complete combustion of an unknown hydrocarbon with the formula cxhy yielded 308.1 g of co2 and 72.1 g of h2o. what was the original mass of the hydrocarbon sample burned? enter your response in grams (g) to the nearest 0.1 g. molar masses (g/mol) co2

Answers

Answer 1

To find the original mass of the hydrocarbon sample, we need to use the information given about the products of the combustion reaction:

1. Start by calculating the molar mass of CO2 (carbon dioxide), which is 44.01 g/mol.

2. Next, determine the moles of CO2 produced by dividing the mass of CO2 (308.1 g) by its molar mass moles of CO2 = mass of CO2 / molar mass of CO2 = 308.1 g / 44.01 g/mol ≈ 7 moles

3. Since one mole of CO2 is produced per mole of hydrocarbon, the number of moles of CO2 is also equal to the number of moles of the hydrocarbon burned.

4. Now, calculate the molar mass of H2O (water), which is 18.02 g/mol.

5. Determine the moles of H2O produced by dividing the mass of H2O (72.1 g) by its molar mass moles of H2O = mass of H2O / molar mass of H2O = 72.1 g / 18.02 g/mol ≈ 4 moles

6. Since one mole of H2O is produced per two moles of hydrogen (H) in the hydrocarbon, the number of moles of H is twice the number of moles of H2O moles of H = 2  moles of H2O = 2 * 4 moles = 8 moles

7. Since one mole of hydrocarbon contains four moles of hydrogen, we can calculate the moles of the hydrocarbon burned moles of hydrocarbon = moles of H / 4 = 8 moles / 4 = 2 moles

8. Finally, calculate the mass of the hydrocarbon sample burned by multiplying the moles of the hydrocarbon by its molar mass mass of hydrocarbon = moles of hydrocarbon  molar mass of hydrocarbon = 2 moles  (molar mass of C + molar mass of H) = 2 moles  (12.01 g/mol + 1.01 g/mol) = 2 moles  13.02 g/mol ≈ 26 g Therefore, the original mass of the hydrocarbon sample burned is approximately 26 grams.

About Hydrocarbon

Hydrocarbon are compounds consisting of the elements carbon and hydrogen elements. All hydrocarbons have a carbon chain and hydrogen atoms attached to it. The term is also used to mean aliphatic hydrocarbons. Examples of hydrocarbon compounds in everyday life and their uses are methane gas used as fuel. Ethene is used as an anesthetic ingredient. As we already know, this one compound is usually used as a source of fuel. However, apart from being a fuel, its use for other purposes can be considered relatively broad. Pentane is usually used for the manufacture of organic solvents and cleaners.

Learn More About Hydrocarbon at https://brainly.com/question/27220658

#SPJ11


Related Questions

A cylindrical rod of Aluminium has an initial diameter of 18 mm, an elastic modulus 70 GPa and undergoes a strain of 0.0028 What is the load acting upon the rod?
Input your answer in the answer box below:

Answers

The load acting on the rod is approximately 49844 N. To calculate the load acting upon the rod, we can use Hooke's Law, which states that stress is directly proportional to strain within the elastic limit. The formula for stress is:

Stress = Elastic modulus * Strain

Given,

Diameter of Aluminium rod = 18 mm

Elastic modulus = 70 Gpa

Strain = 0.0028

We know that the stress-strain relationship is given by Hooke's Law: Stress = Elastic Modulus × Strainσ = E × ε

Now we can find stress using the above formula.σ = 70 GPa × 0.0028 = 196 MPa

We can now use the formula for stress and load (force) in terms of area and stress:σ = F/A => F = σ × A

where, F is the load and A is the area of cross-section.

Let us assume that the cross-section is circular. The area of the circular cross-section is given by:

A = πr²where, r is the radius.

Given that the diameter is 18 mm, we can find the radius: r = d/2 = 18/2 = 9 mm

The area can now be found as: A = π(9)² = 81π mm²

We can now find the load acting on the rod using the formula: F = σ × A = 196 MPa × 81π mm²≈ 49844 N

Thus, the load acting on the rod is approximately 49844 N.

To know more about Elastic modulus visit :

https://brainly.com/question/30402322

#SPJ11

"
What is the melting point of benzoic acid that you deteined? How does this compare to the literature value? What does this tell you about the purity of the compound?
"

Answers

If benzoic acid is pure, the melting point should be at the literature value or within a range that falls within the literature value.

The melting point of benzoic acid is an essential property that plays an essential role in identifying the purity of the compound. When a pure substance melts, it always occurs at a particular temperature, which is also known as the melting point. The melting point of benzoic acid helps to determine its purity because impurities lower the melting point of the compound.

