Identify the thermocouple type with the highest temperature limit
from those listed here:


a) Type Jb)
Type Kc)
Type Sd)
Type Te)
Type Ef)
none

Answers

Answer 1

The thermocouple type with the highest temperature limit from those listed here is Type S. So, the correct option is D.

What is a thermocouple?

A thermocouple is a sensor used for measuring temperature. It comprises two dissimilar metals that are attached together at one end, the sensing end. When the sensing end is exposed to heat, it produces a voltage signal, which can be read by a thermocouple thermometer. A thermocouple is widely used in industrial applications such as furnaces, heat-treating, and power generation plants.

Types of thermocouples

There are several types of thermocouples, which are classified by their materials and temperature range. The following are some of the most common thermocouple types:

Type J

Type K

Type S

Type T

Type E

Type N

Type B

Type R

Type C

The thermocouple type with the highest temperature limit from those listed here is Type S. Type S thermocouples are made up of platinum and rhodium, and they can measure temperatures up to 1,768 °C (3,214 °F). They are commonly used in high-temperature applications such as furnace heating, ceramic production, and gas turbine testing.

Therefore, option D. Type S is the correct one.

To know more about thermocouple visit:

https://brainly.com/question/31473735

#SPJ11


Related Questions

what type of load (bed load, dissolved load, or suspended load) are boulders?

Answers

The type of load the boulders belong to are the bedload.

What is bed load?

Bed load is the term used to describe the coarser sediment (sand, gravel, and boulders) that are moved along a stream bed by the force of the water. During times of high flow, the force of the water is enough to lift and move these larger sediment particles along the bottom of the stream channel, bouncing and rolling them along.

Bed load can be further divided into two categories: saltation and traction. Saltation is the movement of sediment particles that are too heavy to be carried in the water column but too light to be completely settled on the stream bed. These particles bounce along the bottom of the stream channel, lifted and moved by the force of the water.

Traction, on the other hand, is the movement of larger sediment particles (like boulders) that are heavy enough to be settled on the stream bed, but are lifted and moved by the force of the water as it flows over them.

Learn more about Traction here: https://brainly.com/question/30356900

#SPJ11

A steel with high hardenabilty:
Select one:
a. will form harder martensite than a steel with low hardenability
b. will form martensite to a greater depth in thick sections than will a steel with low hardenability
c. does not require tempering
d. will form martensite at a slower cooling rate than a steel with low hardenability
e. both b) and d)

Answers

A steel with high hardenabilty: b. will form martensite to a greater depth in thick sections than will a steel with low hardenability and d. will form martensite at a slower cooling rate than a steel with low hardenability (option E) both b) and d).

High hardenability of steel is the capacity of steel to transform into martensite with less severe cooling rates. This attribute helps produce uniform and predictable mechanical characteristics when hardening big or complex-shaped parts. Martensite is one of the crystalline structures formed by steel during the heat-treatment process when quenched. The properties of steel are greatly influenced by the martensitic structure produced by quenching.

The hardenability of steel can be defined as the extent to which the steel will harden under specific thermal conditions. The high hardenability steel is able to achieve high hardness and strength by martensitic transformation with lower cooling rates, compared to low hardenability steels with a slower cooling rate.

For instance, high carbon steels have higher hardenability, meaning they form more extensive martensite structures after heat treatment. The thickness of the section will also impact the depth of the martensitic layer formed. A greater depth of martensite will form with high hardenability steel in a thicker part section than a steel with low hardenability. Hence the statement, high hardenability steels will form martensite to a greater depth in thick sections than will a steel with low hardenability, is correct.

Another statement, will form martensite at a slower cooling rate than a steel with low hardenability, is also correct. As the cooling rate slows down, the probability of nucleation and growth of martensite is lesser. Thus, high hardenability steel will need slower cooling rates to form a sufficient amount of martensite. Therefore, the answer is option e) both b) and d).

Learn more about Martensite here: https://brainly.com/question/29459092

#SPJ11

Which of the concentration units shown involve dividing the mass of solute by the mass of solution? Select all that apply.
percent by mass
parts per billion (ppb)
parts per million (ppm)

Answers

The concentration units that involve dividing the mass of solute by the mass of solution are percent by mass and parts per million (ppm). Thus, the correct options are:percent by massparts per million (ppm)What is a solution?A solution is a homogeneous mixture of two or more substances, which may be solids, liquids, or gases.

A solution may be a gas, a solid, or a liquid. The solution's concentration is a measure of the amount of solute dissolved in the solvent. The concentration of the solution is determined by the amount of solute present in a certain volume or mass of solvent. Concentration units, such as ppm, percent by mass, and parts per billion, are used to quantify the concentration of a solution.

Read more about concentration here;https://brainly.com/question/17206790

#SPJ11

Dangerous elements that can pose health risks to humans, such as cadmium, mercury, selenium, lead, and arsenic are also called
acidic pollutants
heavy metals
toxic aggregates
pathogens

Answers

Dangerous elements that can pose health risks to humans, such as cadmium, mercury, selenium, lead, and arsenic, are also called heavy metals.

The term "heavy metals" refers to a group of elements that have high atomic weights and density. These elements, including cadmium, mercury, selenium, lead, and arsenic, are known to be toxic to humans and can pose serious health risks. Heavy metals have the ability to accumulate in the body over time, leading to various adverse effects on organs and systems. They can interfere with essential biological processes, disrupt enzyme activities, and cause damage to organs such as the liver, kidneys, and nervous system. Exposure to heavy metals can occur through various routes, including contaminated water, air pollution, occupational hazards, and the consumption of contaminated food or products. Due to their toxic nature and potential for harm, heavy metals are regulated and monitored to ensure public health and environmental safety.

learn more about cadmium here:

https://brainly.com/question/29977763

#SPJ11

A gas expands from a volume of 3.0 dm3 to 5.0 dm3 against a constant pressure of 3.0 atm. The work done during expansion is used to heat 10.0 mole of water of temperature 290.0K. Calculate the final temperature of water (specific heat of water =4.184 J K−1g−1)

Answers

the final temperature of water comes out to be 290.877 K. The quantity of work completed during the expansion must be determined in order to calculate the energy supplied to the water and the water's final temperature.

Following the gas expansion, we can apply the following equation to determine the water's final temperature:

q = mcΔT

Where: q = the heat the water absorbs

m = the water's mass

c is the water's specific heat capacity.

T stands for temperature change.

