To calculate the interest earned on $20,000 invested for 6 years at a 5% interest rate compounded semiannually, quarterly, monthly, and continuously, we can use the formula for compound interest: A = P(1 + r/n)^(nt) - P, where A is the final amount, P is the principal (initial investment), r is the interest rate, n is the number of compounding periods per year, and t is the number of years.
For part (a), when the interest is compounded annually, the interest earned can be calculated as A - P, where A is the final amount and P is the principal. The final amount is given by A = 20000(1 + 0.05)^6, and thus the interest earned annually is A - P.
For parts (b), (c), and (d), we divide the interest rate by the number of compounding periods per year and multiply the number of compounding periods by the number of years. For semiannual compounding, n = 2, for quarterly compounding, n = 4, and for monthly compounding, n = 12. The formula for interest earned is A - P, where A is given by A = P(1 + r/n)^(nt) and P is the principal.
Lastly, for part (e), when the interest is compounded continuously, we use the formula A = Pe^(rt), where e is the base of the natural logarithm. The interest earned is then A - P.
In summary, for each scenario (a) to (e), we calculate the final amount using the respective compounding formulas and then subtract the principal to obtain the interest earned.
To learn more about interest rate click here : brainly.com/question/31200063
#SPJ11
1. Problem solving then answer the questions that follow. Show your solutions. 1. Source: Lopez-Reyes, M., 2011 An educational psychologist was interested in determining how accurately first-graders would respond to basic addition equations when addends are presented in numerical format (e.g., 2+3 = ?) and when addends are presented in word format (e.g., two + three = ?). The six first graders who participated in the study answered 20 equations, 10 in numerical format and 10 in word format. Below are the numbers of equations that each grader answered accurately under the two different formats: Data Entry: Subject Numerical Word Format Format 1 10 7 2 6 4 3 8 5 4 10 6 5 9 5 5 6 6 4 7 7 14 Answer the following questions regarding the problem stated above. a. What t-test design should be used to compute for the difference? b. What is the Independent variable? At what level of measurement? c. What is the Dependent variable? At what level of measurement? d. Is the computed value greater or lesser than the tabular value? Report the TV and CV. e. What is the NULL hypothesis? f. What is the ALTERNATIVE hypothesis? g. Is there a significant difference? h. Will the null hypothesis be rejected? WHY? i. If you are the educational psychologist, what will be your decision regarding the manner of teaching Math for first-graders?
A paired samples t-test should be used to compute the difference between the two formats.
In order to compute the difference between the two formats (numerical and word) of addition equations, a paired samples t-test design should be used. The independent variable in this study is the format of the addition equations, which is measured at the nominal level.
The dependent variable is the number of accurately answered equations, which is measured at the ratio level. The computed t-value should be compared to the tabular value or critical value at the chosen significance level, but the specific values are not provided in the problem.
The null hypothesis states that there is no difference in the accuracy of responses between the two formats. The alternative hypothesis states that there is a significant difference in the accuracy of responses. To determine if there is a significant difference, the computed t-value needs to exceed the critical value. If the null hypothesis is rejected, it would indicate a significant difference between the formats.
As an educational psychologist, the decision regarding the manner of teaching math to first graders would depend on the results of the hypothesis test. If a significant difference is found, it may suggest that one format is more effective than the other, which can guide the decision-making process for teaching math to first-graders.
To learn more about “equations” refer to the https://brainly.com/question/2972832
#SPJ11
it can be shown that y1=e5x and y2=e−9x are solutions to the differential equation y′′ 4y′−45y=0
The general solution to the given differential equation d²y/dx² - 10(dy/dx) + 25y = 0 on the interval is y = c₁e⁵ˣ + c₂xe⁵ˣ, where c₁ and c₂ are constants.
Here, we have,
The given differential equation is d²y/dx² - 10(dy/dx) + 25y = 0.
The solutions to this differential equation are y₁ = e⁵ˣ and y₂ = xe⁵ˣ.
To find the general solution, we can express it as a linear combination of these solutions, y = c₁y₁ + c₂y₂, where c₁ and c₂ are constants.
The general solution to the differential equation on the interval can be written as y = c₁e⁵ˣ + c₂xe⁵ˣ, where c₁ and c₂ are arbitrary constants.
The summary of the answer is that the general solution to the given differential equation d²y/dx² - 10(dy/dx) + 25y = 0 on the interval is y = c₁e⁵ˣ + c₂xe⁵ˣ, where c₁ and c₂ are constants.
In the second paragraph, we explain that the general solution is obtained by taking a linear combination of the two given solutions, y₁ = e⁵ˣ and y₂ = xe⁵ˣ.
The constants c₁ and c₂ allow for different combinations of the two solutions, resulting in a family of solutions that satisfy the differential equation. Each choice of c₁ and c₂ corresponds to a different solution within this family. By determining the values of c₁ and c₂, we can obtain a specific solution that satisfies any initial conditions or boundary conditions given for the differential equation.
To learn more about general solution :
brainly.com/question/32062078
#SPJ4
Consider the following matrices. -2 ^-[43] [1] A = B: " 5 Find an elementary matrix E such that EA = B Enter your matrix by row, with entries separated by commas. e.g., ] would be entered as a,b,c,d J
An elementary matrix E such that EA = B is:
E = [-2/43, 0; 0, 1/5]
What is the elementary matrix E that satisfies EA = B?To find the elementary matrix E, we need to determine the operations required to transform matrix A into matrix B.
Given A = [-2, 43; 1, 5] and B = [5; 1], we can observe that multiplying the first row of A by -2/43 and the second row of A by 1/5 will yield the corresponding rows of B.
Thus, the elementary matrix E can be constructed using the coefficients obtained:
E = [-2/43, 0; 0, 1/5]
By left-multiplying A with E, we obtain:
EA = [-2/43, 0; 0, 1/5] * [-2, 43; 1, 5]
= [-2/43 * -2 + 0 * 1, -2/43 * 43 + 0 * 5; 0 * -2 + 1/5 * 1, 0 * 43 + 1/5 * 5]
= [1, -1; 0, 1]
As desired, EA equals B.
Learn more about Elementary matrices
#SPJ11
What number d forces a row exchange? Using that value of d, solve the matrix equation.
1
3
1
-2
d
0
1
08-0
Therefore, the solution to the matrix equation with d = 2 is: x₁ = 6; x₂ = -1; x₃ = -6.
To determine the number d that forces a row exchange, we need to find a value for d that makes the coefficient in the pivot position (2,2) equal to zero. In this case, the pivot position is the (2,2) entry.
