Answer:
Light takes less time than sound.
Explanation:
Let's say, the teacher and the student are at a distance "d" from each other.
The medium around them would be air.
And,
The speed of light in air is approx. 3× 10⁸ m/s
while, the speed of sound in air is approx. 330 m/s
We have a formula that establishes the relation between speed, distance and time.
[tex] \boxed{ \mathsf{speed = \frac{distance}{time} }}[/tex]
Our hunt for time — Speed in both the scenarios is known to us whereas the distance is same.
Sound
[tex] \mathsf{330 = \frac{d}{time_{s}} }[/tex]
[tex] \underline{\mathsf{time _{s} = \frac{d}{330} }}[/tex]
Light
[tex] \mathsf{3 \times {10}^{8} = \frac{d}{time _{l} } }[/tex]
[tex] \underline{ \mathsf{ time _{l} = \frac{d}{3 \times {10}^{8}} }}[/tex]
The best way of comparison is finding their ratio.
[tex] \implies \mathsf{\frac{ time_{s}}{time_{l} } = \frac{ \frac{d}{330} }{ \frac{d}{3 \times {10}^{8} } } }[/tex]
simplifying the fraction
[tex] \implies \mathsf{\frac{ time_{s}}{time_{l} } = \frac{d \times (3 \times {10}^{8} )}{330 \times d}}[/tex]
d gets canceled and we're left with the following expression
[tex] \implies \mathsf{\frac{ time_{s}}{time_{l} } = \frac{ (3 \times10 \times {10}^{7} )}{330}}[/tex]
30, being a common factor in the numerator as well as denominator, gets canceled out. and in its place remains 1/ 11
(why?
=> 30÷330 = 1÷11)
[tex] \implies \mathsf{\frac{ time_{s}}{time_{l} } = \frac{ 1\times {10}^{7} }{11}}[/tex]
taking timeₛ to the numerator on the other side.
[tex] \implies \mathsf{time_{s} = \frac{ 1\times {10}^{7} }{11}\times time_{l}}[/tex]
Therefore, we get timeₛ is approx. 10⁶ times the timeₗ.
That's a big difference, no wonder light's way much faster than sound.
As lesser the time taken to cover a distance, faster is the wave.
The sound takes about 874,000 times MORE time than the light takes.
A Geiger counter registers a count rate of 8,000 counts per minute from a sample of a radioisotope. The count rate 24 minutes later is 1,000 counts per minute. What is the half-life of the radioisotope?
11.54 minutes
Explanation:
The decay rate equation is given by
[tex]N = N_0e^{-\frac{t}{\lambda}}[/tex]
where [tex]\lambda[/tex] is the half-life. We can rewrite this as
[tex]\dfrac{N}{N_0} = e^{-\frac{t}{\lambda}}[/tex]
Taking the natural logarithm of both sides, we get
[tex]\ln \left(\dfrac{N}{N_0}\right) = -\left(\dfrac{t}{\lambda}\right)[/tex]
Solving for [tex]\lambda[/tex],
[tex]\lambda = -\dfrac{t}{\ln \left(\frac{N}{N_0}\right)}[/tex]
[tex]\:\:\:\:= -\dfrac{(24\:\text{minutes})}{\ln \left(\frac{1000\:\text{counts/min}}{8000\:\text{counts/min}}\right)}[/tex]
[tex]\:\:\:\:=11.54\:\text{minutes}[/tex]
Steel railway tracks are laid at 8oC. What size of expansion gap are needed 10m long rail sections if the ambient temperature varies from -10oC to 50oC? [Linear expansivity of steel = 12 x]
Answer:
Gap left = Change in length on heating
Gap=Initial length×Coefficient of linear expansion×change in temperature
Gap=10×0.000012×15m
⟹Gap=0.0018 m
this is an example u have to put your equation in it
A chair of weight 85.0 N lies atop a horizontal floor; the floor is not frictionless. You push on the chair with a force of F = 40.0 N directed at an angle of 35.0deg below the horizontal and the chair slides along the floor.
Using Newton's laws, calculate n, the magnitude of the normal force that the floor exerts on the chair.
Answer:
N = 107.94 N
Explanation:
For this exercise we must use Newton's second law.
