Answer:
HCl contain a polar covalent bond because H is more electropositive than Cl and Cl is more electronegative than H, resulting in a dipole moment
A 13.4 mL sample of CO2 gas was collected in an experiment.
What is this volume in liters (L)? Use significant figures, do NOT include the units.
Explanation:
here's the answer to your question
What information does the first quantum number of an electron give?
A. The sublevel that the electron is in
B. The specific orbital the electron is in
C. The energy level the electron is in
D. The spin that the specific electron has
Answer:
с
Explanation:
the first quantum number of an electron gives the information about the energy level the electron is in
The information first quantum number of an electron give is the energy level the electron is in.
What are quantum numbers?Quantum numbers is a set of symbols which gives idea about the position of electron present inside an atom.
First quantum number is denoted by symbol 'n' which gives idea about the number of shell or energy level in which electron is present.The sublevel that the electron is in is the second quantum number denoted by symbol 'l'.The specific orbital in which electron is present is denoted by symbol 'm' and it is the third quantum number.The spin that the specific electron has is the forth quantum number and denoted by symbol 's'.Hence first quantum number of electron gives ideal about the energy level.
To know more about quantum numbers, visit the below link:
https://brainly.com/question/11575590
methyl ether, a useful organic solvent, is prepared in two steps. In the first step, carbon dioxide and hydrogen react to form methanol and water:(g) (g) (l) (l)In the second step, methanol reacts to form dimethyl ether and water:(l) (g) (l)Calculate the net change in enthalpy for the format
This question is incomplete, the complete question is;
Dimethyl ether, a useful organic solvent, is prepared in two steps.
In the first step, carbon dioxide and hydrogen react to form methanol and water:
CO₂(g) + 3H₂(g) → CH₃OH(l) + H₂O(l) ΔH₁ = -131.kJ
In the second step, methanol reacts to form dimethyl ether and water:
2CH₃OH(l) → CH₃OCH₃(g) + H₂O(l) ΔH₂ = 8.kJ
Calculate the net change in enthalpy for the formation of one mole of dimethyl ether from carbon dioxide and hydrogen from these reactions. Round your answer to the nearest kJ.
Answer:
the net change in enthalpy for the formation of one mole of dimethyl ether is -254 kJ
Explanation:
Given the data in the question;
For the First Step;
CO₂(g) + 3H₂(g) → CH₃OH(l) + H₂O(l) ΔH₁ = -131.kJ
For the First Step;
2CH₃OH(l) → CH₃OCH₃(g) + H₂O(l) ΔH₂ = 8.kJ
Using Hess's Law of Constant Heat Summation;
" regardless of the multiple stages or steps of a reaction, the total enthalpy change for the reaction is the sum of all changes "
we multiply step 1 reaction by the coefficient of 2
2CO₂(g) + 2×3H₂(g) → 2CH₃OH(l) + 2H₂O(l) ΔH₁ = 2 × -131.kJ
we have
2CO₂(g) + 6H₂(g) → 2CH₃OH(l) + 2H₂O(l) ΔH₁ = -262 kJ
2CH₃OH(l) → CH₃OCH₃(g) + H₂O(l) ΔH₂ = 8 kJ
{ 2CH₃OH cancels 2CH₃OH }
Hence, we have;
2CO₂ + 6H₂ → CH₃OCH₃(g) + 3H₂O(l)
So According to Hess's Law;
ΔH[tex]_{sum[/tex] = ΔH₁ + ΔH₂
we substitute
ΔH[tex]_{sum[/tex] = -262 kJ + 8 kJ
ΔH[tex]_{sum[/tex] = -254 kJ
Therefore, the net change in enthalpy for the formation of one mole of dimethyl ether is -254 kJ
The number of organic compounds that have been reported in 2019 is more than 10 million. This is due to carbon's ability to bond to other carbon molecules, called
electron affinity.
ionic bonding.
catenation.
electronegativity.
Answer:
catenation
Explanation:
Carbon atoms have four electrons to share in bonding environments to get to the ideal octet. To do this, it bonds with other carbon molecules, called catenation. Catenation is the ability of an atom to bond and share electrons with other atoms of its kind.
How many electrons will one atom of element with 6 protons and 9 neutrons .