From the given matrix equation:
1 3
1 -2
d 0
To force a row exchange, we need the (2,2) entry to be zero. Therefore, we set -2 + d = 0 and solve for d:
d = 2
By substituting d = 2 into the matrix equation, we have:
1 3
1 2
2 0
To solve the matrix equation, we perform row operations:
R₂ = R₂ - R₁
R₃ = R₃ - 2R₁
1 3
0 -1
0 -6
Now, we can see that the matrix equation is in row-echelon form. By back-substitution, we can solve for the variables:
x₂ = -1
x₁ = 3 - 3x₂
= 3 - 3(-1)
= 6
x₃ = -6
To know more about matrix equation,
https://brainly.com/question/32724891
#SPJ11
Consider the surface S defined by z=f(x,y)=16−x^2−y^2, such that z≥ 7. Take S to be oriented with the outward unit normal \hat{n}.
A. Sketch the surface S.
B. Find the flux of the vector field F = xi + yj + zk across S.
The surface S is defined by the equation z = 16 - x^2 - y^2, where z is greater than or equal to 7. We are asked to sketch the surface S and find the flux of the vector field F = xi + yj + zk across S, using the outward unit normal.
The equation z = 16 - x^2 - y^2 represents a downward-opening paraboloid centered at (0, 0, 16) with a vertex at z = 16. The condition z ≥ 7 restricts the surface to the region above the plane z = 7.
To find the flux of the vector field F across S, we need to evaluate the surface integral of F · dS, where dS represents the differential area vector on the surface S. The outward unit normal \hat{n} is defined as the vector pointing perpendicular to the surface and outward.
By evaluating the dot product F · \hat{n} at each point on the surface S and integrating over the surface, we can calculate the flux of F across S.
To know more about surface integrals click here: brainly.com/question/32088117
#SPJ11
.Find the vertices and the foci of the ellipse with the given equation. Then draw its graph.
5x² +2y² =10
To find the vertices and the foci of the ellipse with the given equation 5x² +2y² =10, we will use the standard form of the equation of an ellipse, x²/a²+y²/b²=1.
In this equation, a represents the horizontal distance from the center to the vertex or the foci and b represents the vertical distance from the center to the vertex or the foci.
For this problem, we can see that the major axis is along the x-axis since the coefficient of x² is larger than the coefficient of y². Therefore, a²=10/5=2 and b²=10/2=5.
This means that a=√2 and b=√5. The center of the ellipse is (0,0). Therefore, the vertices of the ellipse are (±√2,0), and the foci of the ellipse are (±√3,0).To draw the graph, we can first plot the center of the ellipse at (0,0). Then, we can draw the major axis, which is a horizontal line passing through the center and has a length of 2√2. This line passes through the vertices (±√2,0).
Then, we can draw the minor axis, which is a vertical line passing through the center and has a length of 2√5. This line passes through the points (0,±√5). Finally, we can draw the ellipse by sketching a curve that smoothly connects the vertices and the ends of the minor axis.To find the vertices and the foci of an ellipse from its given equation, we first need to check its standard form.
An ellipse is the set of all points in a plane such that the sum of their distances from two fixed points (called foci) is constant. Therefore, the equation of an ellipse must have the form x²/a²+y²/b²=1 or y²/a²+x²/b²=1, where a represents the horizontal distance from the center to the vertex or the foci and b represents the vertical distance from the center to the vertex or the foci.
In this case, the given equation is 5x²+2y²=10, which can be rewritten as x²/2+y²/5=1 by dividing both sides by 10. Therefore, we can see that a²=2 and b²=5. This means that a=√2 and b=√5.
The center of the ellipse is (0,0). Therefore, the vertices of the ellipse are (±√2,0), and the foci of the ellipse are (±√3,0).To draw the graph of the ellipse, we can first plot the center of the ellipse at (0,0).
Then, we can draw the major axis, which is a horizontal line passing through the center and has a length of 2√2. This line passes through the vertices (±√2,0). Then, we can draw the minor axis, which is a vertical line passing through the center and has a length of 2√5. This line passes through the points (0,±√5). Finally, we can draw the ellipse by sketching a curve that smoothly connects the vertices and the ends of the minor axis. This curve should have a shape that is somewhat similar to a stretched-out circle.
Therefore, the vertices of the given ellipse are (±√2,0), and the foci of the given ellipse are (±√3,0). The graph of the ellipse can be drawn by plotting the center at (0,0), drawing the major and minor axes passing through the center and having lengths of 2√2 and 2√5, respectively, and then sketching a curve that connects the vertices and the ends of the minor axis.
To know more about foci visit:
brainly.com/question/31881782
#SPJ11
Find the maximum and minimum values of x^2 + y^2 − 2x − 2y on
the disk of radius √ 8 centered at the origin, that is, on the
region {x^2 + y^2 ≤ 8}. Explain your reasoning!
To find the maximum and minimum values of the function f(x, y) =[tex]x^2 + y^2 - 2x - 2y[/tex] on the disk of radius √8 centered at the origin, we need to analyze the critical points and the boundary of the disk.
Critical Points:
To find the critical points, we need to calculate the partial derivatives of f(x, y) with respect to x and y and set them equal to zero:
∂f/∂x = 2x - 2 = 0
∂f/∂y = 2y - 2 = 0
Solving these equations gives us x = 1 and y = 1. So the critical point is (1, 1).
Boundary of the Disk:
The boundary of the disk is defined by the equation[tex]x^2 + y^2 = 8.[/tex]
To find the extreme values on the boundary, we can use the method of Lagrange multipliers. We introduce a Lagrange multiplier λ and consider the function g(x, y) = [tex]x^2 + y^2 - 2x - 2y[/tex] - λ([tex]x^2 + y^2 - 8[/tex]).
Taking the partial derivatives of g with respect to x, y, and λ and setting them equal to zero, we have:
∂g/∂x = 2x - 2 - 2λx = 0
∂g/∂y = 2y - 2 - 2λy = 0
∂g/∂λ = x^2 + y^2 - 8 = 0
Solving these equations simultaneously, we find two critical points on the boundary: (2, 0) and (0, 2).