Let's set a reference system with the x-axis parallel to the ground and the y-axis vertical
X axis
Fₓ = ma
ej and
N -F_y - W = 0
let's use trigonometry to decompose the applied force
cos -35 = Fₓ / F
sin -35 = F_y / F
Fₓ = F cos -35
F_y = F sin -35
Fₓ = 40.0 cos -35 = 32.766 N
F_y = 40.0 sin -35 = -22.94 N
we substitute
N = Fy + W
N = 22.94 + 85
N = 107.94 N
Sunlight above the Earth's atmosphere has an intensity of 1.36 kW/m2. If this is reflected straight back from a mirror that has only a small recoil, the light's momentum is exactly reversed, giving the mirror twice the incident momentum. (a) Calculate the force per square meter of mirror (in N/m2). N/m2 (b) Very low mass mirrors can be constructed in the near weightlessness of space, and attached to a spaceship to sail it. Once done, the average mass per square meter of the spaceship is 0.170 kg. Find the acceleration (in m/s2) of the spaceship if all other forces are balanced. m/s2 (c) How fast (in m/s) is it moving 24 hours later
Answer:
a) [tex]F=9.2*10^{-6}N/m^2[/tex]
b) [tex]a=5.4*10^{-4}m/s[/tex]
c) [tex]v=46.65m/s[/tex]
Explanation:
From the question we are told that:
Intensity I= 1.36 kW/m2=>1360W/m
b)Average mass per square meter m = 0.170 kg
c) [tex]T=24hrs[/tex]
a)
Generally the equation for force per square meter is mathematically given by
[tex]F=\frac{2E}{C}[/tex]
[tex]F=\frac{2*1360}{3*10^8}[/tex]
[tex]F=9.2*10^{-6}N/m^2[/tex]
b)
Generally the equation for force is mathematically given by
F=ma
Therefore
[tex]a=\frac{F}{m}[/tex]
[tex]a=\frac{9.2*10^{-6}N/m^2}{0.0170}[/tex]
[tex]a=5.4*10^{-4}m/s[/tex]
c)
Generally the Newton's equation for Motion is mathematically given by
[tex]v=u+at[/tex]
[tex]v=0+5.4*10^{-4}m/s*(24*3600)[/tex]
[tex]v=46.65m/s[/tex]
5. A bicyclist is finishing her repair of a flat tire when a friend rides by at a constant velocity of
3.5 m/s. Three seconds later, the bicyclist hops on her bike and accelerates at 3.6 m/s² until she
catches her friend.
a. How much time does it take until she catches her friend?
b. How far has she traveled in this time?
c. What is her speed when she catches up?
Answer:
a) t = 3.6 s
b) d = 23 m
c) v = 13 m/s
Explanation:
Let t be the time the accelerating rider rides
the distance she travels is
d = ½3.6t²
the distance for the other cyclist is
d =3.5(t + 3)
½3.6t² = 3.5(t + 3)
1.8t² - 3.5t - 10.5 = 0
quadratic formula, positive answer
t = (3.5 + √(3.5² - 4(1.8)(-10.5))) / (2(1.8))
t = 3.575786...
d = ½(3.6)(3.575786²) = 23.015...
v = 3.6(3.575786) = 12.8728...
True or false : conservation of energy gives a relationship between the speed of a falling object and the height from which it was dropped
Answer:
truee
Explanation:
how interfacial angles are determined using contact goinometer
Assume the speed of sound is 343 m/s. You are sitting 150 m away from home plate at a baseball game. How much time in seconds elapses between the batter hitting a home run and the moment you actually hear the batter hitting the ball
Answer:
t = 0.437 s
Explanation:
Sound is a wave so its speed is constant
v = x / t
t = x / v
indicates that the distance is x = 150 m
t = 150/343
t = 0.437 s
this is the time it takes to hear the hit
To see the blow it is almost instantaneous since the speed of light is much greater c = 3 10⁸ m / s
A 1050 kg car accelerates from 11.3 m/s to 26.2 m/s . What impulse does the engine give?
Answer:
I = 15,645. kg*m/s or 15,645 N*s
Explanation:
I = m(^v)
I = 1050kg((26.2m/s-11.3m/s)
I = 15,645. kg*m/s
A 2kg ball is rolled along the floor for 0.8 m at a constant speed of 6 m/s. What is the work done by gravity?
