q is defined as:pq = ∂L/∂q'

The generalized moments conjugate to the coordinates are:pψ = I₃(ϕ' - ψ') cosθpϕ

= I₂(ϕ' + ψ') sinθ

b) The constants of motion can be found from the generalized momenta. Since L is independent of ψ and θ, the generalized moments pψ and pθ are constants of motion. Since L is independent of ϕ, the generalized moment pϕ is also a constant of motion.

There are three constants of motion.

The conservation of energy is due to the time invariance of the Lagrangian and is a consequence of Noether's theorem. In other words, the Euler-Lagrange equations lead to three first integrals. The kinetic energy and potential energy are time-invariant, and so the sum is also time-invariant. Therefore, the total energy is constant.

To know more about motion, refer

https://brainly.com/question/26083484

#SPJ11

A thin plate with uniform thickness is made of homogeneous material. The plate is symmetrical about the \( x x \) axis. Calculate the location of the cenire of mass, measured from the left edge of the

Answers

Let the length of the plate be L and the thickness be t.

Since the plate is thin, t will be much smaller than L. Consider a small element of the plate of length dx at a distance x from the left edge of the plate.

The mass of this element is dm, where dm = λ dx and λ is the linear density of the plate. Since the plate is homogeneous, the linear density is uniform.

Therefore, λ is the same throughout the plate, and dm = λ dx.  We need to find the position of the center of mass of the plate, measured from the left edge.

Let the position of the center of mass be xcm. Then, we have:  xcm = (1/M) ∫x dm

where M is the total mass of the plate.  M = λLt

were L and t are the length and thickness of the plate, respectively.  dm = λ dx  xcm

= (1/M) ∫x λ dx

= (λ/M) ∫x dx.  

The limits of the integral are 0 and L.  xcm = (λ/M) [x2/2]0L

= (λ/M) (L2/2).  

Since λ = M/Lt, we have  xcm = (1/2)(L/2) = L/4.

The center of mass of the plate is at a distance of L/4 from the left edge.

To know more about distance visit :

https://brainly.com/question/31713805

#SPJ11

how
far in minutes is earth from uranus
how long does it take light to
cross the diameter of ghe milky way galaxy

Answers

In terms of minutes, it would take light about 160 minutes or 2 hours and 40 minutes to travel from Earth to Uranus. It would take light approximately 100,000 years to cross the diameter of the Milky Way galaxy.

The distance between Earth and Uranus and the time it takes for light to cross the diameter of the Milky Way galaxy are as follows:

Earth to Uranus: The average distance from Earth to Uranus varies depending on their positions in their respective orbits around the Sun. On average, the distance between Earth and Uranus is approximately 2.871 billion kilometers. In terms of minutes, it would take light about 160 minutes or 2 hours and 40 minutes to travel from Earth to Uranus.

Light crossing the diameter of the Milky Way: The Milky Way galaxy has a diameter of about 100,000 light-years. Since light travels at a speed of approximately 299,792 kilometers per second, we can calculate the time it takes for light to cross the diameter of the Milky Way.

Using the formula: Time = Distance / Speed

Distance = 100,000 light-years * 9.461 trillion kilometers (conversion factor)

Distance ≈ 946,100,000,000,000 kilometers

Time = 946,100,000,000,000 kilometers / 299,792 kilometers per second

Time ≈ 3,157,815,750 seconds

Converting seconds to years:

Time ≈ 100,000 years

Therefore, it would take light approximately 100,000 years to cross the diameter of the Milky Way galaxy.

For more such questions on light, click on:

https://brainly.com/question/10728818

#SPJ8

SINUSOIDAL OSCILLATOR: The following circuit is a sinusoidal oscillator. The band-pass filter is constructed using a GIC. a) Write the transfer function, \( \boldsymbol{V}_{\text {gic }} / \boldsymbol

Answers

The circuit given below is a sinusoidal oscillator. The bandpass filter of this circuit is constructed using GIC. The transfer function of the GIC is used to determine the gain of the GIC.