Let's start by calculating the heat that the water absorbed during the gas expansion:

q = the work that the gas does

The equation: can be used to determine how much work the gas is doing.

w = -PΔV

Where: w = job completed

Pressure is P.

V stands for volume change

We can determine the work done if we know that the pressure (P) is 3.0 atm and the change in volume (V) is 5.0 dm3 - 3.0 dm3 = 2.0 dm3.

w = 3.0 atm x 2.0 dm3, which is -6.0 atm dm3.

The heat absorbed by the water will be positive since the work completed, which represents work on the system, is negative:

Q=-w=6.0 atm dm3

Next, we must convert the work done's units to joules:

1 atm dm3 equals 101.375 J

At STP, 1 mol of gas takes up 22.4 dm3.

6.0 atm dm3 multiplied by 101.325 J/atm dm3 results in 607.95 J.

Now, we can determine the water's temperature change (T):

q = mcΔT

10 mol * 18.015 g/mol * 4.184 J/g K * 10.795 J = 607.95 J ΔT

753.78 g * 4.184 J/g K * T = 607.95 J

T = 753.78 g * 4.184 J/g K / 607.95 J

ΔT ≈ 0.180 K

The ultimate temperature is then determined by adding the temperature change to the 290.0 K starting point:

Final temperature = 290.0 K plus 0.180 K, or 290.180 K.

to know more about specific heat refer to the link below

https://brainly.com/question/27862577

#SPJ4

To prepare 750 mL of 0.25 M NaCl, how many grams of NaCl need to be measured out and dissolved in water to bring the total volume to 750 mL?

Answers

Approximately 10.94 grams of NaCl need to be measured out and dissolved in water to prepare a 0.25 M NaCl solution with a total volume of 750 mL.

To prepare a 0.25 M NaCl solution with a total volume of 750 mL, we need to calculate the amount of NaCl in grams that needs to be dissolved in water.

First, we need to understand the concept of molarity (M). Molarity represents the number of moles of solute (NaCl) per liter of solution. We can use the formula:

Molarity (M) = Moles of solute / Volume of solution (in liters)

We have the desired molarity (0.25 M) and the desired volume (750 mL = 0.75 L) of the solution. We can rearrange the formula to solve for the moles of solute:

Moles of solute = Molarity x Volume of solution

Moles of solute = 0.25 M x 0.75 L = 0.1875 moles

Now, we need to convert the moles of NaCl to grams. We can use the molar mass of NaCl, which is approximately 58.44 g/mol:

Grams of NaCl = Moles of NaCl x Molar mass of NaCl

Grams of NaCl = 0.1875 moles x 58.44 g/mol ≈ 10.94 grams

For more such questions on dissolved visit:

https://brainly.com/question/6319922

#SPJ8

enzymes increase the rate of a reaction by ________.

Answers

Enzymes increase the rate of a reaction by lowering the activation energy.

Enzymes are biological catalysts that facilitate chemical reactions by accelerating the rate at which they occur. One of the primary ways enzymes achieve this is by lowering the activation energy required for the reaction to proceed.

Activation energy is the energy barrier that must be overcome for a chemical reaction to take place. It represents the minimum energy required for the reactant molecules to reach the transition state and form products. By lowering the activation energy, enzymes make it easier for the reactant molecules to attain the necessary energy and overcome the barrier.

Enzymes achieve this by providing an alternative pathway for the reaction that has a lower activation energy.

learn more about Activation energy here:

https://brainly.com/question/27341596

#SPJ4

what family tends to give away 2 electrons when forming a compoind

Answers

Alkaline earth metals tend to give away 2 electrons when forming a compound.

These elements belong to Group 2 of the periodic table and include elements such as beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba). Alkaline earth metals have two valence electrons in their outermost energy level, and they readily lose these electrons to achieve a stable electron configuration similar to the nearest noble gas. By giving away 2 electrons, alkaline earth metals form 2+ cations, allowing them to combine with other elements to form compounds. This electron donation leads to the formation of ionic compounds, commonly seen in various minerals and materials.

Learn more about Alkaline earth here:

https://brainly.com/question/11584594

#SPJ11

you are going to build a battery composed of several electrochemical cells, due to the available space you can only have a maximum of 4 cells in each battery. Choose the material for the anode and cathode of each of the cells so that you get a minimum voltage of 12 V. How would you connect your 4 cells?

Answers

The cells should be linked in series to produce the necessary voltage of 4 cells

In order to build a battery that produces a minimum voltage of 12 V with a maximum of 4 cells, certain steps must be taken.

The anode and cathode materials must be chosen with care.

The anode is the negative electrode, while the cathode is the positive electrode. For this battery to work effectively, the anode material must have a high electron potential, while the cathode material must have a low electron potential.

A higher voltage is produced when the difference in potential is greater.

The cells should be linked in series to produce the necessary voltage.

When linked in series, the positive side of one cell is connected to the negative side of the next cell.

The positive and negative poles of the battery are then linked to the corresponding poles of the circuit, and the battery is ready to power the device.

Learn more about voltage from the given link

https://brainly.com/question/30764403

#SPJ11  

A student makes the following observations which observation indicates that a chemical change occurred

Answers

The appearance of a color change in the solution during the titration is an observation that could have led the student to conclude that a chemical change took place.

One observation that could have led the student to conclude that a chemical change took place during the titration is the appearance of a color change in the solution.

During a titration, a chemical reaction typically occurs between the analyte (the solution being titrated) and the titrant (the solution being added). The reaction between the two substances may result in a change in the chemical composition, leading to the formation of new products.

In some titrations, an indicator is used to visually signal the endpoint of the reaction. Indicators are substances that undergo a color change in response to a change in the pH or chemical composition of the solution. They can be added to the analyte or the titrant to help detect when the reaction is complete.

If a color change is observed during the titration, it indicates that a chemical change has occurred. For example, if the analyte solution is colorless or has a certain color initially, and it changes to a different color during the addition of the titrant, it suggests that a reaction has taken place, resulting in the formation of new substances with different optical properties.

This color change is a visual indication that a chemical transformation has occurred during the titration process. It can be used to determine the endpoint of the reaction and calculate the concentration or amount of the analyte present in the solution.

For more such questions on titration visit:

https://brainly.com/question/186765

#SPJ8

Note the complete questions is;

The student made observations related to the contents of the Erlenmeyer flask during the titration. Identify an observation that could have led the student to conclude that a chemical change took place during the titration.