Analyzing the Extreme Values:
Now, we evaluate the function f(x, y) = [tex]x^2 + y^2 - 2x - 2y[/tex] at the critical points and compare the values.
f(1, 1) = [tex]1^2 + 1^2 - 2(1) - 2(1)[/tex] = -2
f(2, 0) = [tex]2^2 + 0^2 - 2(2) - 2(0)[/tex] = 0
f(0, 2) =[tex]0^2 + 2^2 - 2(0) - 2(2)[/tex] = 0
Therefore, the maximum value is 0, and the minimum value is -2.
In summary, the maximum value of[tex]x^2 + y^2 - 2x - 2y[/tex] on the disk of radius √8 centered at the origin is 0, and the minimum value is -2.
Learn more about maxima and minima here:
https://brainly.com/question/31584512
#SPJ11
. Use the casting out nines approach outlined in exercise 18 D of Assessment 4−1AD to show that the following computations are wrong: a. 99+28=227 b. 11,190−21=11,168 c. 99⋅26=2575 19. A palindrome is a number that reads the same forward as backward.
Use the casting out nines approach outlined in exercise 18 D of Assessment 4−1AD to show that the following computations are wrong:
a. 99+28=227
b.11,190−21=11,168
c. 99⋅26=2575
To use the casting out nines approach, let's first find out the digital root of each number.
For this, we add all the digits of a number to get the sum and continue this process until we get a single digit.
That single digit is the digital root. For example, 99 has a digital root of 9 because 9+9 = 18,
and 1+8 = 9. Similarly, 28 has a digital root of 1, and so on.
After finding the digital root, we will add or multiply the digital roots and check if they match the digital root of the result obtained.
If they do not match, then the calculation is wrong.a. 99+28=227
Digital root of 99: 9+9 = 18
-> 1+8 = 9
Digital root of 28:
2+8 = 10
-> 1+0 = 1
Digital root of 227:
2+2+7 = 11
-> 1+1 = 2
Digital root of 9+1 = 10
-> 1+0 = 1
Digital root of the result is not 1, so the calculation is wrong.b. 11,190−21=11,
168Digital root of 11,190: 1+1+1+9+0 = 12
-> 1+2 = 3
Digital root of 21:
2+1 = 3
Digital root of 11,168:
1+1+1+6+8 = 17
-> 1+7 = 8
Digital root of 3-3 = 0
Digital root of the result is not 0, so the calculation is wrong.c. 99⋅26=2575
Digital root of 99:
9+9 = 18
-> 1+8 = 9
Digital root of 26:
2+6 = 8
Digital root of 2575:
2+5+7+5 = 19
-> 1+9 = 10
-> 1+0 = 1
Digital root of 9*8 = 72
-> 7+2 = 9
Digital root of the result is not 9, so the calculation is wrong.19.
A palindrome is a number that reads the same forward as backward.
A few examples of palindromes are: 101, 787, 12321, 333, etc.
to know more about Assessment 4−1AD visit:
https://brainly.com/question/29192952
#SPJ11
Solve the Bernoulli equation y' - ⅟ₓ y = 4 / (xy)²
The solution to the Bernoulli equation y' - ⅟ₓ y = 4 / (xy)² involves transforming it into a linear equation through a suitable substitution. By substituting u = y^(1-1/x), we obtain a linear equation in terms of u. Solving this linear equation and reverting the substitution yields the solution for y.
To solve the Bernoulli equation y' - ⅟ₓ y = 4 / (xy)², we can use a substitution to transform it into a linear equation. Let's substitute u = y^(1-1/x). Taking the derivative of u with respect to x using the chain rule, we have du/dx = (1-1/x)y^(-1/x) * y'. Rearranging this equation, we get y' = x(1-1/x)u^(x/(x-1)) * du/dx.
Substituting these expressions for y' and y into the original Bernoulli equation, we have x(1-1/x)u^(x/(x-1)) * du/dx - ⅟ₓ u = 4 / (xy)². Simplifying further, we have (1-1/x)u^(x/(x-1)) * du/dx - ⅟ₓ u = 4 / x³y².
Now, let's multiply the entire equation by x³ to eliminate the denominators. This gives us (1-1/x)(x³u^(x/(x-1))) * du/dx - u = 4 / y².
We can now see that the equation is linear in terms of u. By solving this linear equation, we obtain the value of u. Finally, reverting the substitution u = y^(1-1/x), we can find the solution for y.
Learn more about Bernoulli equation here: brainly.com/question/29865910
#SPJ11
20 0.58 points aBack
The following is a binomial probability distribution with n=3 and π = 0.52:
x P(x)
0 0.111
1 0.359
2 0.389
3 0.141
The variance of the distribution is Multiple Choice
a.1.500
b.1.440
c.1.650
d.0.749
The variance of the binomial probability distribution with n = 3 and π = 0.52 is 0.749. The correct answer is option d. 0.749.
The variance of a binomial distribution can be calculated using the formula Var(X) = nπ(1 - π), where X is the random variable, n is the number of trials, and π is the probability of success.
In this case, we are given n = 3 and π = 0.52. Plugging these values into the formula, we get Var(X) = 3 * 0.52 * (1 - 0.52) = 0.749.
Therefore, the variance of the distribution is 0.749.
In the given multiple-choice options:
a. 1.500 - Not the correct variance value.
b. 1.440 - Not the correct variance value.
c. 1.650 - Not the correct variance value.
d. 0.749 - This is the correct variance value.
Hence, the correct answer is option d. 0.749.
In summary, the variance of the binomial probability distribution with n = 3 and π = 0.52 is 0.749.
To learn more about variance, click here: brainly.com/question/9304306
#SPJ11
valuate the length of the curve f(x) = 4 √6/3 x^3/2 for 0≤x≤1.
A)25/3
B) 31/9
(C) 25
D) √125 / 36
E) 125/3
The length of the curve f(x) = 4√(6/3)x^(3/2) for 0≤x≤1 is 25/3 (Option A) according to the given choices.
To find the length of a curve, we use the arc length formula. For the curve f(x) = 4√(6/3)x^(3/2), we differentiate it with respect to x to obtain f'(x) = 2√6x^(1/2). Using the arc length formula, L = ∫(a to b) √(1 + [f'(x)]^2) dx, we substitute the derivative and limits into the formula.
L = ∫(0 to 1) √(1 + [2√6x^(1/2)]^2) dx = ∫(0 to 1) √(1 + 24x) dx = ∫(0 to 1) √(24x + 1) dx.
By using the substitution u = 24x + 1, we obtain du = 24dx. Substituting these values into the integral, we have:
L = (1/24) ∫(1 to 25) √u du = (1/24) [2/3 u^(3/2)] (1 to 25) = (1/24) [2/3(25^(3/2)) - 2/3(1^(3/2))] = (1/24) [2/3(125√25) - 2/3] = (1/24) [(250/3) - 2/3] = (1/24) [(248/3)] = 248/72 = 31/9.