Answer:
The atomic mass of this element would be 12 amu
Explanation:
The subatomic particles provide several bits of information about a given element.
The number of protons is equal to the atomic number of the element. For this element having 6 protons makes the atomic number 6 and makes the element Carbon.
The number of protons plus the number of neutrons equals the atomic mass of the element based upon atomic mass units (amus)
For this element 6 protons and 6 neutrons combine to make an atomic mass of 12 amus.
Lastly, the values of protons and electrons tell whether the atom is an ion or neutral. When protons equal electrons the atom is neutral. When protons are greater than neutrons the atom is a positive charge or cation. When the protons are less than the electrons the atom is a negative charge or anion. For this example the Carbon atom has 6 protons and 6 electrons making it neutral.
Could someone please help me out???
Answer:
Time is 2.2 seconds.
Explanation:
Time:
[tex]{ \boxed{ \bf{time = \frac{distance}{speed} }}}[/tex]
Substitute into the formula:
speed = 715 km/h = 198.61 m/s
[tex]{ \tt{time = \frac{435}{198.61} }} \\ { \tt{time = 2.2 \: seconds}}[/tex]
In the reoxidation of QH2 by purified ubiquinone-cytochrome c reductase (Complex III) from heart muscle, the overall stoichiometry of the reaction requires 2 mol of cytochrome c per mole of QH2 because:
Answer: Options related to your question is missing below are the missing options
a. cytochrome c is a one-electron acceptor, whereas QH2 is a two-electron donor.
b. cytochrome c is a two-electron acceptor, whereas QH2 is a one-electron donor.
c. cytochrome c is water soluble and operates between the inner and outer mitochondrial membranes
d. heart muscle has a high rate of oxidative metabolism, and therefore requires twice as much cytochrome c as QH2 for electron transfer to proceed normally.
e. two molecules of cytochrome c must first combine physically before they are catalytically active.
answer:
cytochrome c is a one-electron acceptor, whereas QH2 is a two-electron donor. ( A )
Explanation:
The overall stoichiometry of the reaction requires 2 mol of cytochrome per mole of QH2 because a cytochrome is simply a one-electron acceptor while QH2 is not a one-electron donor ( i.e. it is a two-electron donor )
An electron donor in a reaction is considered a reducing agent because it donates its electrons to another compound thereby self oxidizing itself in the process.
What is the molarity of a solution made by mixing 75.0 mL of 3.00 M NH₄OH with enough water to give 250. mL of solution?
Please explain and show work.
We know
[tex]\boxed{\Large{\sf M_1V_1=M_2V_2}}[/tex]
[tex]\\ \Large\sf\longmapsto M_2=\dfrac{M_1V_1}{V_2}[/tex]
[tex]\\ \Large\sf\longmapsto M_2=\dfrac{3(75)}{250}[/tex]
[tex]\\ \Large\sf\longmapsto M_2=\dfrac{225}{250}[/tex]
[tex]\\ \Large\sf\longmapsto M_2=0.9M[/tex]
Answer:
Mass 1=3M
Mass 2=?
Volume1=75mL
Volume2=250mL
By using molarity formula:
mass1*volume 1=mass2*volume 2
3M*75=mass2*250
mass2=225/250
mass2:0.9M
the molarity of a solution is 0.9M.Oxygen and hydrogen are compressed into two cubical boxes of the same
size at a temperature of 28 K. What do these gases have in common
according to the kinetic theory?
Explanation:
Following are the kinetic theory of gases postulates:
1) Space-volume to molecules ratio is negligible.
2)There is no force of attraction between the molecules at normal temperature and pressure. The force of attraction between the molecules build when the temperature decreases and the pressure increases.
3) There is large space between the molecules resulting in continuous motion.
4) The free movement of molecules results in collision which is perfectly elastic.
5) The molecules have kinetic energy due to random movement. But the average kinetic energy of these molecules differs with temperature.
6) Molecules exert pressure on the walls of the container.
When water reaches the metastable state, the phase of water will be?
Answer:
water, when the metastable state is reached, is cooled below the zero temperature. It freezes abruptly. this is called metastable. They are not at equilibrium per se; as at negative temperatures the only equilibrium state of water is ice.