A, 0
B, 16 J
C, 72 J
D, 450 J
E, 90 J
=F×s×cosa=2×g×0,8×cos90°= 0
The work done by gravity on a ball of 2 kg which is moving with a constant speed of 6 meter per second is zero. Thus, the correct option is A.
What is Work?Work is the energy transfer to or from an object through the application of force along with the displacement. For a constant force aligned with the direction of motion, the work done is equal to the product of the force strength which is applied and the distance traveled by the object.
Work = Force × Displacement
Force = Mass × Acceleration
Acceleration of the ball is zero as it is moving with a constant speed. Therefore, the work done by the gravity is zero.
Therefore, the correct option is A.
Learn more about Work done here:
https://brainly.com/question/13662169
#SPJ2
There are 5640 lines per centimeter in a grating that is used with light whose wavelegth is 455 nm. A flat observation screen is located 0.661 m from the grating. What is the minimum width that the screen must have so the centers of all the principal maxima formed on either side of the central maximum fall on the screen
The minimum width of the screen is 34 cm.
For a diffraction grating, dsinθ = mλ where d = grating spacing = 1/5640 lines per cm = 1/5640 cm per line = 1/5640 × 10⁻² m per line, θ = angle between principal maximum and the center axis of the grating, m = order of maxima = 1 (since we require the position of the principal maximum) and λ = wavelength = 455 nm = 455 × 10⁻⁹ m
So, sinθ = mλ/d
Also tanθ = L/D where θ = angle between principal maximum and the center axis of the grating, L = distance between central maximum and principal maximum and D = distance between grating and screen = 0.661 m.
For small angles sinθ ≈ tanθ
So, mλ/d = L/D
making L subject of the formula, we have
L = mλD/d
L = 1 × 455 × 10⁻⁹ m × 0.661 m ÷ 1/5640 × 10⁻² m per line
L = 1 × 455 × 10⁻⁹ m × 0.661 m × 5640 × 10² line per m
L = 1696258.2 × 10⁻⁷ m
L = 0.16963 m
L ≅ 0.17 m
So, for centers of all the principal maxima formed on either side of the central maximum fall on the screen, the minimum width of the screen is w = 2L.
So, w = 2 × 0.17 m
w = 0.34 m
w = 34 cm
So for the centers of all the principal maxima formed on either side of the central maximum fall on the screen, the minimum width of the screen is 34 cm.
Learn more about diffraction grating here:
https://brainly.com/question/15712101
a method of reducing friction
Answer:
Lubrication
Explanation:
People oil/lubricate bicycle chains because the chain turns around the cogs and rub together so this help with friction.
Hope this helps :)
Answer:
The method of reducing friction are :
i) In moving parts of machine friction can be reduced by using a ball bearing between the moving surfaces
ii) The bodies of aeroplane ,ship ,boat etc are made streamlined to reduce friction.
iii) Friction can be reduced by polishing rough surfaces. For example : carrom boards are highly polished to reduce friction.
I hope this help you:)
Identify the correct descriptions of alpha particles. Select one or more: Alpha particles are more massive than beta particles. An alpha particle is a helium nucleus. An alpha particle has a negative charge. An alpha particle is a form of electromagnetic radiatio
Answer:
Alpha particles are more massive than beta particles.
Explanation:
The alpha particles are also called double-positive Heilum Nuclei because they have a charge of "+2" and a mass of 4 a.m.u. The properties of the alpha particles are as follows:
1. It possesses high energy due to high velocity. It is 7.7 MeV for most energetic from Rac (i.e: Bismuth-214)
2. It has a very high ionizing power. A 7.7 MeV particle produces about 0.2 x 10⁶ ions.
3. The range of alpha particles is very small. It is about 7 x 10⁻² m and only 4 x 10⁻⁵ m in aluminum for 7.7 MeV alpha-particle.
4. Alpha particles produce fluorescence on striking certain substances, such as zinc sulphide and bariumplatinocynide.
The beta particles are fast-moving electrons, which have a negligible mass.
Hence, the correct option is:
Alpha particles are more massive than beta particles.
How many types of physics?
Answer:
Two Main Branches of Physics
it is Classical Physics and Modern Physics.