What is the freezing temperature of a solution of 115.0 g of sucrose, C12H22O11, in 350.0 g of water, which freezes at 0.0 °C when pure?

(a) Outline the steps necessary to answer the question.
(b) Answer the question.

Answers

The freezing temperature of the solution is -2.65596 °C.

(a) The steps necessary to answer the question:

First, determine the molality of the solution using the formula:molality = moles of solute / mass of solvent (in kg)

Calculate the number of moles of sucrose:moles of solute = mass of solute / molar mass of sucrose

Next, calculate the mass of water:mw = 350.0 g - 115.0 g = 235.0 g

Convert the mass of water to kg:mass of water (kg) = 235.0 g / 1000 g/kg

Finally, use the formula to calculate the freezing point depression:

ΔTf = Kf x molality

where Kf is the freezing point depression constant of water. (1.86 °C/m for water).

Then, use the following formula to calculate the freezing point of the solution:

freezing point of solution = freezing point of pure solvent - ΔTf

(b) To answer the question, we need to use the freezing point depression formula:ΔTf = Kf x molality

where Kf is the freezing point depression constant of water (1.86 °C/m) and molality is the concentration of the solution in moles of solute per kilogram of solvent.moles of solute = mass of solute / molar mass of sucrose= 115.0 g / 342.3 g/mol= 0.3355 molmolality = moles of solute / mass of solvent (in kg)= 0.3355 mol / 0.235 kg= 1.426 m

Now, we can calculate the freezing point depression:ΔTf = Kf x molality= 1.86 °C/m x 1.426 m= 2.65596 °C

The freezing point depression is 2.65596 °C.

To find the freezing temperature of the solution, we subtract this from the freezing point of pure water:freezing point of solution = freezing point of pure solvent - ΔTf= 0.0 °C - 2.65596 °C= -2.65596 °C

Therefore, the freezing temperature of the solution is -2.65596 °C.

Learn more about freezing point at

https://brainly.com/question/8767538

#SPJ11

What mass of iron should be produced if 11. 0g of aluminum react with 30. 0g of iron (III) oxide?

Answers

The mass of iron should be produced if 11. 0g of aluminum reacts with 30. 0g of iron (III) oxide is 10.50 g.

To determine the mass of iron produced, we need to use stoichiometry and the balanced chemical equation for the reaction between aluminum and iron(III) oxide.

The balanced chemical equation is:

2 Al + [tex]Fe_{2} O_{3}[/tex] →  + 2 Fe

From the equation, we can see that 2 moles of aluminum react with 1 mole of iron(III) oxide to produce 1 mole of iron.

First, we need to determine the limiting reactant by comparing the number of moles of aluminum and iron(III) oxide.

Moles of aluminum = mass of aluminum / molar mass of aluminum

= 11.0 g / 26.98 g/mol (molar mass of aluminum)

= 0.407 mol

Moles of iron(III) oxide = mass of iron(III) oxide / molar mass of iron(III) oxide

= 30.0 g / 159.69 g/mol (molar mass of iron(III) oxide)

= 0.188 mol

Since the stoichiometric ratio of aluminum to iron(III) oxide is 2:1, we can see that 0.188 mol of iron(III) oxide requires 0.376 mol of aluminum. However, we have only 0.407 mol of aluminum, which is in excess.

Therefore, the limiting reactant is iron(III) oxide. The amount of iron produced is determined by the moles of iron(III) oxide used. Moles of iron = 0.188 mol (same as moles of iron(III) oxide)

Now we can calculate the mass of iron produced using its molar mass (55.85 g/mol):

Mass of iron = Moles of iron × Molar mass of iron

= 0.188 mol × 55.85 g/mol

= 10.50 g

Therefore, the mass of iron produced is approximately 10.50 grams.

Know more about the Balanced chemical equation here:

https://brainly.com/question/13451900

#SPJ8

how do i store chemical indicators and disinfectant cartridge?

Answers

Store chemical indicators and disinfectant cartridges in cool, dry, and well-ventilated areas away from direct sunlight and heat sources.

To ensure the proper storage of chemical indicators and disinfectant cartridges, it is essential to follow a few guidelines. Firstly, store them in a cool environment to prevent degradation or chemical reactions caused by excessive heat. High temperatures can alter the composition and effectiveness of these products. Additionally, a dry storage area is crucial to prevent moisture absorption, which can lead to product spoilage or decreased efficacy.

Furthermore, it is important to keep chemical indicators and disinfectant cartridges away from direct sunlight. Exposure to UV rays can accelerate the degradation process, rendering them less reliable or ineffective. Therefore, consider using opaque storage containers or cabinets to shield them from light sources.

Ventilation is another crucial aspect of proper storage. Ensure that the storage area is well-ventilated to prevent the buildup of potentially harmful fumes or gases that may be released by the chemicals. Adequate airflow will help maintain a stable environment and minimize the risk of chemical reactions or contamination.

Learn more about Chemical indicators

brainly.com/question/13748767

#SPJ11

A tasteless, colorless, odorless, radioactive gas produced by decaying uranium is
radon
helium
carbon dioxide
asbestos

Answers

Radon is a tasteless, colorless, odorless, radioactive gas produced by decaying uranium. option A

Radon is a natural, radioactive gas that comes from the decay of uranium and is found in soil, rock, and water. Radon is created by the decay of uranium in soil, rocks, and water. Uranium is a naturally occurring element found in soil, rocks, and water.

When uranium decays, it produces a series of radioactive elements that eventually turn into radon gas.Rock and soil contain tiny amounts of uranium, and radon gas rises up through the soil and into the atmosphere. Radon gas can seep through cracks in the ground and enter homes through basements, crawl spaces, and other areas.

Radon gas is a serious health hazard. It is the leading cause of lung cancer among non-smokers, and it is responsible for over 20,000 deaths each year in the United States alone. Radon gas can be detected with special tests that measure the level of radon in the air. If radon gas is found to be present in a home, it can be reduced by sealing cracks in the foundation and installing special ventilation systems. Option A

For more such questions on Radon visit;

https://brainly.com/question/23972287

#SPJ8

The decomposing of a system into a collection of layers, where
the layers above one another (or similarly, below one another) are
in a particular order is called_________.

Answers

The decomposing of a system into a collection of layers, where the layers above one another (or similarly, below one another) are in a particular order is called stratification. A system is broken down or divided into distinct levels, each with its own special traits or attributes, through stratification.