Explanation:
PLEASE HELP
iv. A total of 132.33g C3H8 is burned in 384.00 g O2. Use the following questions to determine the amounts of products formed.
• Determine if one of the reactants is a limiting reagent.
• How many grams of CO2 and H2O will be produced? (2 points)
b. If the furnace is not properly adjusted, the products of combustion can include other gases, such as CO and unburned hydrocarbons. If only 269.34 g of CO2 were formed in the above reaction, what would the percent yield be? (2 points)
Answer:
See explanation
Explanation:
The equation of the reaction is;
C3H8 + 5O2 ----> 3CO2 + 4H2O
Number of moles of C3H8 = 132.33g/44g/mol = 3 moles
1 mole of C3H8 yields 3 moles of CO2
3 moles of C3H8 yields 3 × 3/1 = 9 moles of CO2
Number of moles of oxygen = 384.00 g/32 g/mol = 12 moles
5 moles of oxygen yields 3 moles of CO2
12 moles of oxygen yields 12 × 3/5 = 7.2 moles of CO2
Hence C3H8 is the limiting reactant.
Mass of CO2 produced = 9 moles of CO2 × 44 g/mol = 396 g of CO2
1 moles of C3H8 yields 4 moles of water
3 moles of C3H8 yields 3 × 4/1 = 12 moles of water
Mass of water = 12 moles of water × 18 g/mol = 216 g of water
b) Actual yield = 269.34 g
Theoretical yield = 396 g
% yield = actual yield/theoretical yield × 100/1
% yield = 269.34 g /396 g × 100
% yield = 68%
using the balanced equation below how many grams of lead(||) sulfate would be produced from the complete reaction of 23.6 g lead (|V) oxide
Answer:
59.8 g of PbSO₄.
Explanation:
The balanced equation for the reaction is given below:
Pb + PbO₂ + 2H₂SO₄ —> 2PbSO₄ + 2H₂O
Next, we shall determine the mass of PbO₂ that reacted and the mass of PbSO₄ produced from the balanced equation. This can be obtained as follow:
Molar mass of PbO₂ = 207 + (16×2)
= 207 + 32
= 239 g/mol
Mass of PbO₂ from the balanced equation = 1 × 239 = 239 g
Molar mass of PbSO₄ = 207 + 32 + (16×4)
= 207 + 32 + 64
= 303 g/mol
Mass of PbSO₄ from the balanced equation = 2 × 303 = 606 g
SUMMARY:
From the balanced equation above,
239 g of PbO₂ reacted to produce 606 g of PbSO₄.
Finally, we shall determine the mass of PbSO₄ that will be produced by the reaction of 23.6 g of PbO₂. This can be obtained as follow:
From the balanced equation above,
239 g of PbO₂ reacted to produce 606 g of PbSO₄.
Therefore, 23.6 g of PbO₂ will react to produce = (23.6 × 606) / 239 = 59.8 g of PbSO₄.
Thus, 59.8 g of PbSO₄ were obtained from the reaction.
what is the difference between 25ml and 25.00ml
Answer:
There is no difference between the two.
Explanation:
They both show the same volume. But, adding decimal places shows the least count of the instrument used and is more acceptable when recording values in scientific experiments
Write the balanced equation for the hydration of CuSO4CuSO4. Indicate the physical states using the abbreviations (ss), (ll), or (gg) for solid, liquid, or gas, respectively. Use (aqaq) to indicate the aqueous phase. Indicate appropriate charges on negative and positive ions if they are formed.
Answer:
CuSO4(s) + 5H2O(l) ----> CuSO4.5H2O(s)
Explanation:
Hydration is the process by which anhydrous CuSO4 acquires molecules of water of crystalization to form the pentahydrate.
The water of crystalization becomes attached go the crystals of the CuSO4 to form the hydrated salt.
Beginning with solid anhydrous CuSO4 we have;
CuSO4(s) + 5H2O(l) ----> CuSO4.5H2O(s)
I NEED A ANSWER FOR THIS QUESTION, ASAP
A solution is made by mixing 34.5 g of sugar with 75.0 g of water. What is the mass percent of sugar in this solution?
Please explain and show work.
the mass percent of sugar in this solution is 46%.