Explanation:
Further sub Physics branches are Mechanics, Electromagnetism, Thermodynamics, Optics, etc. The rapid progress in science during recent years has become possible due to discoveries and inventions in the field of physics.
hope it helped
a volcano that may erupt again at some time in the distant future is
A 40-turn coil has a diameter of 11 cm. The coil is placed in a spatially uniform magnetic field of magnitude 0.40 T so that the face of the coil and the magnetic field are perpendicular. Find the magnitude of the emf induced in the coil (in V) if the magnetic field is reduced to zero uniformly in the following times.
(a) 0.30 s V
(b) 3.0 s V
(c) 65 s V
Answer:
(a) emf = 0.507 V
(b) emf = 0.0507 V
(c) emf = 0.00234 V
Explanation:
Given;
number of turns of the coil, N = 40 turns
diameter of the coil, d = 11 cm
radius of the coil, r = 5.5 cm = 0.055 m
magnitude of the magnetic field, B = 0.4 T
The magnitude of the induced emf is calculated as;
[tex]emf = - N\frac{d\phi}{dt} \\\\where;\\\\\phi \ is \ magnetic \ flux= BA \\\\A \ is the \ area \ of \ the \ coil = \pi r^2 = \pi (0.055)^2 = 0.0095 \ m^2\\\\emf = - N \frac{dB.A}{dt} = -NA\frac{dB}{dt} \\\\emf = -NA\frac{(B_2 - B_1)}{t} \\\\emf = NA \frac{(B_1 - B_2)}{t} \\\\the \ final \ magnetic \ field \ is \ reduced \ to \ zero;\ B_2 = 0\\\\emf = \frac{NAB_1}{t}[/tex]
(a) when the time, t = 0.3 s
[tex]emf = \frac{NAB_1}{t} = \frac{40\times 0.0095\times 0.4}{0.3} = 0.507 \ V[/tex]
(b) when the time, t = 3.0 s
[tex]emf = \frac{NAB_1}{t} = \frac{40\times 0.0095\times 0.4}{3} = 0.0507 \ V[/tex]
(c) when the time, t = 65 s
[tex]emf = \frac{NAB_1}{t} = \frac{40\times 0.0095\times 0.4}{65} = 0.00234 \ V[/tex]
Dựa vào môi trường hoạt chất, laser được phân thành
Answer:
ok
Explanation:
A 20 N south magnetic force pushes a charged particle traveling with a velocity of 4 m/s west through a 5 T magnetic field pointing downwards . What is the charge of the particle ?
Answer:
Charge of the particle is 1 coulomb.
Explanation:
Force, F:
[tex]{ \bf{F=BeV}}[/tex]
F is magnetic force.
B is the magnetic flux density.
e is the charge of the particle.
V is the velocity
[tex]{ \sf{20 = (5 \times e \times 4)}} \\ { \sf{20e = 20}} \\ { \sf{e = 1 \: coulomb}}[/tex]
Twin skaters approach each other with identical speeds. Then, the skaters lock hands and spin. Calculate their final angular velocity, given each had an initial speed of 2.50 m/s relative to the ice. Each has a mass of 70.0 kg, and each has a center of mass located 0.800 m from their locked hands. You may approximate
Answer:
[tex]\omega=3.135rad/s[/tex]
Explanation:
From the question we are told that:
initial Speed [tex]V_1=2.50[/tex]
Mass [tex]m=70.0kg[/tex]
Center of mass [tex]d=0.0.800m\[/tex]
Generally the equation for angular velocity is is mathematically given by
[tex]\omega=\frac{v}{r}\\\\\omega=\frac{2.50}{0.0800}[/tex]
[tex]\omega=3.135rad/s[/tex]
An object is made of glass and has the shape of a cube 0.13 m on a side, according to an observer at rest relative to it. However, an observer moving at high speed parallel to one of the object's edges and knowing that the object's mass is 3.3 kg determines its density to be 8100 kg/m3, which is much greater than the density of glass. What is the moving observer's speed (in units of c) relative to the cube
Answer:
[tex]v=0.9833\ c[/tex]
Explanation:
The density changes means that the length in the direction of the motion is changed.