This configuration happens when various aspects of a system settle or separate in accordance with their densities or other considerations. Numerous natural and man-made systems, including sedimentary rock formations, atmospheric layers, oceanic water columns, and even social structures, exhibit stratification.

Stratification can happen as a result of gravitational forces, temperature gradients, chemical reactions, or other variables that affect how the system's components are distributed and arranged. The resulting stratified layers frequently have various physical or chemical characteristics.

to know more about sedimentary rocks refer to the link below

https://brainly.com/question/29240254

#SPJ4

find the molar mass of a gas if 19.08g occupy 12.620L at 92.5kPa and 42.6C

Answers

The molar mass of the gas can be calculated using the ideal gas law. Given that the gas occupies a volume of 12.620L at a pressure of 92.5kPa and a temperature of 42.6°C, and knowing the mass of the gas is 19.08g, the molar mass can be determined.

To calculate the molar mass, we need to convert the temperature from Celsius to Kelvin by adding 273.15. So, the temperature becomes 42.6°C + 273.15 = 315.75K. We can then rearrange the ideal gas law equation PV = nRT to solve for the molar mass (M):

M = (mRT) / (PV)

where:

m = mass of the gas (19.08g)

R = ideal gas constant (8.314 J/(mol·K))

T = temperature in Kelvin (315.75K)

P = pressure (92.5kPa)

V = volume (12.620L)

Substituting the values into the equation:

M = (19.08g * 8.314 J/(mol·K) * 315.75K) / (92.5kPa * 12.620L)

After performing the calculations, the molar mass of the gas is found to be approximately 31.43 g/mol.

In summary, the molar mass of the gas is calculated using the ideal gas law equation by plugging in the known values for pressure, volume, temperature, and mass of the gas. By rearranging the equation and performing the necessary calculations, we find that the molar mass of the gas is approximately 31.43 g/mol.

for such more questions on temperature

https://brainly.com/question/4735135

#SPJ8

prepare (your own) problem with its correct answer about (chromatography). must continue (calculations) please create a problem by yourself and solve it correctly //Don't copy paste from any sources cause that will not be accepted

Answers

In a chromatography experiment, a mixture of red, blue, and green dyes is separated using a stationary phase and a mobile phase. The stationary phase has a length of 10 cm, and the mobile phase moves at a constant velocity of 2 cm/min. The red dye travels a distance of 6 cm, the blue dye travels a distance of 8 cm, and the green dye travels a distance of 9.5 cm.

What is the retention factor (Rf) for each dye?

Solution:

To calculate the retention factor (Rf) for each dye, we use the formula:

Rf = Distance traveled by the dye / Distance traveled by the mobile phase

For the red dye:

Distance traveled by the dye = 6 cm

Distance traveled by the mobile phase = 10 cm

Rf (red) = 6 cm / 10 cm = 0.6

For the blue dye:

Distance traveled by the dye = 8 cm

Distance traveled by the mobile phase = 10 cm

Rf (blue) = 8 cm / 10 cm = 0.8

For the green dye:

Distance traveled by the dye = 9.5 cm

Distance traveled by the mobile phase = 10 cm

Rf (green) = 9.5 cm / 10 cm = 0.95

Therefore, the retention factors (Rf) for the red, blue, and green dyes are 0.6, 0.8, and 0.95, respectively.

You can learn more about chromatography experiment at

https://brainly.com/question/27007683

#SPJ11

Two cylinders each contain 0.30 mol of a diatomic gas at 280 K and a pressure of 3.0 atm. Cylinder A expands isothermally and cylinder B expands adiabatically until the pressure of each is 1.0 atm.
Part C
What is the final volume of the gas in the cylinder A?
Part D
What is the final volume of the gas in the cylinder B?

Answers

The final volume of the gas in cylinder A = 19.542 L

The final volume of the gas in cylinder B = 12.948 L

In an isothermal expansion, the temperature of the gas remains constant. Using the ideal gas law, we can calculate the initial volume of the gas in each cylinder.

Calculate the initial volume of the gas in each cylinder.

Since each cylinder contains 0.30 mol of gas and the ideal gas law is given by PV = nRT, we can rearrange the equation to solve for the initial volume V. Substituting the given values, we have:

V = (nRT) / P

  = (0.30 mol * 0.0821 L*atm/mol*K * 280 K) / 3.0 atm

  = 6.514 L

Calculate the final volume of the gas in cylinder A.

Since cylinder A expands isothermally, we can use Boyle's Law, which states that for an isothermal process, the product of pressure and volume is constant. Thus, we have:

P1 * V1 = P2 * V2

3.0 atm * 6.514 L = 1.0 atm * V2

V2 = (3.0 atm * 6.514 L) / 1.0 atm

   = 19.542 L

Calculate the final volume of the gas in cylinder B.

Since cylinder B expands adiabatically, the process occurs without the exchange of heat with the surroundings. For an adiabatic expansion, we can use the relationship:

P1 * V1^γ = P2 * V2^γ

Where γ is the heat capacity ratio of the gas (specific heat at constant pressure divided by specific heat at constant volume). Since the gas is diatomic, γ = 1.4. Substituting the given values, we have:

3.0 atm * (6.514 L)^1.4 = 1.0 atm *[tex]V2^1^.^4[/tex]

V2^1.4 = (3.0 atm * [tex](6.514 L)^1^.^4[/tex]) / 1.0 atm

V2 = [(3.0 atm * [tex](6.514 L)^1^.^4[/tex]) / [tex]1.0 atm]^(^1^/^1^.^4^)[/tex]

   = 12.948 L

Learn more about final volume

brainly.com/question/22012954

#SPJ11

A quantity of gas at 1.4 bar and 25 oC occupies a volume of 0.1 m3 in a cylinder behind a piston is compressed reversibly to a final pressure of 7 bar and a temperature of 60 oC. Sketch the process line on the p-v and T-s diagrams relative to the process line for a reversible adiabatic process and calculate the work and heat transfers in kJ and the change in entropy in kJ/K. The specific heat capacity at constant pressure, cp is 1.04 kJ/kg K and the specific gas constant, R is 0.297 kJ/kg K.

Answers

The work done during the process is approximately -0.031 kJ, the heat transfer is approximately 62.369 kJ, and the change in entropy is approximately 1.812 kJ/K.

To solve this problem, we'll use the ideal gas law and the first law of thermodynamics.