Answer:
Solution given:
mass of solute=34.5g
mass of solvent=75g
mass percent=[tex]\frac{mass\:of\:solute}{mass\:of \:solvent}*100\%[/tex]
=[tex]\bold{\frac{34.5}{75.0}*100\%=46\%}[/tex]
We know that,
[tex]mass \: solute = \frac{mass \: of \: solute}{mass \: of \: solvent} [/tex]×100
[tex] \frac{34.5}{75.0} = 0.46[/tex]
hope it helps..
Evaluate the validity of the following statement: Spontaneous processes are ones that occur quickly and have a low activation energy. A) False. Spontaneous processes always require an input of energy to overcome the activation energy, but always react quickly. B) False. Spontaneous processes can occur slowly, but always have a low activation energy. C) False. Spontaneous reactions can react slowly and can have a high activation energy. D) False. Spontaneous processes always react slowly and always have a high activation energy. E) True.
Answer:
Spontaneous processes are ones that occur quickly and have a low activation energy. - False -
Spontaneous processes always require an input of energy to overcome the activation energy, but always react quickly - False
Spontaneous processes can occur slowly, but always have a low activation- false
Spontaneous reactions can react slowly and can have a high activation energy - True
Spontaneous processes always react slowly and always have a high activation energy- False
Explanation:
A spontaneous reaction is reaction that proceeds on its own without us having to do a thing at all!
A spontaneous reaction may be fast or slow depending on the activation energy of the reaction. A spontaneous reaction having a high activation energy will be slow. However, if the spontaneous reaction has a low activation energy then it will be fast.
We have to note here that a spontaneous reaction proceeds without a prolonged input energy. Sometimes energy may be supplied to the reaction at the beginning for instance in the case of the combustion of hydrocarbons.
So, spontaneous processes are not necessarily fast. Some of them may have a very high activation energy such as in the rusting of iron hence they are slow.
I don’t know what Ksp and Kf are stand for?
Answer:
Sorry but I know only what ksf stand for
Explanation:
Ksf stand for solubility product constant
Answer:
ksp stands for solubility product constant .
kf stands for molal freezing point depression constant ..
Explanation:
KSP = The solubility product constant, Ksp, is the equilibrium constant for a solid substance dissolving in an aqueous solution. It represents the level at which a solute dissolves in solution. The more soluble a substance is, the higher the Ksp value it has .
KF = Kf is a constant for a given solvent. Kf is called the molal freezing point depression constant and represents how many degrees the freezing point of the solvent will change when 1.00 mole of a nonvolatile nonionizing (nondissociating) solute dissolves in one kilogram of solvent.
Cesium- is radioactive and has a half life of years. Calculate the activity of a sample of cesium-. Give your answer in becquerels and in curies. Round your answer to significant digits.
The question is incomplete, the complete question is;
Cesium-137 is radioactive and has a half life of 30. years. Calculate the activity of a 6.8 mg sample of cesium-137. Give your answer in becquerels and in curies. Round your answer to 2 significant digits Bq Ci
Answer:
See explanation
Explanation:
The formula for activity is;
R= 0.693N/t1/2
N= 6.02 ×10^23 mol × 6.8 ×10^-3g/137 g/mol = 3 × 10^19
Substituting into the formula;
R= 0.693 × 3 × 10^19/30 years
R= 6.93 ×10^17 y^-1
In Bq;
6.93 ×10^17 y^-1 × 1.00y/3.16 ×10^7 seconds
= 2.19 ×10^10 Bq
In Ci;
2.19 ×10^10 Bq/3.7 ×10^10 Bq/Ci
= 0.59 Ci
A quantity of ideal gas requires 800 kJ to raise the temperature of the gas by 10.0 K when the gas is maintained at constant volume. The same quantity of gas requires 900 kJ to raise the temperature of the gas by 10.0 K when the gas is maintained at constant pressure. What is the adiabatic gas constant of this gas
Answer:
[tex]\gamma=1.125[/tex]
Explanation:
From the question we are told that:
Initial Heat [tex]Q_1=800kJ[/tex]
initial Temperature [tex]T_1=10.0K[/tex]
Final Heat [tex]Q_2=800kJ[/tex]
Final Temperature [tex]T_2=10.0K[/tex]
Generally the equation for Adiabatic constant is mathematically given by
[tex]\gamma=\frac{Cp}{Cv}[/tex]
Since
Equation for Heat [tex]dQ=nCdT[/tex]
Where
[tex]n_1=n_2\\\\T_1=T_2[/tex]
Therefore
[tex]Q_1=Cv\\\\Cv=800[/tex]
And
[tex]Cp=900[/tex]
Therefore
[tex]\gamma=\frac{900}{800}\\\\\gamma=\frac{9}{8}[/tex]
[tex]\gamma=1.125[/tex]
PLEASE HELP ASAP
A total of 132.33g C3H8 is burned in 384.00 g O2. Use the following questions to determine the amounts of products formed.