Therefore,
[tex]$\text{Density} = \frac{m}{lwh}$[/tex]
Given :
Side, b = h = 0.13 m
Mass, m = 3.3 kg
Density = 8100 [tex]kg/m^3[/tex]
So,
[tex]$8100=\frac{3.3}{l \times 0.13 \times 0.13}$[/tex]
[tex]$l=\frac{3.3}{8100 \times 0.13 \times 0.13}$[/tex]
l = 0.024 m
Then for relativistic length contraction,
[tex]$l= l' \sqrt{1-\frac{v^2}{c^2}}$[/tex]
[tex]$0.024= 0.13 \sqrt{1-\frac{v^2}{c^2}}$[/tex]
[tex]$0.184= \sqrt{1-\frac{v^2}{c^2}}$[/tex]
[tex]$0.033= 1-\frac{v^2}{c^2}}$[/tex]
[tex]$\frac{v^2}{c^2}= 0.967$[/tex]
[tex]$\frac{v}{c}=0.9833$[/tex]
[tex]v=0.9833\ c[/tex]
Therefore, the speed of the observer relative to the cube is 0.9833 c (in the units of c).
3. A microscope is focused on a black dot. When a 1.30 cm -thick piece of plastic is placed over the dot, the microscope objective has to be raised 0.410 cm to bring the dot back into focus. What is the index of refraction of the plastic
The index of refraction of the plastic is approximately 1.461
The known values in the question are;
The thickness of the piece of plastic placed on the dot = 1.30 cm
The height to which the microscope objective is raised to bring the dot back to focus = 0.410 cm
The unknown values in the question are;
The index of refraction
Strategy;
Calculate the refractive index by making use of the apparent height and real height method for the black dot under the thick piece of plastic
[tex]\mathbf{ Refractive \ index, n = \dfrac{Real \ depth}{Apparent \ depth}}[/tex]
The real depth of the dot below the piece of plastic, d₁ = 1.30 cm
The apparent depth of the dot, d₂ = The actual depth - The height to which the microscope is raised
Therefore;
The apparent depth of the dot, d₂ = 1.30 cm - 0.410 cm = 0.89 cm
[tex]The \ refractive \ index, \ n = \dfrac{d_1}{d_2}[/tex]
Therefore, n = 1.30/0.89 ≈ 1.461
The refractive index of the plastic block, n ≈ 1.461
Learn more about refractive index of light here;
https://brainly.com/question/24321580
A singly charged 7Li ion has a mass of 1.16 10-26 kg. It is accelerated through a potential difference of 523 V and subsequently enters a uniform magnetic field of magnitude 0.370 T perpendicular to the ion's velocity. Find the radius of its path.
Answer:
[tex]R=0.023m[/tex]
Explanation:
From the question we are told that:
Mass [tex]m=1.16*10^{-26}[/tex]
Potential difference [tex]V=523V[/tex]
Magnitude [tex]m=0.370 T[/tex]
Generally the equation for Velocity is mathematically given by
[tex]\frac{1}{2}mv^2=ev[/tex]
[tex]v=\frac{2ev}{m}[/tex]
[tex]v=\frac{2*1.6*10^{-19}*542}{1.16*10^{-26}}[/tex]
[tex]v=12.22*10^4m/s[/tex]
Generally the equation for Force is mathematically given by
[tex]F=qvBsin \theta[/tex]
Where
[tex]qVB=m\frac{v^2}{R}[/tex]
[tex]F=m\frac{v^2}{R}sin\theta[/tex]
Therefore
[tex]R=\frac{mv}{qB sin \theta}[/tex]
[tex]R=\frac{1.6*10^{-26}*12.2*10^{4}}{1.60*10^{-19}*0.394 sin 90}[/tex]
[tex]R=0.023m[/tex]
Two objects are identical and small enough that their sizes can be ignored relative to the distance between them, which is 0.189 m. In a vacuum, each object carries a different charge, and they attract each other with a force of 1.39 N. The objects are brought into contact, so the net charge is shared equally, and then they are returned to their initial positions. Now it is found that the objects repel one another with a force whose magnitude is equal to that of the initial attractive force. What is the initial charge on each object, part (a) being the one with the greater (and positive) value and part (b) being the other value?
Answer:
The charges are + 74.3 μC and - 74.3 μC
Explanation:
Let the charges be q and q'.
Since the charges initially attract each other with a force of 1.39 N, the force of attraction is given by
F = kqq'/r² where k = 9 × 10⁹ Nm²/C² and r = distance between the charges = 0.189 m
When the charges are brought together, they share their charge equally and have a net charge of (q + q')/2 each.
They now repel each other.