Given:

Initial pressure, P1 = 1.4 bar

Initial temperature, T1 = 25 °C = 25 + 273.15 K

Initial volume, V1 = 0.1 m^3

Final pressure, P2 = 7 bar

Final temperature, T2 = 60 °C = 60 + 273.15 K

Specific heat capacity at constant pressure, cp = 1.04 kJ/kg K

Specific gas constant, R = 0.297 kJ/kg K

Calculate the work done during the process:

The work done on the gas is given by the area under the process line on the p-v diagram.

Using the equation:

Work (W) = ∫PdV

For a reversible process, the work done can be calculated as:

W = ∫PdV = ∫(P)dV = ∫(P)dV = ∫(P)dV = ∫(P)dV

Using the ideal gas law, P1V1/T1 = P2V2/T2, we can solve for V2:

V2 = (P1V1T2) / (P2T1)

Substituting the given values:

V2 = (1.4 * 0.1 * (60 + 273.15)) / (7 * (25 + 273.15)) ≈ 0.126 m^3

The work done is:

W = P1V1 * ln(V2/V1) = 1.4 * 0.1 * ln(0.126/0.1) ≈ -0.031 kJ (Note: Negative sign indicates work done on the gas)

Calculate the heat transfers:

The first law of thermodynamics states that the change in internal energy (ΔU) of a system is equal to the heat transfer (Q) minus the work done (W).

ΔU = Q - W

For a reversible process, the change in internal energy can be calculated using the equation:

ΔU = cp * m * ΔT

Where m is the mass of the gas. Since the mass is not given, we can assume it to be 1 kg without loss of generality.

ΔT = T2 - T1 = (60 + 273.15) - (25 + 273.15) = 60 K

ΔU = cp * m * ΔT = 1.04 * 1 * 60 = 62.4 kJ

Therefore, the heat transfer is:

Q = ΔU + W = 62.4 - 0.031 ≈ 62.369 kJ

Calculate the change in entropy:

The change in entropy (ΔS) for a reversible process can be calculated using the equation:

ΔS = cp * ln(T2/T1) - R * ln(P2/P1)

Substituting the given values:

ΔS = 1.04 * ln((60 + 273.15)/(25 + 273.15)) - 0.297 * ln(7/1.4) ≈ 1.812 kJ/K

Therefore, the change in entropy is approximately 1.812 kJ/K.

In summary, the work done during the process is approximately -0.031 kJ, the heat transfer is approximately 62.369 kJ, and the change in entropy is approximately 1.812 kJ/K.

Learn more about first law of thermodynamics from the given link!

https://brainly.com/question/26035962

#SPJ11

how many significant figures should be retained in the result of the following calculation?
12.00000 x 0.9893 +13.00335 x 0.0107
a. 2
b. 3
c. 4
d. 5
e. 6

Answers

The result of the calculation should be reported with five significant figures. Therefore, the answer is d. 5.

When multiplying or adding numbers with different significant figures, the final result should only have the same number of significant figures as the value with the fewest significant figures. This is known as the rule of significant figures.

In the given calculation, the first term is 12.00000 x 0.9893 and the second term is 13.00335 x 0.0107. Since 0.0107 has only three significant figures, the final answer cannot have more than three significant figures. Therefore, we need to determine the number of significant figures in 12.00000 x 0.9893.

12.00000 has six significant figures because the zeros between the first and last non-zero digits count as significant figures. 0.9893 has four significant figures. When we multiply these two values, we get 11.8716. However, we need to round the answer to three significant figures. The third significant figure is the ten-thousandth's place, which is 7. Since 7 is greater than 5, we round up the second significant figure, which is 1. Therefore, the result of the first term is 11.9 (to three significant figures).

Now we can add the two terms 11.9 and 0.1393 (which is the result of multiplying 13.00335 and 0.0107). We get 12.0393, but since we need to round to three decimal places, the final answer is 12.0.

Thus, the correct answer is (a) 2, because the final answer has only two significant figures (12.0).

learn more about

brainly.com/question/32263449

Significant Figures in Calculation Results

SPJ11

A number of 5 significant figures should be retained in the result of the following calculation:

12.00000 x 0.9893 +13.00335 x 0.0107

To determine the number of significant figures that should be retained in the result of the calculation, we need to consider the number of significant figures in the values being multiplied and added.

In the given calculation:

12.00000 x 0.9893 + 13.00335 x 0.0107

The first term, 12.00000 x 0.9893, has six significant figures (as indicated by the trailing zeros and the presence of nonzero digits).

The second term, 13.00335 x 0.0107, has five significant figures.

When performing addition or subtraction, the result should be rounded to the least number of decimal places (or significant figures) among the values being added. In this case, the second term has five significant figures, so the final result should also have five significant figures.

Therefore, the correct option is d) 5.

Learn more about Significant Figures here:

https://brainly.com/question/29153641

#SPJ11




A device used in radiation therapy for cancer contains 0.92 g of cobalt-60 (59.933 819 u). The half-life of this isotope is 5.27 yr. Determine the activity (in Bq) of the radioactive material. Number

Answers

The activity of the radioactive material in a device used in radiation therapy for cancer is 3.15 x 10¹⁵ Bq.

Number of moles of cobalt-60 = n = Mass / Molar mass = 0.92 x 10³ / 59.933 819 = 0.015 349 mol

Now, Half-life of cobalt-60 = 5.27 yr

Let's find decay constant(k) using the half-life equation:

Half-life period(T₁/₂) = 5.27 yr = 5.27 x 365 x 24 x 60 x 60 s = 1.666 x 10⁹ s

k = 0.693 / T₁/₂ = 0.693 / 1.666 x 10⁹ = 4.16 x 10⁻¹⁰ /s

Now, let's calculate the activity of radioactive material.

Activity(A) = k x n x N(Avogadro's number)

A = 4.16 x 10⁻¹⁰ x 0.015 349 x 6.022 x 10²³ = 3.15 x 10¹⁵ Bq

Therefore, the activity of radioactive material is 3.15 x 10¹⁵ Bq.

Learn more about activity here: https://brainly.com/question/28570637

#SPJ11




If the element with atomic number 60 and atomic mass 160 decays by beta plus emission. What is the atomic number of the decay product?

Answers

The atomic number of the decay product of the element with atomic number 60 and atomic mass 160 decays by beta plus emission is 59.

To determine the atomic number of the decay product, we must that when beta-plus (β+) decay occurs, the nucleus emits a positron, which has the same mass as an electron but carries a positive charge and converts one of its protons into a neutron, increasing the neutron-to-proton ratio.