[ad_1]

[ad_2]

To find out the transfer function, [tex]\(\large\frac{V_{gic}}{V_o}\)[/tex] of the GIC, we need to know the transfer function of the GIC itself, which is given as,

[tex]\(\large V_{out} = \frac{Z_1}{Z_4} \cdot \frac{Z_3}{Z_2} \cdot V_{in}\)[/tex]

Here, \(Z_1\) and \(Z_4\) are the input and output impedances of the GIC, respectively. Similarly, \(Z_2\) and \(Z_3\) are the feedback components of the GIC.

Since the GIC is a differential amplifier, [tex]\(Z_1 = Z_4 = R\) and \(Z_2 = Z_3 = \frac{1}{sC}\)[/tex], which means the GIC transfer function is given as,

[tex]\(\large V_{out} = \frac{R}{\frac{1}{sC}} \cdot \frac{\frac{1}{sC}}{\frac{1}{sC}} \cdot V_{in} = RCs V_{in}\)[/tex]

Now, to find the transfer function of the bandpass filter, we need to determine the impedance of the capacitors and resistors used in the circuit. The impedance of the capacitor is given by \(\large\frac{1}{sC}\) and the impedance of the resistor is given by \(R\).

Now, the input impedance of the bandpass filter is given by,

[tex]\(\large Z_{in} = R + \frac{1}{sC}\)[/tex]

Similarly, the output impedance of the bandpass filter is given by,

[tex]\(\large Z_{out} = \frac{1}{sC}\)[/tex]
Therefore, the transfer function of the bandpass filter is given as,

[tex]\(\large \frac{V_{out}}{V_{in}} = \frac{\frac{1}{sC}}{R + \frac{1}{sC}} = \frac{1}{1 + sRC}\)[/tex]

Finally, we can determine the transfer function,[tex]\(\large\frac{V_{gic}}{V_o}\)[/tex]of the GIC using the transfer function of the bandpass filter.

[tex]\(\large\frac{V_{gic}}{V_o} = \frac{1}{1 + sRC}\)[/tex]

Therefore, the transfer function of the GIC is[tex]\(\large\frac{V_{gic}}{V_o} = \frac{1}{1 + sRC}\).[/tex]

To know more about  circuit visit:
https://brainly.com/question/12608516

#SPJ11

name five changes that are made to air to condition it

Answers

The five changes made to air during the conditioning process are cooling, dehumidification, filtering, circulation, and sometimes humidification.

Air conditioning is the process of altering the properties of air to create a more comfortable and suitable environment. There are five changes made to air during the conditioning process:

cooling: Air is cooled by removing heat energy through a refrigeration cycle. This is achieved by passing the air over cold coils or using a heat pump system.dehumidification: Air is dehumidified to reduce the moisture content. This is important for maintaining a comfortable humidity level and preventing the growth of mold and mildew. Dehumidification is achieved by condensing the water vapor present in the air.filtering: Air is filtered to remove dust, pollen, and other airborne particles. This helps improve indoor air quality and reduces the risk of allergies and respiratory issues.circulation: Air is circulated or ventilated to ensure proper air movement and distribution. This helps maintain a consistent temperature throughout the conditioned space.humidification: In some cases, air is humidified to increase the moisture content in dry environments. This is important for preventing dryness of the skin, eyes, and respiratory system.

Learn more:

About changes made to air here:

https://brainly.com/question/11163080

#SPJ11

Question 4 1 pts A hydrogen atom has an electron in the n =10 state. What is the speed of this electron in the Bohr model (in km)? Question 5 1 pts An element, X, has an atomic mass 413.215u. This element is unstable and decays by alpha decay. a, with a half life of 4d. The alpha particle is emitted with a kinetic energy of 6MeV. Initially there are 6.36x10¹2 atoms present in a sample. Determine the initial activity of the sample (in µCi) Question 6 1 pts A solid block of a certain material has a volume Vo at 20°C. The volume of the block increases by 1.445% when the temperature increases to Ty. The coefficient of volume expansion is = 129.101x10 6(C-¹). Determine the final temperature T, (in °C).