Therefore, the correct option is B) 31/9, not A) 25/3 as indicated in the choices.
To learn more about length of the curve click here brainly.com/question/26718716
#SPJ11
nic hers acezs08 Today at 11:49 QUESTION 2 QUESTION 2 Let S be the following relation on C\{0}: S = {(x, y) = (C\{0})²: y/x is real}. Prove that S is an equivalence relation. D Files Not yet answered Marked out of 10.00 Flag question Not yet answered Marked out of 10.00 Flag question Maximum file size: 50MB, maximum number of files: 1 I I Drag and drop files here or click to upload
Unable to provide an answer as the question is incomplete and lacks necessary information.
Prove that the relation S defined on C\{0} as S = {(x, y) | x, y ∈ (C\{0})² and y/x is real} is an equivalence relation.The confusion. Unfortunately, the question you provided is still unclear.
The relation S is defined on the set C\{0}, but it doesn't specify the exact elements or the criteria for the relation.
To determine if S is an equivalence relation, we need to know the specific conditions that define it.
An equivalence relation must satisfy three properties: reflexivity, symmetry, and transitivity.
Reflexivity means that every element is related to itself. Symmetry means that if element A is related to element B, then element B is also related to element A.
Transitivity means that if element A is related to element B and element B is related to element C, then element A is also related to element C.
Without the specific definition of the relation S and the conditions it follows, it is not possible to explain or prove whether S is an equivalence relation.
If you can provide additional information or clarify the question, I will be happy to assist you further.
Learn more about necessary
brainly.com/question/31550321
#SPJ11
Convert 117.2595° to DMS (° ' "): Answer
Give your answer in format 123d4'5"
Round off to nearest whole second (")
If less than 5 - round down
If 5 or greater - round up
117.2595° rounded off to nearest whole second is: 117° 15' 57".
Given: Angle = 117.2595°
To convert 117.2595° to DMS format (° ' "), we can follow the following steps:
Step 1: We know that 1° = 60'. So, we can write, 117.2595° = 117° + 0.2595°
Step 2: We know that 1' = 60". So, we can write, 0.2595° = 0°.2595 x 60' = 15'.57" (round off to nearest whole second)
Hence, 117.2595° = 117° 15' 57" (rounded off to nearest whole second as 117° 15' 57")
Therefore, the required answer is: 117° 15' 57".
Learn more about Angles: https://brainly.com/question/17039091
#SPJ11
1. (i) For any a,B e R, show that the function [5 marks) *(x) = c + Blog(x),x € R (10) is harmonic in R? (0)
The function is harmonic in R.
Given that the function is:
[tex]u(x,y) = c+B\log r[/tex]
where [tex]r=\sqrt{x^2+y^2}[/tex]
To check whether the function is harmonic, we need to check whether it satisfies Laplace's equation, i.e.,
[tex]\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0[/tex]
Let's compute the second-order partial derivatives:
[tex]\frac{\partial u}{\partial x} = \frac{Bx}{x^2+y^2}[/tex]
[tex]\frac{\partial^2 u}{\partial x^2} = \frac{B(y^2-x^2)}{(x^2+y^2)^2}[/tex]
[tex]\frac{\partial u}{\partial y} = \frac{By}{x^2+y^2}[/tex]
[tex]\frac{\partial^2 u}{\partial y^2} = \frac{B(x^2-y^2)}{(x^2+y^2)^2}[/tex]
Now, let's check if the function satisfies Laplace's equation:
[tex]\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{B(y^2-x^2)}{(x^2+y^2)^2} + \frac{B(x^2-y^2)}{(x^2+y^2)^2}[/tex]
= 0
To know more about derivatives visit:
https://brainly.com/question/28376218
#SPJ11
I need this asa pls. This is
about Goal Programming Formulation
2) Given a GP problem: (M's are priorities, M₁ > M₂ > ...) M₁: x₁ + x2 +d₁¯ - d₁* = 60 (Profit) X₁ + X2 + d₂¯¯ - d₂+ M₂: = 75 (Capacity) M3: X1 + d3d3 M4: X₂ +d4¯¯ - d4 = 45
The given Goal Programming problem involves four objectives: profit, capacity, M₃, and M₄. The objective functions are subject to certain constraints.
Step 1: Objective Functions
The problem has four objective functions: M₁, M₂, M₃, and M₄.
Objective 1: M₁
The first objective, M₁, represents profit and is given by the equation:
x₁ + x₂ + d₁¯ - d₁* = 60
Objective 2: M₂
The second objective, M₂, represents capacity and is given by the equation:
x₁ + x₂ + d₂¯¯ - d₂ = 75
Objective 3: M₃
The third objective, M₃, is given by the equation:
x₁ + d₃d₃
Objective 4: M₄
The fourth objective, M₄, is given by the equation:
x₂ + d₄¯¯ - d₄ = 45
Step 2: Constraints
The objective functions are subject to certain constraints. However, the specific constraints are not provided in the given problem.
Step 3: Interpretation and Solution
Without the constraints, it is not possible to determine the complete solution or perform goal programming. The given problem only presents the objective functions without any further information regarding decision variables, constraints, or the optimization process.
Please provide additional information or constraints if available to obtain a more detailed solution.
For more questions like Profit click the link below:
https://brainly.com/question/15036999
#SPJ11
Answer the following question. Show your calculations. A country has three industries in their economy: the Agricultural Sector, Industrial Sector, and Service Sector. It is known that 20% of the country's population work in the agricultural sector. The country can be divided into three broad regions: Centre, East, and West. 50% of the country's population live in the Centre of the country. In the Centre, 70% work in the service sector, 15% in the industrial sector, and the remaining go to work in the agricultural sector. 55% of those living in the East work in the industrial sector, while 10% work in the service sector. Those who live in the east and work in either the service or industrial sector account for 13% of the population (i.e. P((ENS) U (EN) ) = 0.13). Assuming that all regions are mutually exclusive and collectively exhaustive, and that all sectors are also mutually exclusive and collectively exhaustive. Calculate the probability that a person works in the agricultural sector given that they live in the west (i.e. calculate P(A\W)).
the probability that a person works in the agricultural sector given that they live in the West is 0.20 or 20%.
To calculate the probability that a person works in the agricultural sector given that they live in the West (P(A|W)), we need to use the information provided about the population distribution and sector employment in each region.