Thus, any deviation from the literature value of benzoic acid's melting point indicates that the substance is impure.To determine the melting point of benzoic acid, a sample was collected and loaded into the capillary tube of the melting point apparatus. The sample was then heated using a temperature controller until the sample began to melt, and the melting point was recorded.

The experiment revealed that the melting point of benzoic acid was 122.7°C. According to the literature value, the melting point of benzoic acid is 121°C, which shows that the experimentally determined value is slightly higher. The slight difference in the two values is due to the presence of impurities in the sample. In conclusion, the experimental value of the melting point of benzoic acid is higher than the literature value, which suggests that the sample is impure.

To know more about acid visit:

https://brainly.com/question/29796621

#SPJ11

what volume of a 4.41 mm na3po4na3po4 solution should you use to make 1.70 ll of a 2.81 mm na3po4na3po4 solution? what volume of a 4.41 solution should you use to make 1.70 of a 2.81 solution? 0.923 ll 2.67 ll 21.1 ll 1.08 l

Answers

To make 1.70 L of a 2.81 mM Na3PO4 solution, you would need to use 0.923 L of a 4.41 mM Na3PO4 solution.

To determine the volume of a 4.41 mM Na3PO4 solution needed to make 1.70 L of a 2.81 mM Na3PO4 solution, we can use the equation:

C1V1 = C2V2

Where:

C1 is the initial concentration of the Na3PO4 solution (4.41 mM)

V1 is the volume of the initial solution we want to find

C2 is the final concentration of the Na3PO4 solution (2.81 mM)

V2 is the final volume of the solution we want to make (1.70 L)

Rearranging the equation, we get:

V1 = (C2V2) / C1

Substituting the given values, we have:

V1 = (2.81 mM * 1.70 L) / 4.41 mM

V1 ≈ 0.923 L

Therefore, to make 1.70 L of a 2.81 mM Na3PO4 solution, you would need to use approximately 0.923 L of a 4.41 mM Na3PO4 solution.

Learn more about Na3PO4 solution

brainly.com/question/28165456

#SPJ11

Express the concentration of sodium chloride in a 0.1 M solution
as parts per thousand and mg/L.

Answers

To express the concentration of sodium chloride in a 0.1 M solution as parts per thousand and mg/L, we need to convert the given concentration in moles per litre (M) to parts per thousand and mg/L.

The concentration of a solution is usually expressed in different units, such as moles per litre (M), parts per thousand (ppt), and milligrams per litre or liter (mg/L or ppm).The first step is to find the molar mass of sodium chloride:Na = 1 x 23 = 23Cl = 1 x 35.5 = 35.5Molar mass of NaCl = 23 + 35.5 = 58.5 g/molThe concentration of sodium chloride is given as 0.1 M.The concentration of 0.1 M sodium chloride solution = 0.1 moles of NaCl in 1 litre of solution.

Mass of NaCl in 1 litre of solution = 0.1 x 58.5 = 5.85 g/LParts per thousand (ppt):Parts per thousand is used to express the concentration of a solution. It is the mass of solute in grams per 1000 grams of solution.Parts per thousand (ppt) = (mass of solute / mass of solution) x 1000Substituting the values:Parts per thousand (ppt) = (5.85 / 1000) x 1000Parts per thousand (ppt) = 5.85 mg/L = 5850 mg/LThe concentration of sodium chloride in a 0.1 M solution expressed as parts per thousand (ppt) is 5.85 ppt or 5850 mg/L.

Milligrams per litre or liter (mg/L or ppm):Milligrams per litre or liter (mg/L or ppm) is used to express the concentration of a solution. It is the mass of solute in milligrams per litre or liter of solution.Milligrams per litre (mg/L) = (mass of solute / volume of solution in litres)

Substituting the values:Milligrams per litre (mg/L) = (5.85 / 1)Milligrams per litre (mg/L) = 5.85 mg/LThe concentration of sodium chloride in a 0.1 M solution expressed as milligrams per litre (mg/L) is 5.85 mg/L.Conclusion:Thus, the concentration of sodium chloride in a 0.1 M solution expressed as parts per thousand and mg/L are 5.85 ppt and 5.85 mg/L respectively.

To know more about express  visit

https://brainly.com/question/28170201

#SPJ11

Hydrogen-3 is radioactive and has a half life of 12.3 years. How long would it take a sample to decay from 9.00mg to 6.20mg. Round your answer to 2 significant digits.

Answers

Using the formula for radioactive decay, the time it takes for a sample of Hydrogen-3 to decay from 9.00 mg to 6.20 mg is approximately 17.74 years, given its half-life of 12.3 years.