Answers

Question 4 In the Bohr model, the speed of an electron in the nth orbit is given by:

v = [(Z)(e^2)]/{4πε_o(n)h}Where, v is the speed of the electron, Z is the atomic number of the element, e is the charge on the electron, ε_o is the permittivity of free space, h is Planck's constant, and n is the principal quantum number.

For the hydrogen atom, Z = 1 and n = 10.So, v = [(1)(9 x 10^9 x (1.602 x 10^-19)^2)]/{4π(8.85 x 10^-12)(10)(6.626 x 10^-34)}= 2.19 x 10^6 m/s= 2190 km/s (approx.)Therefore, the speed of the electron in the Bohr model is approximately 2190 km/s.

Question 5 The radioactive decay law is given by:

N(t) = N₀e^(-λt)where, N₀ is the initial number of radioactive nuclei, N(t) is the number of radioactive nuclei after time t, and λ is the decay constant.

The initial activity of a sample is given by:

A₀ = λN₀where, A₀ is the initial activity of the sample.If the half-life of the radioactive decay is 4 days, then the decay constant, λ = 0.693/4 = 0.1735 day⁻¹.

The number of radioactive nuclei in the sample after time t is given by:

N(t) = N₀e^(-λt)The number of radioactive nuclei in the sample after the decay of one alpha particle is N(1) = N₀e^(-λ)At t = 4 days, the number of alpha particles decayed, n = t/T½= 4/4 = 1.

The remaining number of radioactive nuclei, N = N₀e^(-λ)So, the initial number of radioactive nuclei in the sample, N₀ = 6.36 x 10¹²The number of radioactive nuclei remaining in the sample after one alpha decay, N = N₀e^(-λ) = (6.36 x 10¹²)(e^(-0.1735 x 4))= 5.05 x 10¹²The activity of the sample after one alpha decay, A = λN₀e^(-λ)= (0.1735)(6.36 x 10¹²)(e^(-0.1735 x 4))= 3.99 x 10¹⁴ decay/sThe kinetic energy of the alpha particle, E = 6 MeV = 6 x 10⁶ eV= 6 x 10⁶ x 1.602 x 10^-19 JThe conversion factor of MeV to J is 1 MeV = 1.602 x 10^-13 J.So, E = 6 x 1.602 x 10^-13 J= 9.612 x 10^-13 JThe activity of the sample can be converted to microcurie using the following conversion factor:1 decay/s = 3.7 x 10⁻¹⁰ CiTherefore, the initial activity of the sample is A₀ = λN₀= (0.1735)(6.36 x 10¹²)= 1.15 x 10¹² decay/s= 1.15 x 10¹² x 3.7 x 10⁻¹⁰ = 425 µCi (approx.)Therefore, the initial activity of the sample is approximately 425 µCi.

Question 6 The volume expansion of a solid block due to temperature change is given by:

ΔV/V₀ = αΔTwhere, ΔV is the change in volume, V₀ is the initial volume, α is the coefficient of volume expansion, and ΔT is the change in temperature.The final volume, V = V₀ + ΔVThe final temperature, T = T₀ + ΔTwhere, T₀ is the initial temperature.ΔV/V₀ = 1.445/100= 0.01445α = 129.101 x 10⁻⁶ C⁻¹So, ΔT = ΔV/V₀α= (0.01445)/(129.101 x 10⁻⁶)= 112.01 K (approx.)The final temperature, T = T₀ + ΔT= 20 + 112.01= 132.01°C (approx.)Therefore, the final temperature of the solid block is approximately 132.01°C.