To answer the given question, we need to know what the decay product is. For β+ decay, the atomic number decreases by one because a proton is converted into a neutron. In this case, the atomic number of the parent is 60, and it decays by β+ decay. As a result, the atomic number of the decay product would be

60 - 1 = 59

Thus, the atomic number of the decay product would be 59.

Learn more about atomic number: https://brainly.com/question/8834373

#SPJ11

Identify to which octant the following point belongs in such a way that it satisfies the following conditions: XY<0 , Z<0

Answers

The given point belongs to the octant number IV because it satisfies the given conditions XY<0 and Z<0.

An octant is a part of three-dimensional coordinate plane consisting of points that have one coordinate plane lying on an axis and the remaining two plane coordinates are positive. A cartesian coordinate plane is divided into eight parts by the coordinate axes which are called octants.The following figure illustrates the octants on the 3D coordinate plane. The eight octants in the three-dimensional cartesian coordinate system.The octant number IV contains points with the following characteristics:-

X>0, Y<0, and Z<0

This means that in octant IV, x coordinates are positive, y coordinates are negative and z coordinates are negative.

So, the point which satisfies the conditions, XY<0 and Z<0 will belong to the octant number IV.

To learn more about octant number,

https://brainly.com/question/18917287

#SPJ4

Use the periodic table to calculate the molar mass of each compound below. All answers must have 2 decimal places.

Sodium hydroxide (NaOH):
g/mol
Water (H2O):
g/mol
Glucose (C6H12O6):
g/mol
Calcium sulfate (CaSO4):
g/mol
Magnesium phosphate (Mg3(PO4)2):
g/mol

Answers

The molar masses of the compounds are as follows:

Sodium hydroxide (NaOH): 39.99 g/mol. Water (H₂O): 18.

To calculate the molar mass of each compound, we need to determine the atomic masses of the elements in the compound and sum them up according to their respective stoichiometric coefficients.

Sodium hydroxide (NaOH):

The atomic mass of sodium (Na) is 22.99 g/mol, the atomic mass of oxygen (O) is 16.00 g/mol, and the atomic mass of hydrogen (H) is 1.01 g/mol. The stoichiometric coefficients for Na and O are 1, while for H it is also 1.

Molar mass of NaOH = (1 * Na) + (1 * O) + (1 * H) = (1 * 22.99) + (1 * 16.00) + (1 * 1.01) = 39.99 g/mol.

Water (H₂O):

The atomic mass of oxygen (O) is 16.00 g/mol, and the atomic mass of hydrogen (H) is 1.01 g/mol. The stoichiometric coefficient for O is 1, while for H it is 2.

Molar mass of H₂O = (2 * H) + (1 * O) = (2 * 1.01) + (1 * 16.00) = 18.02 g/mol.

Glucose (C₆H₁₂O₆):

The atomic mass of carbon (C) is 12.01 g/mol, the atomic mass of hydrogen (H) is 1.01 g/mol, and the atomic mass of oxygen (O) is 16.00 g/mol. The stoichiometric coefficients for C, H, and O are 6, 12, and 6, respectively.

Molar mass of C₆H₁₂O₆= (6 * C) + (12 * H) + (6 * O) = (6 * 12.01) + (12 * 1.01) + (6 * 16.00) = 180.18 g/mol.

Calcium sulfate (CaSO₄):

The atomic mass of calcium (Ca) is 40.08 g/mol, the atomic mass of sulfur (S) is 32.07 g/mol, and the atomic mass of oxygen (O) is 16.00 g/mol. The stoichiometric coefficients for Ca, S, and O are 1, 1, and 4, respectively.

Molar mass of CaSO4 = (1 * Ca) + (1 * S) + (4 * O) = (1 * 40.08) + (1 * 32.07) + (4 * 16.00) = 136.14 g/mol.

Magnesium phosphate (Mg₃3PO₄)₂):

The atomic mass of magnesium (Mg) is 24.31 g/mol, the atomic mass of phosphorus (P) is 30.97 g/mol, and the atomic mass of oxygen (O) is 16.00 g/mol. The stoichiometric coefficients for Mg, P, and O are 3, 2, and 8, respectively.

Molar mass of Mg₃(PO₄)₂ = (3 * Mg) + (2 * P) + (8 * O) = (3 * 24.31) + (2 * 30.97) + (8 * 16.00) = 262.86 g/mol.

Therefore, the molar masses of the compounds are as follows:

Sodium hydroxide (NaOH): 39.99 g/mol

Water (H₂O): 18.

for more questions on molar

https://brainly.com/question/837939

#SPJ8

Which of the following statements correctly describe the transition state of a reaction? select all that apply.

Answers

A) The transition state is a high-energy species.

B) The transition state is a short-lived species.

D) The transition state represents the highest energy point along the reaction pathway.

A) The transition state is a high-energy species because it is an intermediate state between the reactants and the products. It possesses an energy greater than that of both the reactants and the products.

B) The transition state is a short-lived species. It exists only momentarily during the reaction, as it quickly proceeds to form either the products or revert back to the reactants.

D) The transition state represents the highest energy point along the reaction pathway. It is the peak of the reaction's energy diagram, separating the reactants' energy level from the products' energy level.

The transition state is crucial in determining the reaction rate and is associated with the activation energy required for the reaction to occur. It is a dynamic arrangement of atoms or molecules where bonds are in the process of forming or breaking. Due to its fleeting nature and high energy, it is difficult to directly observe or isolate the transition state in experimental settings. However, its existence and characteristics can be inferred through various techniques such as computational modeling and kinetic studies.

learn more about reaction pathway here:

https://brainly.com/question/32909254

#SPJ11

7. Oxygen as an ideal gas, T₁ = T₂ = 520°R, P₁ = 10 atm, p₂ = 5 atm. Find As in Btu/lb °R. (2 pts) For 8-9 determine the desired quantities is there is no change is specific entropy. Identify the table you use. 8. Air as an ideal gas, T₁ = 27°C, p₁ = 1.5 bar, T₂ = 127°C. Find p₂ in bar. 9. Refrigerant 134a, T₁ = 20°C, p₁ = 5 bar, p2 = 1 bar. Find v₂ in m³/kg.

Answers

The answers are: s = -0.109 Btu/lb °R. p₂ = 2.448 bar.  v₂ = 0.2684 m³/kg.

Given:T₁ = T₂ = 520°R,

P₁ = 10 atm, p₂ = 5 atm

To find: As in Btu/lb °R.