So, the magnitude of the force of repulsion is given by
F' = k[(q + q')/2][(q + q')/2]/r²
F' = k[(q + q')²/4r²
Since the magnitude of the force of attraction and repulsion are the same, we have that
F = F'
kqq'/r² = k[(q + q')²/4r²
qq' = (q + q')²/4
(q + q')² = 4qq'
q² + 2qq' + q'² = 4qq'
q² + 2qq' - 4qq' + q'² = 0
q² - 2qq' + q'² = 0
(q - q')² = 0
q - q' = 0
q = q'
Substituting q = q' into F, we have
F = kqq'/r²
F = kq²/r²
making q subject of the formula, we have
q² = Fr²/k
q = √(Fr²/k)
q = r√(F/k)
Substituting the values of the variables into the equation, we have
q = 0.189 m√(1.39 N/9 × 10⁹ Nm²/C²)
q = 0.189 m√(0.15444 × 10⁻⁹ Nm²/C²)
q = 0.189 m(0.3923 × 10⁻³ C/m)
q = 0.0743 × 10⁻³ C
q = 74.3 × 10⁻³ × 10⁻³ C
q = 74.3 × 10⁻⁶ C
q = 74.3 μC
Since q and q' initially attract, it implies that they initially had opposite charges.
So, q = 74.3 μC and q' = -74.3 μC
So, the charges are + 74.3 μC and - 74.3 μC
Which of the following quantities is measured by the area under the velocity time graph? (a) Magnitude of velocity (b) Magnitude of acceleration (c) Magnitude of displacement (d) Average Speed
Answer:
c.
magnitude of displacement
Một loa phát ra với cường độ âm là 40 (W/m2
). Mức cường độ âm của loa thuộc phạm vi?
Answer:ew
Explanation:
qeeqw
Is there any absolute rest or motion? Describe the types of motion with one example of each type
Andrea's near point is 20.0 cm and her far point is 2.0 m. Her contact lenses are designed so that she can see objects that are infinitely far away. What is the closest distance that she can see an object clearly when she wears her contacts?
Answer:
the closest distance that she can see an object clearly when she wears her contacts is 22.2 cm
Explanation:
Given the data in the question,
near point = 20 cm
far point = 2 m = 200 cm
Now, for an object that is infinitely far away, the image is at is its far point.
so using the following expression, we can determine the focal length
1/f = 1/i + 1/o
where f is the focal length, i is the image distance and o is the object distance.
here, far point i = 2 m = 200 cm and v is ∞
so we substitute
1/f = 1/(-200 cm) + 1/∞
f = -200 cm
Also, for object at its closest point, the image appear at near point,
so
1/f = 1/i + 1/o
we make o the subject of formula
o = ( i × f ) / ( i - f )
given that near point i = 20 cm
we substitute
o = ( -20 × -200 ) / ( -20 - (-200) )
o = 4000 / 180
o = 22.2 cm
Therefore, the closest distance that she can see an object clearly when she wears her contacts is 22.2 cm
when a boron is added to a pure semi conducter it becomes
Answer:
it becomes a p-type conductor
Explanation:
answer from gauth math
What is measurement
Answer:
Measurements refers to a process which typically involves identifying and determining the dimensions of a physical object.
Explanation:
A scientific method can be defined as a research method that typically involves the use of experimental and mathematical techniques which comprises of a series of steps such as systematic observation, measurement, and analysis to formulate, test and modify a hypothesis.
Measurements refers to a process which typically involves identifying and determining the dimensions of a physical object.
Basically, the dimensions include important parameters such as width, height, length, area, volume, circumference, breadth, etc.
Use the DC Construction kit to build a simple circuit to perform the following task:
You are asked to use a single resistor and a 110 V DC battery for the purpose of boiling a litter of water (4,184 Joule/Kg*degree Celsius), with a starting temperature of 20 C, in exactly 4 minutes.
Answer:
The resistance is 8.7 ohm.
Explanation:
Voltage, V = 110 V
mass, m = 1 kg
change in temperature, T = 100 - 20 = 80 C
time, t = 4 min = 4 x 60 = 240 s
specific heat, c = 4184 J/kg C
let the resistance is R.
The heat generated by the heater is used to the heat the water.
[tex]\frac{V^2}{R} t = m c T \\\\\frac{110^2}{R}\times 240 = 1\times 4184\times 80\\\\R = 8.7 ohm[/tex]