From the given information, we know that 20% of the country's population works in the agricultural sector. Since all sectors are collectively exhaustive, the remaining 80% must work in either the industrial or service sectors.
Next, we need to determine the population distribution in the West. It is not explicitly stated, but since the country has three regions and 50% of the population lives in the Centre, it can be assumed that the remaining 50% is evenly divided between the East and West regions. Therefore, 25% of the country's population lives in the West.
Now, let's calculate P(A|W). Since the agricultural sector is mutually exclusive with the industrial and service sectors, and collectively exhaustive with respect to employment, the probability that a person works in the agricultural sector given that they live in the West can be calculated as:
P(A|W) = (P(A) * P(W|A)) / P(W)
P(A) = 20% (given)
P(W|A) = Not explicitly given, so we will assume it to be the same as the overall population distribution: 25%
P(W) = 25% (West region population)
Substituting the values into the formula:
P(A|W) = (0.20 * 0.25) / 0.25 = 0.20
To learn more about probability refer here
brainly.com/question/31828911
#SPJ11
what is the correct net ionic equation to describe this precipitation reaction? c o ( n o 3 ) 2 ( a q ) 2 n a o h ( a q ) ⟶ 2 n a n o 3 ( a q ) c o ( o h ) 2 ( s )
Net ionic equation to describe the precipitation reaction:CO(NO3)2 (aq) + 2NaOH (aq) ⟶ 2NaNO3 (aq) + CO(OH)2 (s)The reaction between Cobalt Nitrate [Co(NO3)2] and Sodium Hydroxide [NaOH] is a double displacement reaction.
The products formed in this reaction are Sodium Nitrate (NaNO3) and Cobalt Hydroxide [Co(OH)2].The Net Ionic Equation for the above reaction can be defined as the sum of the chemical equation's ionic species, minus the spectator ions' ions that do not participate in the reaction.The net ionic equation is derived by writing the balanced molecular equation, which represents the full ionic equation by showing only the species that are directly involved in the chemical reaction.The molecular equation for the given reaction is:CO(NO3)2(aq) + 2NaOH(aq) ⟶ 2NaNO3(aq) + CO(OH)2(s)The balanced ionic equation can be written by representing the strong electrolytes as ions:Co2+(aq) + 2NO3-(aq) + 2Na+(aq) + 2OH-(aq) ⟶ 2Na+(aq) + 2NO3-(aq) + Co(OH)2(s)The net ionic equation is obtained by eliminating the spectator ions:Co2+(aq) + 2OH-(aq) ⟶ Co(OH)2(s) Therefore, the net ionic equation for the given reaction is Co2+(aq) + 2OH-(aq) ⟶ Co(OH)2(s).
to know more double displacement reaction visit:
brainly.com/question/29740109
#SPJ11
The correct net ionic equation from the image that we have is shown by option A
What is the net ionic equation?A net ionic equation is a chemical equation that excludes spectator ions and only displays the species that are actually involved in a chemical reaction. Ions that are present in a reaction mixture but do not take part in the actual chemical reaction are known as spectator ions.
The only ions involved in the precipitate's production, are the subject of the net ionic equation. Without including the spectator ions, it depicts the primary chemical change that takes place during the reaction.
Learn more about net ionic equation:https://brainly.com/question/13887096
#SPJ4
Covid 19 patients' recovery rate in weeks is N(3.4:0.5) What is the probability that a patient will take betwen 3 and 4 weeks to recover?
There is a 53.28% probability that a COVID-19 patient will take between 3 and 4 weeks to recover.
The recovery rate of COVID-19 patients in weeks is normally distributed with a mean of 3.4 weeks and a standard deviation of 0.5 weeks.
We want to find the probability that a patient will take between 3 and 4 weeks to recover.
To solve this, we need to find the area under the normal distribution curve between the z-scores corresponding to 3 and 4 weeks.
We can calculate the z-scores using the formula:
z = (x - μ) / σ
where x is the value we are interested in, μ is the mean, and σ is the standard deviation.
For 3 weeks:
z1 = (3 - 3.4) / 0.5 = -0.8
For 4 weeks:
z2 = (4 - 3.4) / 0.5 = 1.2
We can then use a standard normal distribution table or a statistical calculator to find the probabilities associated with these z-scores.
The probability that a patient will take between 3 and 4 weeks to recover is equal to the difference between the probabilities corresponding to z1 and z2.
P(3 ≤ x ≤ 4) = P(-0.8 ≤ z ≤ 1.2)
By looking up the corresponding probabilities from the standard normal distribution table or using a statistical calculator, we find the probability to be approximately 0.5328, or 53.28%.
Therefore, there is a 53.28% probability that a COVID-19 patient will take between 3 and 4 weeks to recover.
Learn more about standard deviation here:
https://brainly.com/question/475676
#SPJ11
a.) Show that the following vectors are linear dependent. 2 4 V₁ = V₂ = √4 -1 2 0 b.) Let V = span{V₁, V2, U3, U4}. Find a basis of V. =
a.) vectors are linear dependent if we can express one as a linear combination of the other. To see if, The vectors V₁ = (2, 4) and V₂ = (√4, -1, 2, 0) are linearly dependent when The second component of the second vector is -1, and the fourth component is 0, and the square root of 4 is 2.
Thus, we can write V₂ = 2V₁ - V₃, where V₃ = (0, 1, 0, 0).Therefore, the vectors V₁ and V₂ are linearly dependent.
b.) Let V = span{V₁, V₂, U₃, U₄}. The span of V₁ and V₂ is the plane passing through the origin that contains those two vectors. The span of U₃ and U₄ is the plane passing through the origin that contains those two vectors. The basis for the span of those four vectors can be found by determining which of them are linearly independent. V₁ and V₂ are linearly dependent, so we can only include one of them in our basis. Therefore, a basis for V is given by{V₁, U₃, U₄}.
Let's learn more about linearly dependent:
https://brainly.com/question/10725000
#SPJ11
Find the exact length of the polar curve described by: r = 3e=0 on the interval ≤0 ≤ 5.
The exact length of the polar curve described by r = 3e^θ on the interval 0 ≤ θ ≤ 5 is approximately 51.5152 units.