Formula to be used:

As = Cp * ln(T₂/T₁) - R * ln(p₂/p₁)where Cp = 0.21 Btu/lb °R (for oxygen), R = 0.2598 Btu/lb °R (for oxygen).

Calculation:As = 0.21 * ln(520/520) - 0.2598 * ln(5/10) = -0.109 Btu/lb °R8.

Given:T₁ = 27°C, p₁ = 1.5 bar, T₂ = 127°C.To find: p₂ in bar.

Table used: Table A.4 (for air)

Formula to be used:s2 = s1Rln(T₂/T₁) + Cp * ln(p₂/p₁)s1 = s2 => Cp * ln(p₂/p₁) = Rln(T₂/T₁)p₂/p₁ = (T₂/T₁)^(R/Cp) = (400/300)^0.287 = 1.6323p₂ = 1.5 * 1.6323 = 2.448 bar9.

Given:T₁ = 20°C, p₁ = 5 bar, p2 = 1 bar.

To find: v₂ in m³/kg.

Table used: Table A.11 (for Refrigerant 134a)

Formula to be used:s2 = s1 + Cp ln(T₂/T₁) - R ln(p₂/p₁)s1 = s2 => Cp ln(p₂/p₁) = R ln(T₂/T₁)p₂/p₁ = (T₂/T₁)^(R/Cp) = (273.15 + 40)/(273.15 + 20)^(4.141/1.34) = 0.2661v₂ = V1 / (p₂/p₁) = 0.0715 / 0.2661 = 0.2684 m³/kg

Thus, the answers are: s = -0.109 Btu/lb °R. p₂ = 2.448 bar.  v₂ = 0.2684 m³/kg.

Learn more about volume

https://brainly.com/question/24284765

#SPJ11

what percent of total calories should come from linoleic acid?

Answers

The American Heart Association recommends that linoleic acid should make up 5-10% of total daily calories.

linoleic acid is an essential omega-6 fatty acid that the body cannot produce on its own and must be obtained through the diet. It plays a crucial role in maintaining overall health, particularly in relation to heart health.

The American Heart Association (AHA) recommends that linoleic acid should make up 5-10% of total daily calories. This recommendation is based on the beneficial effects of linoleic acid on heart health. Studies have shown that consuming an adequate amount of linoleic acid can help lower the risk of cardiovascular diseases.

Linoleic acid is found in various plant-based oils, such as soybean oil, sunflower oil, and corn oil. These oils can be used in cooking or as dressings for salads and other dishes.

It is important to note that while linoleic acid is beneficial, the overall balance of fatty acids in the diet is also crucial for optimal health. It is recommended to consume a variety of healthy fats, including omega-3 fatty acids, in addition to linoleic acid.

Learn more:

About linoleic acid here:

https://brainly.com/question/30690127

#SPJ11

A 3-kg sample of water contains 0.7 milligrams of mercury. What is the concentration of mercury in ppm?
50 ppm
2.1 ppm
4286 ppm
0.233 ppm

Answers

The concentration of mercury in ppm will be 0.233 ppm.

Given: The mass of water = 3 kg

The mass of mercury in water = 0.7 milligrams

We need to calculate the concentration of mercury in parts per million (ppm).

Formula: The concentration of mercury in ppm is given by,concentration in ppm= Mass of mercury in milligrams/Mass of water in kilograms

Or,concentration in ppm = (Mass of mercury/ Mass of water) × 10⁶We know, the mass of mercury is 0.7 milligrams and the mass of water is 3 kg or 3000 grams.

So, the concentration of mercury in ppm will be:

concentration in ppm = (Mass of mercury/ Mass of water) × 10⁶= 0.7/3000 × 10⁶= 0.233 ppm

Therefore, the concentration of mercury in ppm is 0.233 ppm.

We learned that the concentration of mercury in ppm can be calculated using the formula (Mass of mercury/ Mass of water) × 10⁶. In the given problem, the mass of mercury in 3 kg of water is 0.7 milligrams.

Thus, the concentration of mercury in ppm will be 0.233 ppm.

Learn more about concentration from the given link

https://brainly.com/question/28564792

#SPJ11  

the state of matter with the least active molecules is

Answers

The gaseous form of matter has the lowest intermolecular forces of attraction.

The particles in a gas have a large amount of space between them and a high kinetic energy. A gas lacks a fixed volume or shape. A gas will expand to fill its container if contained; if unconfined, its particles will disperse indefinitely.

According to NASA's Glenn Research Center, putting a gas under pressure by lowering the capacity of the container reduces the distance between particles and compresses the gas.

The simplest state of matter is the gaseous state, however only 11 of the elements in the periodic table behave as gases at standard temperature and pressure (STP, or 1 atm and 273 K). These are Hydrogen, Nitrogen, Oxygen, Fluorine, Neon, Argon, Krypton, Xenon, Radon.

To know more about gaseous state:

https://brainly.com/question/32664868

#SPJ4

Which of the following is an almost reversible process? The adiabatic free expansion of a gas. The explosion of hydrogen and oxygen to form water. O A slow leakage of gas into an empty chamber through a small hole in a membrane. Heat transfer through thick insulation. O A slow isothermal compression of a gas.

Answers

The almost reversible process is the adiabatic free expansion of a gas (Option A).

What is adiabatic free expansion?

An adiabatic process is one that does not involve the exchange of heat energy between a system and its surroundings, whereas an isothermal process is one that occurs at a constant temperature. An adiabatic free expansion is a reversible process since it does not allow for any energy transfer between the gas and its environment. It can only occur in an insulated container that has a partition that separates the two gases. It allows for the gas to expand to fill the entire container by transferring energy to the partition, which then returns it to the gas as it expands. The partition is then removed, allowing the gas to expand freely into the empty portion of the container.

Thus, the correct option is A.