To calculate the time it takes for a radioactive sample to decay, we can use the formula:

[tex]t = \frac{t_\frac{1}{2}}{\ln(2)} \cdot \ln \left( \frac{N_0}{N} \right)[/tex]

Where:

t is the time

t½ is the half-life

ln is the natural logarithm

N₀ is the initial amount of the substance

N is the final amount of the substance

Substituting the values into the formula, we have:

[tex]t = \frac{12.3}{\ln(2)} \cdot \ln \left( \frac{9.00}{6.20} \right)[/tex]

Using a calculator, we can evaluate the natural logarithm and calculate t:

[tex]t \approx \frac{12.3}{0.693} \cdot \ln(1.45)[/tex]

t ≈ 17.74 years

Therefore, it would take approximately 17.74 years for the sample of Hydrogen-3 to decay from 9.00 mg to 6.20 mg, rounded to two significant digits.

To know more about radioactive decay refer here :    

https://brainly.com/question/29977510#

#SPJ11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Complete the table of quantum numbers of electrons in atoms.

Answers

To complete a table of quantum numbers for electrons in atoms, we need to include the four quantum numbers: principal quantum number (n), azimuthal quantum number (l), magnetic quantum number (m_l), and spin quantum number (m_s). Here is an example of a table for the first three energy levels (n=1, n=2, n=3) and the corresponding quantum numbers:

| Energy Level (n) | Azimuthal Quantum Number (l) | Magnetic Quantum Number (m_l) | Spin Quantum Number (m_s) |

|------------------|-----------------------------|-------------------------------|---------------------------|

| 1                | 0                           | 0                             | +1/2 or -1/2              |

| 2                | 0                           | 0                             | +1/2 or -1/2              |

| 2                | 1                           | -1, 0, +1                    | +1/2 or -1/2              |

| 3                | 0                           | 0                             | +1/2 or -1/2              |

| 3                | 1                           | -1, 0, +1                    | +1/2 or -1/2              |

| 3                | 2                           | -2, -1, 0, +1, +2            | +1/2 or -1/2              |

The azimuthal quantum number (l) ranges from 0 to n-1 and defines the subshell within an energy level. The magnetic quantum number (m_l) ranges from -l to +l and specifies the orientation of the orbital within a subshell. The spin quantum number (m_s) represents the spin of the electron and can have values of +1/2 or -1/2.

The table above is just an example, and for higher energy levels, there will be more possible combinations of quantum numbers. The specific quantum numbers for each electron in an atom depend on the atom's electronic configuration and the Pauli exclusion principle, which states that no two electrons in an atom can have the same set of four quantum numbers.

About Electrons

Electrons are sub-atomic particles that have a negative charge and are generally written as e⁻. The electron has no known basic components or substructures, so it is believed to be an elementary particle. Electrons have a mass of about 1/1836 the mass of a proton. It can also be said that electrons are negatively charged subatomic particles and are often written as e-. Electrons have no known basic components or substructures, so they are said to be elementary particles. An electron has a mass of 1/1836 a proton.

Learn More About electrons at https://brainly.com/question/371590

#SPJ11

order these chemical species by increasing of an aqueous solution of each. that is, imagine making an solution of each species. select next to the species that makes the solution with the lowest

Answers

The chemical species ranked in increasing order of solubility in an aqueous solution are:

1. Insoluble solid species (precipitate)

2. Slightly soluble species

3. Moderately soluble species

4. Highly soluble species

When a chemical species is dissolved in water to form an aqueous solution, its solubility determines the amount that can be dissolved. Solubility is typically expressed in terms of grams of solute dissolved per liter of solvent. Based on solubility, we can rank the chemical species in increasing order:

1. Insoluble solid species (precipitate): These species have very low solubility and form a solid precipitate when added to water. They do not readily dissolve in water and tend to settle at the bottom of the container. Examples include many metal sulfides, carbonates, and hydroxides.

2. Slightly soluble species: These species have low solubility and dissolve to a limited extent in water. They form a relatively small concentration of solute in the solution. Examples include calcium sulfate (CaSO4) and silver chloride (AgCl).

3. Moderately soluble species: These species have a moderate solubility and dissolve to a significant extent in water. They form a relatively higher concentration of solute in the solution compared to slightly soluble species. Examples include sodium carbonate (Na2CO3) and potassium iodide (KI).

4. Highly soluble species: These species have high solubility and readily dissolve in water, forming a relatively high concentration of solute in the solution. Examples include sodium chloride (NaCl) and glucose (C6H12O6).

The solubility of a species depends on various factors such as temperature, pressure, and the nature of the solute and solvent. It is important to note that solubility is a relative measure and can vary depending on the conditions.