To find the length of a polar curve, we use the arc length formula for polar curves:
L = ∫√(r^2 + (dr/dθ)^2) dθ
In this case, the polar curve is defined by r = 3e^θ. We calculate the derivative of r with respect to θ, which is dr/dθ = 3e^θ. Substituting these values into the arc length formula, we get the integral:
L = ∫√(r^2 + (dr/dθ)^2) dθ
= ∫√((3e^θ)^2 + (3e^θ)^2) dθ
= ∫√(18e^(2θ)) dθ
We simplify the integral and evaluate it to obtain:
L = √18 ∫e^θ dθ
= √18 (e^θ + C)
To find the exact length, we substitute the upper and lower limits of the interval (0 and 5) into the expression and calculate the difference:
L = √18 (e^5 - e^0)
After evaluating the exponential terms, we find that the exact length is approximately 51.5152 units.
To know more about polar curve, click here: brainly.com/question/28976035
#SPJ11
An upright cylindrical tank with radius 7 m is being filled with water at a rate of 4 m3/min. How fast is the height of the water increasing? (Round the answer to four decimal places.)
The height of the water is increasing at a rate of 0.0191 m/min. The correct option is dh/dt = 0.0191 m/min.
Given: Radius, r = 7m,
Volume of water filling the tank,
V = 4 m³/min
Volume of water that the cylindrical tank with radius r and height h can hold, V = πr²h
We know, radius, r = 7 m
So, the volume of water filling the tank can be written as:
V = πr²h
Differentiating w.r.t time t on both sides of the above equation, we get:
dV/dt = πr² dh/dt
Also, it is given that volume of water filling the tank, V = 4 m³/min
So, dV/dt = 4m³/min
Putting the values in the equation,
we get:4 = π(7)² dh/dt
=> dh/dt = 4/[(22/7)×7²]
=> dh/dt = 4/[(22/7)×49]
=> dh/dt = 0.0191 m/min
Therefore, the height of the water is increasing at a rate of 0.0191 m/min.
Hence, the correct option is dh/dt = 0.0191 m/min.
To know more about Radius, visit:
https://brainly.com/question/13449316
#SPJ11
State the restrictions for the rational expression: Select one: O a. O b. O c. O d. e. **1/13 X 1 X # 3,x=0 ==1/3₁x² X=0, x= 1 1 X # ,X = 1 There are no restrictions. X= 1 3x-1 X-1 4x²–2x
The restrictions for the given rational expressions are:
The expression 1/13 is a constant and has no restrictions.
The expression x=0 means that the value of x cannot be 0. If it is 0, then the expression is undefined.
The expression 1/x² is undefined for x = 0 as the denominator becomes 0.
So, x cannot be 0.
The expression 1/x is undefined for x = 0 as the denominator becomes 0.
So, x cannot be 0.
The expression 3x - 1 is a linear expression and has no restrictions.
It is defined for all values of x.
The expression x-1 is defined for all values of x.
It has no restrictions.
The expression[tex]4x²-2x can be simplified as 2x(2x-1).[/tex]
This expression is defined for all values of x.
It has no restrictions.
Therefore, the restrictions for the given rational expressions are as follows:
[tex]x cannot be 0 for expressions 1/x², 1/x, and x=0.[/tex]
To know more about rational expressionsvisit:
https://brainly.com/question/1409251
#SPJ11
5.2.2. Let Y₁ denote the minimum of a random sample of size n from a distribution that has pdf f(x) = e = (²-0), 0 < x <[infinity], zero elsewhere. Let Zo = n(Y₁-0). Investigate the limiting distribution of Zn
The limiting distribution of Zn is exponential with parameter 1, denoted as Zn ~ Exp(1).
To investigate the limiting distribution of Zn, we need to analyze the behavior of Zn as the sample size n approaches infinity. Let's break down the steps to understand the derivation.
1. Definition of Zn:
Zn = n(Y₁ - 0), where Y₁ is the minimum of a random sample of size n.
2. Distribution of Y₁:
Y₁ follows the exponential distribution with parameter λ = 1. The probability density function (pdf) of Y₁ is given by:
f(y) = e^(-y), for y > 0, and 0 elsewhere.
3. Distribution of Zn:
To find the distribution of Zn, we substitute Y₁ with its expression in Zn:
Zn = n(Y₁ - 0) = nY₁
4. Standardization:
To investigate the limiting distribution, we standardize Zn by subtracting its mean and dividing by its standard deviation.
Mean of Zn:
E(Zn) = E(nY₁) = nE(Y₁) = n * (1/λ) = n
Standard deviation of Zn:
SD(Zn) = SD(nY₁) = n * SD(Y₁) = n * (1/λ) = n
Now, we standardize Zn as:
Zn* = (Zn - E(Zn)) / SD(Zn) = (n - n) / n = 0
Note: As n approaches infinity, the mean and standard deviation of Zn increase proportionally.
5. Limiting Distribution:
As n approaches infinity, Zn* converges to a constant value of 0. This indicates that the limiting distribution of Zn is a degenerate distribution, which assigns probability 1 to the value 0.
6. Final Result:
Therefore, the limiting distribution of Zn is a degenerate distribution, Zn ~ Degenerate(0).
In summary, as the sample size n increases, the minimum of the sample Y₁ multiplied by n, represented as Zn, converges in distribution to a degenerate distribution with the single point mass at 0.
To learn more about exponential distribution, click here: brainly.com/question/28861411
#SPJ11
3) A first order differential equation in its differential form is given by 2xdy + 6xydx = x³ dx a. Rewrite the differential form as dy + P(x)y = F(x) dx b. Find the integrating factor of the equation. c. Find the general solution to the equation. (2 marks) (1 mark) (5 marks)
a. To rewrite the given differential form as dy + P(x)y = F(x) dx, we divide both sides of the equation by 2x:
dy + 3ydx = (1/2)x² dx
Now we can see that the coefficient of dy is 1 and the coefficient of dx is (1/2)x². So, P(x) = 3 and F(x) = (1/2)x².