• How many grams of CO2 and H2O will be produced? (2 points)
b. If the furnace is not properly adjusted, the products of combustion can include other gases, such as CO and unburned hydrocarbons. If only 269.34 g of CO2 were formed in the above reaction, what would the percent yield be? (2 points)
Answer:
See explanation
Explanation:
We must first write the equation of the reaction as follows;
C3H8 + 5O2 ----> 3CO2 + 4H2O
Now;
We obtain the number of moles of C3H8 = 132.33g/44g/mol = 3 moles
So;
1 mole of C3H8 yields 3 moles of CO2
3 moles of C3H8 yields 3 × 3/1 = 9 moles of CO2
We obtain the number of moles of oxygen = 384.00 g/32 g/mol = 12 moles
So;
5 moles of oxygen yields 3 moles of CO2
12 moles of oxygen yields 12 × 3/5 = 7.2 moles of CO2
We can now decide on the limiting reactant to be C3H8
Therefore;
Mass of CO2 produced = 9 moles of CO2 × 44 g/mol = 396 g of CO2
Again;
1 moles of C3H8 yields 4 moles of water
3 moles of C3H8 yields 3 × 4/1 = 12 moles of water
Hence;
Mass of water = 12 moles of water × 18 g/mol = 216 g of water
In order to obtain the percentage yield from the reaction, we have;
b) Actual yield = 269.34 g
Theoretical yield = 396 g
Therefore;
% yield = actual yield/theoretical yield × 100/1
Substituting values
% yield = 269.34 g /396 g × 100
% yield = 68%
Answer EIGHT questions.
1(a) Whai do you mean by generation of computer? Describe brieíly
5
about third and fourth generations of computer.
B
moga dele
Answer:
Generation in computer terminology is a change in technology a computer is/was being used. Initially, the generation term was used to distinguish between varying hardware technologies. Nowadays, generation includes both hardware and software, which together make up an entire computer system.
5 generation of computer
Main electronic component: based on artificial intelligence, uses the Ultra Large-Scale Integration (ULSI) technology and parallel processing method.
ULSI – millions of transistors on a single microchip
Parallel processing method – use two or more microprocessors to run tasks simultaneously.
Language – understand natural language (human language).
Power – consume less power and generate less heat.
Speed – remarkable improvement of speed, accuracy and reliability (in comparison with the fourth generation computers).
Size – portable and small in size, and have a huge storage capacity.
Input / output device – keyboard, monitor, mouse, trackpad (or touchpad), touchscreen, pen, speech input (recognise voice / speech), light scanner, printer, etc.
Example – desktops, laptops, tablets, smartphones, etc.
3 generation of computer
Main electronic component – integrated circuits (ICs)
Memory – large magnetic core, magnetic tape / disk
Programming language – high level language (FORTRAN, BASIC, Pascal, COBOL, C, etc.)
Size – smaller, cheaper, and more efficient than second generation computers (they were called minicomputers).
Speed – improvement of speed and reliability (in comparison with the second generation computers).
Input / output devices – magnetic tape, keyboard, monitor, printer, etc.
Examples – IBM 360, IBM 370, PDP-11, UNIVAC 1108, etc.
4 generations of computer
Main electronic component – very large-scale integration (VLSI) and microprocessor.
VLSI– thousands of transistors on a single microchip.
Memory – semiconductor memory (such as RAM, ROM, etc.)
RAM (random-access memory) – a type of data storage (memory element) used in computers that temporary stores of programs and data (volatile: its contents are lost when the computer is turned off).