Learn more about adiabatic process: https://brainly.com/question/29209594

#SPJ11

Other Questions
A steel making factory has implemented several energy efficiency projects to reduce its energy consumption. Table 1(a) shows production and energy consumption of its production line for the year of 2019 before implementation of energy efficiency projects. By the end of 2020, all energy efficiency projects have been successfully installed and commissioned. Table 1(b) shows production and energy consumption of its production line for the year of 2021 after implementation of energy efficiency projects. (a) Develop baseline energy equation model before implementation energy efficiency projects for the year of 2019. (b) Evaluate the effectiveness of the energy efficient projects by estimating total energy saving obtained for the year of 2021. (c) Discuss the benefits of implementing energy management. Month January February March April May June July August September October November December Month January February March April May June July August September October November December Number of Production Days 31 27 31 29 31 28 31 30 30 31 30 30 Number of Production Days 31 27 31 29 31 28 31 30 30 31 30 30 Table 1(a) Production (Metric Tons) 526 499 531 500 415 450 466 490 345 542 509 518 Table 1(b) Production (Metric Tons) 528 500 540 532 550 452 496 398 510 553 488 535 Energy Consumption (kWh) 566,190 490,125 578,123 492,198 476,158 470,176 492,165 483,550 352,818 587,125 532,912 511,052 Energy Consumption (kWh) 432,165 420,112 472,125 410,125 446,425 458,812 426,660 398,575 450,566 468,532 424,128 460,632 If there is a wave function going in the positive x direction at y1(x,t) = 1.60 cos (3.31x - 25.9t) and a second wave function also going in the positive x direction at y2(x,t) = 2.55 cos (14.7x - wt) but this second wave function moves energy 12 times faster than the first wave. Where x is in meters and t is in seconds. What is the frequency of the second wave in hertz? When a car goes around a circular curve on a horizontal road at constant speed, what force causes it to follow the circular path? A) the friction force from the road B) the normal force from the road C) gravity D) No force causes the car to do this because the car is traveling at constant speed and therefore has no acceleration. Find the volume of the solid generated by revolving the regions bounded by the lines and curves y=e^(-1/3)x, y=0, x=0 and x=3 about the x-axis. Palo DuroSome places simply warrant more attention. One of the most illustrious sites in the world is known by very few except regular adventure-goers. Travelers are awed by Palo Duro Canyon as its deep, red landscape appears seemingly out of nowhere. The canyon, similar in length to the Grand Canyon in Arizona, has scenic views just as glorious as those of the more famous canyon. At night, coyotes can be heard in the distance as the high winds gust through the valley, echoing the howls off the steep canyon walls. During the day, the hateful sun heats up every visible crevice, providing a contrast to the cool, breezy nights. The favorable aspect of the day is its gift of sight, of the stunning erosion that has taken place over millions of years, or of the rocks impossibly balanced on one another and their relentless determination to remain unmoved. This place and its striking diversity deserve recognition for doing exactly what nature does best: providing wonder to all. 1Select the correct answer.Which question would best support a readers analysis of the image with the text? A. Why did the author choose this photograph? B. What is the length of the Grand Canyon? C. How did the author acquire this photograph? D. What causes echoes in canyons? A stock analyst plots the price per share of a certain common stock as a function of time and finds that it can be approximated by the function8(t)=44+8e0.02t, wheretis the time (in years) since the stock was purchased. Find the average price of the stock over the first six years. The average price of the stock is 5 (Round to the nearest cent as needed). A model to assess the impact of student-teacher ratio on pass percentage of students in their secondary school examination is estimated as below: yy^ =686.31.12X 210.67X 31+0.0012(X 21X 31 )R 2 =0.422,n=420, (11.8) (0.59)(0.37)(0.019) Mean value of X =22 and mean value of X 3 =10% = =pass percentage in class 10 th examination for school i. X 2 = student-teacher-ratio = ratio of number of students appeared for class 10 th to the total number of teachers who taught them in school i, X3 percentage of children for whom both the parents completed graduation in school i. (3+7 marks) (i) Specify the econometric model using the matrix structure and justify whether this model has perfect collinearity or not. (ii) You are presenting the results to the class and one of your classmate says that you cannot interpret the coefficient of X 2 (teacher-student ratio) as this coefficient does not explain the variations in Y. You quickly check the regression output and find that the p-value of the overall significance of the model is very small and conclude that you can still interpret the model results. Your classmate who raised this doubt is not able to understand this, so explain what is this test of hypothesis you carried out by specifying the null and alternate hypothesis and the calculated value of the test statistic. Further give the justification as to what is the likely problem for this kind of a result and why under this condition the estimators are still BLUE. persons with _____ have a low opinion of their body shape and are likely to overestimate their actual proportions. A 3-sample segment, x[n], of a speech signal is defined as follows: x[n] = [ 1 0 1 ] a) Find the auto-correlation coefficients of this segment. [5 marks] b) Determine the coefficients of a second-order linear prediction model of the speech segment, x[n]. [9 marks] c) Find the prediction error obtained using the linear predictor of part b) above. [6 marks] need help ASAP46. (a) Calculate the activity R of \( 2.25 \mathrm{~g} \) of \( { }^{226} \mathrm{Ra} \). (Note: \( A_{0}=\lambda N_{0} \) ). Answer to 3 SigFigs in Bq. Write Verilog code utilizing a behavioral model for a mod8 synchronous counter that is triggered by a negative clock edge. Is it possible to have ""too much"" security in a network design? What are some trade-offs between ""too much"" and ""too little""? a) A channel has a Signal to Noise Ratio of 2000 and Bandwidthof 5000 KHz. What is the maximum data rate supported by the line?[5 marks] b) We have a message D = 10 1000 1101 (10 bits). Using apred Which of the following is an inaccurate statement regarding the Electronic Communications Privacy Act (ECPA) of 1986?Multiple choice question.The ECPA outlaws the intentional interception of electronic forms of communications.The ECPA effectively eliminated employee rights to privacy in the workplace.The ECPA extended employee privacy rights to cellular phones.The ECPA extended employee privacy rights to e-mail. Public speaking students frequently overlook ______research.a. primaryb. secondaryc. formald. informal what is the body's natural defense that protects against infectious agents in a universal way? specific immunity resident bacteria phagocytosis non-specific immunity Which of the following best represents information in your textbook concerning patients' cooperation with treatment advice? a. Patients who do not follow treatment advice deserve whatever happens to them.b. Skillful caregivers ask patients' feedback about diagnosis and treatment advice. c. Medical compliance is the biggest issue inflating health care expenditures in the United States today. .Most patients are in denial about the causes of their linesses Using C only. Please bring the output asshown in the 'example'.Circular Linked List implementation of List ADT number elements and perform insertion. If the List is empty, display "List is Empty". If target element not found, display "Target Element is Not Found" In swift explain this default portion of a switch statement,explain the logic in detail along with what would happen if the !was removed from !self.isHeLeaving()default:if self.heisrunning() & the most unusual and controversial aspect of jung's system is the