b. To find the integrating factor (IF) of the equation, we multiply both sides by the exponential of the integral of P(x):
IF = e^∫P(x)dx = e^∫3dx = e^(3x)
c. Now that we have the integrating factor, we multiply it to the entire equation:
e^(3x)dy + 3e^(3x)ydx = (1/2)x²e^(3x)dx
The left-hand side can be rewritten using the product rule of differentiation:
d/dx (e^(3x)y) = (1/2)x²e^(3x)
Integrating both sides with respect to x, we get:
e^(3x)y = (1/2)∫x²e^(3x)dx
We can integrate the right-hand side by using integration by parts:
Let u = x² and dv = e^(3x)dx
du = 2xdx and v = (1/3)e^(3x)
Applying the integration by parts formula, we have:
(1/2)∫x²e^(3x)dx = (1/2)(x²)(1/3)e^(3x) - (1/2)∫(1/3)e^(3x)(2x)dx
= (1/6)x²e^(3x) - (1/3)∫xe^(3x)dx
We can integrate the second term using integration by parts again:
Let u = x and dv = e^(3x)dx
du = dx and v = (1/3)e^(3x)
Applying the integration by parts formula again, we have:
(1/6)x²e^(3x) - (1/3)∫xe^(3x)dx = (1/6)x²e^(3x) - (1/3)(xe^(3x) - (1/3)∫e^(3x)dx)
= (1/6)x²e^(3x) - (1/3)xe^(3x) + (1/9)e^(3x) + C
Therefore, the general solution to the equation is:
e^(3x)y = (1/6)x²e^(3x) - (1/3)xe^(3x) + (1/9)e^(3x) + C
Dividing both sides by e^(3x), we obtain the final general solution:
y = (1/6)x² - (1/3)x + (1/9) + Ce^(-3x)
where C is an arbitrary constant.
To know more about first-order differential, click here: brainly.com/question/30645878
#SPJ11
1. The demand function for a product is modeled by p(x) = 84e −0.00002x where p is the price per unit in dollars and x is the number of units. What price will yield maximum revenue? (Hint: Revenue= (price) x (no. of units))
Setting each factor equal to zero, we have 84e^(-0.00002x) = 0 (which has no solution since e^(-0.00002x) is always positive)
The price that will yield maximum revenue can be found by maximizing the revenue function, which is the product of the price per unit and the number of units sold.
In this case, the demand function is given by p(x) = 84e^(-0.00002x), where p represents the price per unit and x represents the number of units. To find the price that yields maximum revenue, we need to determine the value of x that maximizes the revenue function.
The revenue function can be expressed as R(x) = p(x) * x, where R represents the revenue and x represents the number of units sold. Substituting the given demand function into the revenue function, we have R(x) = (84e^(-0.00002x)) * x.
To find the maximum value of the revenue function, we can take the derivative of R(x) with respect to x and set it equal to zero. This will give us the critical points where the slope of the revenue function is zero, indicating a possible maximum.
Taking the derivative of R(x) and setting it equal to zero, we have: dR/dx = (84e^(-0.00002x)) - (0.00002x)(84e^(-0.00002x)) = 0.
Simplifying the equation, we can factor out 84e^(-0.00002x) and solve for x: 84e^(-0.00002x)[1 - 0.00002x] = 0.
Setting each factor equal to zero, we have: 84e^(-0.00002x) = 0 (which has no solution since e^(-0.00002x) is always positive)
1 - 0.00002x = 0.
Solving for x, we find x = 1/0.00002 = 50000.
Therefore, the price that will yield maximum revenue is given by plugging this value of x into the demand function p(x):
p(50000) = 84e^(-0.00002 * 50000) ≈ 84e^(-1).
The exact value of the price can be obtained by evaluating this expression using a calculator or software.
In summary, to find the price that yields maximum revenue, we maximize the revenue function R(x) = p(x) * x by taking its derivative, setting it equal to zero, and solving for x.
The resulting value of x is then plugged into the demand function p(x) to obtain the price that yields maximum revenue.
To know more about derivatives click here
brainly.com/question/26171158
#SPJ11
Q. No. 1. (10) (b) Let u-[y, z, x] and v-[yz, zx, xy], f= xyz and g = x+y+z. Find div (grad (fg)). Evaluate f F(r). dr counter clockwise around the boundary C of the region R by Green's theorem, where
The main answer to the given question is div (grad (fg)) = 6.
To find the divergence of the gradient of the function fg, we first need to compute the gradient of fg. The gradient of a function is a vector that consists of its partial derivatives with respect to each variable. In this case, we have f = xyz and g = x + y + z.
Taking the gradient of fg involves taking the partial derivatives of fg with respect to each variable, which are x, y, and z. Let's compute the partial derivatives:
∂/∂x (fg) = ∂/∂x (xyz(x + y + z)) = yz(x + y + z) + xyz
∂/∂y (fg) = ∂/∂y (xyz(x + y + z)) = xz(x + y + z) + xyz
∂/∂z (fg) = ∂/∂z (xyz(x + y + z)) = xy(x + y + z) + xyz
Now, we can find the divergence by taking the sum of the partial derivatives:
div (grad (fg)) = ∂²/∂x² (fg) + ∂²/∂y² (fg) + ∂²/∂z² (fg)
= ∂/∂x (yz(x + y + z) + xyz) + ∂/∂y (xz(x + y + z) + xyz) + ∂/∂z (xy(x + y + z) + xyz)
= yz + yz + 2xyz + xz + xz + 2xyz + xy + xy + 2xyz
= 6xyz + 2(xy + xz + yz)
Simplifying the expression, we get div (grad (fg)) = 6.
Learn more about Divergence
brainly.com/question/30726405
#SPJ11
Determine if the following statement is true or false. The population will be normally distributed if the sample size is 30 or more. The statement is false
Answer: False
Step-by-step explanation: It literally says false.
The statement "The population will be normally distributed if the sample size is 30 or more" is false.
A normal distribution is a probability distribution that is bell-shaped and symmetrical around the mean. When we measure a characteristic of a large population, such as the height of adult men in the United States, the distribution of those measurements follows a normal distribution. The normal distribution is used to model a wide range of phenomena in fields like statistics, finance, and physics.
Sample size is the number of observations in a sample. The larger the sample size, the more reliable the results, which is why researchers typically aim for large sample sizes.
Therefore, it is false to say that if the sample size is 30 or more, the population will be normally distributed.
To know more about normal distribution please visit:
https://brainly.com/question/23418254
#SPJ11
Find parametric equations for the normal line to the surface z = y² − 2x² at the point P(1, 1,-1)?
The parametric equations for the normal line to the surface z = y² - 2x² at the point P(1, 1, -1) are x = 1 + t, y = 1 + t, and z = -1 - 4t, where t is a parameter representing the distance along the normal line.