ROM (read-only memory) – a type of data storage used in computers that permanently stores data and programs (non-volatile: its contents are retained even when the computer is turned off).
Programming language – high level language (Python, C#, Java, JavaScript, Rust, Kotlin, etc.).
Calculate the numerical value of the equilibrium constant, Kc, for the reaction below if the equilibrium concentrations for CO, H2 , CH4 and H2O are 0.989 M, 0.993 M, 1.078 M and 0.878 M, respectively. (calculate your answer to three sig figs)
CO(g) + 3 H2(g) ⇌ CH4(g) + H2O(g)
Kc = [CH4]×[H2O] / [CO]×[H2]^3
Kc = 1.078×0.878 / (0.989×0.933^3)
Kc = 0.977
The numerical value of the equilibrium constant, Kc, for the given reaction is found to be 0.977.
What is Equilibrium constant?The Equilibrium constant may be defined as the numerical value that significantly indicated the correlation between the amounts of products and reactants present at equilibrium in a reversible chemical reaction at a definite temperature.
According to the question, the reaction is as follows:
[tex]CO +3H_2[/tex] ↔ [tex]CH_4+ H_2O[/tex].
The equilibrium concentrations are 0.989 M, 0.993 M, 1.078 M and 0.878 M, respectively.
Now, the equilibrium constant is calculated by the following formula:
Kc = [CH4]×[H2O] / [CO]×[tex][H_2]^3[/tex]= 1.078×0.878 / (0.989×0.93[tex]3^3[/tex]).
= 0.9464/(0.989 × 0.8121)
= 0.977.
Therefore, the numerical value of the equilibrium constant, Kc, for the given reaction is found to be 0.977.
To learn more about Equilibrium constant, refer to the link:
https://brainly.com/question/19340344
#SPJ2
What trends were seen in medeleevs periodic table
Answer:
groups are based on how many electrons to become stable
Explanation:
melting points of lipids are strongly influenced by the length and degree of unsaturation of hydrocarbon chain.justify this statement?
Answer
The properties of fatty acids and of lipids derived from them are markedly dependent on chain length and degree of saturation. Unsaturated fatty acids have lower melting points than saturated fatty acids of the same length. For example, the melting point of stearic acid is 69.6°C, whereas that of oleic acid (which contains one cis double bond) is 13.4°C. The melting points of polyunsaturated fatty acids of the C18 series are even lower. Chain length also affects the melting point, as illustrated by the fact that the melting temperature of palmitic acid (C16) is 6.5 degrees lower than that of stearic acid (C18). Thus, short chain length and unsaturation enhance the fluidity of fatty acids and of their derivatives.
The decomposition of ammonia is: 2 NH3(g) ⇌ N2(g) + 3 H2(g). If Kp is 1.5 × 103 at 400°C, what is the partial pressure of ammonia at equilibrium when N2 is 0.20 atm and H2 is 0.15 atm?
Answer:
"[tex]6.7\times 10^{-4} \ atm[/tex]" is the right answer.
Explanation:
Given:
Partial pressure of [tex]N_2[/tex],
= 0.20 atm
Partial pressure of [tex]H_2[/tex],
= 0.15 atm
[tex]K_p = 1.5\times 10^3[/tex] at [tex]400^{\circ} C[/tex]
As we know,
⇒ [tex]K_p = \frac{pN_2\times pH_2^3}{pNH_3^2}[/tex]
By putting the values, we get
[tex]1.5\times 10^3=\frac{0.20\times (0.15)^3}{pNH_3^2}[/tex]
[tex]pNH_3^2 = \frac{0.000675}{1.5\times 10^3}[/tex]
[tex]=6.7\times 10^{-4} \ atm[/tex]
Name this compound?
*Please asap*
Trả lời:3 5-dimethylheptane
Explanation:
crassify the given quantities into scalar quantity and vetor quantity
Answer:
where is the quantities?
5.32 picometers is the same as
A.5.32 x 10^-12 meters
B.5.32 x 10^12 meters
C.5.32 x 10^9 meters
D.5.32 x 10^2 meters
What type of oxide is each of the following? NO2, CO, Fe2O3, Al2O3, P20,
Nitrogen Dioxide
Carbon Monoxide
Iron (II) Oxide
Aluminum Oxide
DiPhosphorus Monoxide