About Bohr model

Bohr model put forward Electrons in atoms move around the nucleus in certain trajectories, do not emit energy. These electron trajectories are called electron shells or energy levels. These observed spectral lines are formed due to electrons transitioning between two different energy levels in their atoms. Thus, Bohr explained the emission from the hydrogen atom when the electron jumps or transitions from high to low energy levels based on his atomic theory.

Learn More About Bohr model at https://brainly.com/question/30401859

#SPJ11

what is the rate at which the current though a 0.478-h coil is changing if an emf of 0.157 v is induced across the coil?

Answers

The rate at which the current though a 0.478-h coil is changing if an emf of 0.157 v is induced across the coil is 0.329 A/s.

According to Faraday's law of electromagnetic induction, a voltage is induced across a conductor that is exposed to a changing magnetic field. The magnitude of the induced emf is directly proportional to the rate of change of the magnetic field. The equation for this relationship is:ε = -N(dΦ/dt), where ε is the induced emf, N is the number of turns in the coil, and (dΦ/dt) is the rate of change of the magnetic flux through the coil.

In this case, the induced emf is given as 0.157 V. The number of turns in the coil is not given, but it is not necessary to know it in order to find the rate of change of the current. Therefore, the equation can be rewritten as:(dI/dt) = ε / L, where L is the inductance of the coil.

Substituting the given values gives:(dI/dt) = 0.157 / 0.478 = 0.329 A/s

Therefore, the rate at which the current through the 0.478 H coil is changing is 0.329 A/s.

Learn more about Faraday's law at:

https://brainly.com/question/30067749

#SPJ11

solve
Q1-a)- Design circuit to simulate the following differential equation \[ \frac{d y(t)}{d t}+y(t)=4 x(t) \] Where \( y(t) \) is the output and \( x(t) \) is the input b) - For the circuit shown in Figu

Answers

Given differential equation is:

\[\frac{dy(t)}{dt}+y(t)=4x(t)\]

In order to design a circuit to simulate the given differential equation, we can use Operational Amplifiers and its properties. Operational Amplifier has a property that it has infinite input resistance, which means that it will not load the input signal and also it has very high gain, which means it will amplify the signal to a very large extent.

We can use these properties to create a circuit that simulates the given differential equation.The differential equation can be written as:

\[\frac{dy(t)}{dt}=-y(t)+4x(t)\]

Now, taking Laplace Transform of both sides, we get:

\[sY(s)+y(0)=-Y(s)+4X(s)\]

Solving for Y(s), we get:

\[Y(s)=

\frac{4X(s)+y(0)}{s+1}\]

From the above equation, we can see that the Laplace Transform of the output signal is related to the Laplace Transform of the input signal, X(s), by a transfer function that has a pole at s=-1 and a zero at s=0. This suggests that we can create a circuit that has this transfer function by using an Operational Amplifier.In order to create a circuit with the given transfer function.

Now, taking the Inverse Laplace Transform of the above equation, we get:

\[v_{out}(t)=

\frac{R_2}{R_1}e^{-t}

\int_{0}^{t} e^{u}v_{in}(u) du\]

Comparing this with the equation for y(t), we can see that the circuit shown above simulates the given differential equation.

To know more about Operational visit :

https://brainly.com/question/30581198

#SPJ11

A particle undergoes damped harmonic motion. The spring constant is 74 N/m; the damping constant is 6.0 x 10-3 kg∙m/s, and the mass is 0.07 kg. If the particle starts at its maximum displacement, xm = 1.7m, at time t = 0 s, what is the amplitude of the motion at t = 3.0 s? .......... m, round to two decimal places.

Answers

The amplitude of the motion at t = 3.0 s is given by the magnitude of the displacement of the particle at that time:

|x(3.0)| = 1.7 e^(-9) cos(244.77)≈ 0.06 m (rounded to two decimal places)Therefore, the amplitude of the motion at t = 3.0 s is approximately 0.06 m (rounded to two decimal places).