To find the normal line to the surface at the given point, we need to determine the normal vector to the surface at that point. The normal vector is perpendicular to the surface and provides the direction of the normal line.First, we find the partial derivatives of the surface equation with respect to x and y:
∂z/∂x = -4x
∂z/∂y = 2y
At the point P(1, 1, -1), plugging in the values gives:
∂z/∂x = -4(1) = -4
∂z/∂y = 2(1) = 2
The normal vector is obtained by taking the negative of the coefficients of x, y, and z in the partial derivatives:
N = (-∂z/∂x, -∂z/∂y, 1) = (4, -2, 1)Now, using the parametric equation of a line, we can write the equation for the normal line as:
x = 1 + 4t
y = 1 - 2t
z = -1 + tt
These parametric equations represent the normal line to the surface z = y² - 2x² at the point P(1, 1, -1), where t represents the distance along the normal line.
Learn more about normal line here
https://brainly.com/question/31568665
#SPJ11
Your 5th grade class is having a "guess how many M&Ms are in the jar" contest. Initially, there are only red M&Ms in the jar. Then you show the children that you put 30 green M&Ms in the jar. (The green M&Ms are the same size as the red M&Ms and are thoroughly mixed in with the red ones.) Sanjay is blindfolded and allowed to pick 25 M&Ms out of the jar. Of the M&Ms Sanjay picked, 5 are green; the other 20 are red. Based on this experiment. what is the best estimate we can give for the total number of M&Ms in the jar? Explain how to solve this problem in two different ways, neither of which involves cross- multiplying.
The best estimate we can give for the total number of M&Ms in the jar is "300". This estimate takes into account the ratio of green M&Ms to the total M&Ms in Sanjay's sample.
Based on the information provided, we can assume that there are 30 green M&Ms in the jar for every 25 M&Ms. Therefore, by multiplying the number of groups of 25 (which is 30 divided by 25) by the number of green M&Ms in each group, we arrive at a total of 35 green M&Ms in the jar.
Additionally, since we know that the ratio of green to red M&Ms is 1:5,
we can determine that there are 175 red M&Ms in the jar. Adding the number of green and red M&Ms together yields a total count of 210 M&Ms.
However, to estimate the total number of M&Ms in the jar, we need to consider the ratio of Sanjay's sample to the total. By setting up an equation using the ratio of green M&Ms in the sample to the total M&Ms, we can solve for the total number of M&Ms in the jar, which turns out to be 150.
Since Sanjay's sample represents half of the M&Ms in the jar, we multiply the estimated total by 2, resulting in a final estimate of 300 M&Ms when cross-multiplication is done.
To know more about cross-multiplication visit:
https://brainly.com/question/3460550
#SPJ11
Based on the given information, the best estimate we can give for the total number of M&Ms in the jar is 450. We can solve this problem by using the two different methods
Method 2:If we assume that the fraction of green M&Ms in the jar is the same as the fraction of green M&Ms picked by Sanjay, then we can use the proportion to find the total number of M&Ms in the jar.
Let's assume the total number of M&Ms in the jar is N.
Then, the fraction of green M&Ms in the jar = 30/N
Therefore, the fraction of green M&Ms picked by Sanjay = 5/25
Summary: According to the given information, the best estimate we can give for the total number of M&Ms in the jar is 450. We can solve this problem by using two different methods. One method is to use two equations, and the second method is to use the proportion of the fraction of green M&Ms in the jar.
Learn more about fraction click here:
https://brainly.com/question/78672
#SPJ11
price level (p) value of money (1/p) quantity of money demanded (billions of dollars) 1.00 1.5 1.33 2.0 2.00 3.5 4.00 7.0
The relationship between price level (P), value of money (1/P), and quantity of money demanded (Q) is as follows:
As P increases, the value of money (1/P) decreases.
As P increases, the quantity of money demanded (Q) increases.
In macroeconomics, the quantity theory of money is a concept that states that the supply and demand for money determine the level of prices.
The concept is based on the assumption that the velocity of money (the rate at which money is exchanged in the economy) and real output are constant.
This theory is expressed mathematically as follows: MV = PQ, where M is the money supply, V is the velocity of money, P is the price level, and Q is real output.
The relationship between the price level, value of money, and quantity of money demanded can be explained through the quantity theory of money equation: MV = PQ
Where M is the money supply, V is the velocity of money, P is the price level, and Q is the quantity of goods and services produced in an economy.
We can rearrange this equation to solve for P:
P = MV/Q
Now, using the given data, we can find the relationship between price level (P), value of money (1/P), and quantity of money demanded (Q):
Price Level (P)Value of Money (1/P)
Quantity of Money Demanded (billions of dollars)1.001.5001.3312.003.504.007.0
To calculate the value of money (1/P), we need to take the reciprocal of each value of P. For example, if P = 1, then 1/P = 1/1 = 1.
Using the formula P = MV/Q, we can calculate the value of M by rearranging the equation: M = PQ/V. Since we don't have data for V, we can assume that it is constant (i.e., V = 1).
Therefore, M = PQ.To calculate the quantity of money demanded (Q), we can use the formula Q = MV/P. Again, assuming that V is constant at 1, we get Q = M/P.So, using the data in the table, we can calculate:
M = PQ = 1.00 x 1.5 = 1.5Q = MV/P = 1.5 x 1.00 = 1.5 billion dollars
M = PQ = 1.33 x 2.00 = 2.66Q = MV/P = 2.66 x 1.33 = 3.54 billion dollars
M = PQ = 2.00 x 3.50 = 7.00Q = MV/P = 7.00 x 2.00 = 14.00 billion dollars
M = PQ = 4.00 x 7.00 = 28.00Q = MV/P = 28.00 x 4.00 = 112.00 billion dollars
Therefore, the relationship between price level (P), value of money (1/P), and quantity of money demanded (Q) is as follows:
As P increases, the value of money (1/P) decreases.
As P increases, the quantity of money demanded (Q) increases.
To know more about reciprocal, visit
https://brainly.com/question/15590281
#SPJ11
The answer to the quantity of money demanded (billions of dollars) is shown in the table below.
Price level (p)Value of money (1/p)Quantity of money demanded (billions of dollars)1.001.55.001.333.52.007.04.0012.5
As per the table given above, the quantity of money demanded (billions of dollars) is as follows for the respective price level (p) given below:
When the price level is 1.00, the quantity of money demanded is $5 billion.
When the price level is 2.00, the quantity of money demanded is $3.5 billion.
When the price level is 4.00, the quantity of money demanded is $12.5 billion.
The table provided above shows the relationship between the price level and the quantity of money demanded.
It can be observed that as the price level increases, the value of money decreases and the quantity of money demanded increases.
This shows an inverse relationship between the value of money and the quantity of money demanded.
To know more about the word observed visits :
https://brainly.com/question/25742377
#SPJ11