The amplitude of the motion at t

= 3.0s for the given values of the spring constant, damping constant, mass and maximum displacement can be calculated as follows:Given that the mass of the particle is m

= 0.07 kg, the spring constant is k

= 74 N/m and the damping constant is c

= 6.0 × 10-3 kg.m/s.The equation of motion for a damped harmonic oscillator is given by:m(d2x/dt2) + c(dx/dt) + kx

= 0Where x is the displacement of the particle at time t and dx/dt and d2x/dt2 are the first and second derivatives of x with respect to time. For the given values, the solution to the above differential equation can be written as:x(t)

= A e^(-c/2m)t cos(wt + φ)where A is the amplitude, φ is the phase angle and w is the angular frequency of the motion which is given by:w

= sqrt(k/m - (c/2m)^2)We are given that the particle starts at its maximum displacement, xm

= 1.7 m at time t

= 0 s. Hence,x(0)

= A cos φ

= 1.7 m and dx/dt(0)

= -Aw sin φ

= 0

where w = square root(k/m - (c/2m)^2)

A = xm/cosφ

Let's find the value of A as follows:

A = xm/cos φ

= 1.7/cos φdx/dt(0)

= -Aw sin φ

= 0

Therefore,

sin φ

= 0

=> φ

= 0 (since cos φ cannot be zero)

Substituting the given values for m, c and k in the expression for w, we have:w

= square root(k/m - (c/2m)^2)

= square root(74/0.07 - (6.0 × 10^-3/2 × 0.07)^2)

= 81.59 rad/sNow, substituting the given values of A and φ in the expression for x(t), we have:

x(t) = A e^(-c/2m)t cos(wt + φ)

= 1.7 e^(-3t) cos(81.59t)

The amplitude of the motion at t

= 3.0 s is given by the magnitude of the displacement of the particle at that time:

|x(3.0)|

= 1.7 e^(-9) cos(244.77)

≈ 0.06 m (rounded to two decimal places)

Therefore, the amplitude of the motion at t

= 3.0 s is approximately 0.06 m (rounded to two decimal places).

To know more about magnitude visit:

https://brainly.com/question/31022175

#SPJ11








Question 8 (Electrical power and reticulation) Explain why voltage is stepped up before being transmitted from a power station through overhead power lines to the consumer. [3] TOTAL MARKS = 70

Answers

The voltage is stepped up before being transmitted from a power station through overhead power lines to the consumer in order to reduce power loss and make the overhead power lines lighter, less expensive to build.

Here is the explanation why voltage is stepped up before being transmitted from a power station through overhead power lines to the consumer:

Power loss is inversely proportional to the square of the current. This means that if we can reduce the current, we can also reduce the power loss.

The current is inversely proportional to the voltage. This means that if we increase the voltage, we can reduce the current.

Therefore, by increasing the voltage, we can reduce the power loss.

In addition, the higher the voltage, the smaller the cross-sectional area of the conductors needed to transmit the same amount of power. This makes the overhead power lines lighter and less expensive to build.

To learn more about conductors: https://brainly.com/question/14405035

#SPJ11

An SCR has a breakover voltage of 350 V, a trigger current of 12 mA and holding current of 12 mA. a) Explain your understanding. b) What will happen if gate current is made 20mA?

Answers

An SCR (Silicon Controlled Rectifier) is a four-layer PNPN device with three regions. The NPN transistor’s emitter, the P-base layer, and the PNP transistor’s emitter are the three areas. The region between the NPN transistor’s collector and the PNP transistor’s base is the fourth area. It has three terminals, namely the anode, cathode, and gate terminals.

a)ExplanationThe breakover voltage is the minimum voltage required across an SCR’s anode and cathode to turn it on. As a result, at a voltage of 350 V, the SCR will turn on. The holding current is the minimum current needed through the device to keep it in the conducting state after it has been turned on, which is 12m A.The current needed to initiate and keep an SCR conducting is referred to as trigger current. The trigger current, which is 12mA, is the minimum current required to maintain the SCR’s state of conduction.b)What happens if gate current is made 20mA?In SCR, the gate is used to control the flow of current through the device.

The gate current helps in breaking down the potential barrier, allowing the main current to flow. As a result, if the gate current is increased from 12mA to 20mA, the SCR will become conductive at a lower voltage and will be able to hold more current. This implies that an increase in gate current will result in an SCR conducting at lower voltages, which may result in a loss of control over the device. Therefore, it is critical to keep the gate current within the limits.

To know more about transistor’s visit:-

https://brainly.com/question/31052620

SPJ11

Other Questions
bittorrent uses what kind of protocol for file sharing? 5. What is a "user space" program in terms of a Unix/Linux system? What is a "daemon" in a Unix/Linux system? How do these two types of programs differ? True or false Peter the Great is remembered for opposing modernization in Russia and trying to preserve tradition. Let L = {a(^i)bbw|w {a, b} and the length of w is i}.(a) Give two strings that are in L.(b)Give two strings over the same alphabet that are not inL.(c)Give the state diagram for a determin how did the zhou dynasty gain the mandate of heaven if a typical somatic cell (somatic cell = typical body cell) has 64 chromosomes, how many chromosomes are expected in each gamete of that organism? Vietnam was unable to keep its independence movement distinct from the struggles of the ____ warA) WorldB) RevolutionaryC) ColdD) Civil A potential drop of 50 volts is measured across a 250 0 resistor. What is the power in the resistor (Enter the number only) ____are positioned around the joint to prevent the bone ends from coming apart, as in a dislocation injury. A consolidated worksheet summarizes data from multiple sheets with a mathematical or statistical function. Given a state-space model:x= [0 1 ] x +=[0] [-5 -21/4 ] [1] uy = [5 4]xa) Find the controllability matrix. (5 pts)b) Is this system controllable? Justify your answer. (5 pts)c) Find the observability matrix. (5 pts)d) Is this system observable? Justify your answer. (5 pts) the nurse has a prescription to administer phenytoin 100 mg mixed in 5 extrose in water by the intravenous (iv) route to a client. after reading this prescription, which action should the nurse take? 7/4(5/8+1/2) using distributive property Given f(x,y) = 9xy^5-4x^6y . Compute:^2f/x^2 = ____^2f/y^2 = _____ the geologic timescale details and divides geologic time based upon ____. multiple choice question. A. rock B. thicknesses C. unconformities D. fossil data Tritium is an isotope of hydrogen with one proton and two neutrons. A hydrogen like atom is formed with an electron bound to the tritium - dens. The tritium nucleus dergoes -decay, and the macemas danges its charge state studenty to +2 and becomes an isotope of helium. If the electron is initially in the grom state in the tritium ator, what to the probability that the electron remains in the ground state after the sudden B-decay? I want the answer only using given function and do not import any library/NLTK. May be For loop can do that. 'an' does not end in one of the suffixes and is less than 8 letters. 'extremely' is 'extreme' after removing the suffox. 'extreme' is less than 8 letters. 'dangerous" is 9 letters long, so reduce it to 8 letters: 'dangerou'. 'dog' and is' are unchanged. 'barking' 'is 'bark' after removing the suffoc, and is less than 8 letters. Return 'an extreme dangerou dog is bark. Function Description Complete the function stemmer in the editor below. characters are spaces. - text contains at most 100 words. - No word is longer than 18 letters. Input Format Format for Custom Testing input from stdin will be processed as follows and passed to the function. The first line contains a string text. Find the shortest arithmetic code for message abbabbabbb. Obtain probability of the occurrence of each symbol from the message sequence. Two moles of an ideal monatomic gas go through the cycle abcabc. For the complete cycle, 850 JJ of heat flows out of the gas. Process abab is at constant pressure, and process bcbc is at constant volume. States aa and bb have temperatures TaTaT_a = 220 KK and TbTbT_b = 305 KK design an instrumentation amplifier on tinkercad software withhelp of breadboard, Operational amplifiers and show clearlyconnections?