Solubility is a crucial property in various chemical processes, including dissolution, precipitation, and extraction. Understanding the solubility of different species helps in designing and optimizing processes such as crystallization, separation, and purification. Factors that affect solubility, such as temperature and pressure, play a significant role in industrial applications. Additionally, the concept of solubility is fundamental in fields like analytical chemistry, where it is used for quantitative analysis and determining the concentration of species in solutions.

Learn more about: chemical

brainly.com/question/29240183

#SPJ11

Give the IUPAC name for the following compound: Multiple Choice (1R,3R)-1-ethyl-3-methylcyclohexane (1R,3S)-1-ethyl-3-methyicyclohexane (IS,3R)-1-ethyl-3-methylcyclohexane (IS.3S)-1-ethvi-3-methvicvelohexane

Answers

The correct IUPAC name for the compound is (1R,3R)-1-ethyl-3-methylcyclohexane.

IUPAC stands for International Union of Pure and Applied Chemistry, which is an organization that establishes standard nomenclature for organic compounds.

The IUPAC name for a compound is a systematic name that describes its molecular structure and identifies its functional groups.

The given compound has the following structure:  The IUPAC name for this compound can be determined by identifying its stereochemistry and assigning priority to its substituents.

The first step is to identify the stereocenters in the compound, which are the carbons at positions 1 and 3.

The second step is to assign priority to the substituents on each stereocenter based on their atomic number.

The substituents on carbon 1 are an ethyl group and a hydrogen atom, and the substituents on carbon 3 are a methyl group and a hydrogen atom.

The ethyl group has a higher priority than the hydrogen atom, so the configuration at carbon 1 is R.

The methyl group has a higher priority than the hydrogen atom, so the configuration at carbon 3 is R.

For more such questions on methylcyclohexane

https://brainly.com/question/14855251

#SPJ8

Q.8. Calculate the percent composition of O in a formula Al (OH)3

O 34.6%

о 3.8%

O 61.5%

O 80%

Answers

The first one I just know

1. Phase: a _ homogeneous and distinct portion of material system. 2. Degrees of freedom: number of variables that can be changed without changing phases of the system. 3. Eutectoid: a steel with percent C.Previous question

Answers

A phase refers to a homogeneous and distinct portion of a material system.

What is a phase and why is it important?

A phase is a term used in material science to describe a homogeneous and distinct portion of a material system. It represents a region with uniform physical and chemical properties, such as composition, crystal structure, or density. Understanding phases is crucial for studying the behavior and properties of materials, as different phases can have distinct characteristics and behaviors.

In material science, a phase is defined as a physically and chemically homogeneous portion of a material system. It is characterized by having uniform properties throughout, such as composition, crystal structure, or density. For example, in an alloy, different phases may include the individual metal components or various combinations of them.

Phases play a significant role in determining the overall properties and behavior of materials. Each phase can have distinct physical and chemical characteristics, including melting point, hardness, electrical conductivity, and more

. By understanding the phases present in a material system, scientists and engineers can predict its behavior under different conditions and design materials with specific properties.

Learn more about homogeneous

brainly.com/question/32618717

#SPJ11

2.) How will you know by TLC that your reaction is done?
3.) Explain how you could use both 1H nuclear magnetic resonance
spectroscopy and mass spectrometry to deteine whether one or two
bromine ato

Answers

Thin-layer chromatography (TLC) is a technique for identifying the purity of a compound, as well as tracking the progress of a reaction. When a reaction is complete, the starting material is completely consumed, and the product will emerge from the TLC plate as a separate spot from the starting material. This is how one can tell that the reaction is finished using TLC.

1H nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS) can be used to identify the presence and number of bromine atoms in a compound. In NMR, the number of signals indicates the number of distinct proton environments in the molecule. If there are two distinct proton environments, that means there are two bromine atoms in the molecule.In mass spectrometry, the molecular ion peak can provide information on the molecular weight of the compound. If there are two bromine atoms present, the molecular weight will be higher than if there is only one. Additionally, the fragmentation pattern of the molecule can also give information on the presence and location of the bromine atoms.

Learn more about Mass spectrometry:

https://brainly.com/question/16881966

#SPJ11

What could permit a binding protein involved in sequestration to have a low affinity for its substrate and still have a high percentage of substrate bound?

Answers

Binding proteins have significant roles in the maintenance of a high concentration of specific metabolites.

These proteins have high affinity for their substrates, and it is the specificity and affinity that allow them to sequester substrates from low-concentration environments.

The percentage of substrate bound can be high even when a binding protein has a low affinity for its substrate. To achieve this, the protein has to form a complex with its substrate at a specific ratio. The high percentage of substrate binding is achieved through cooperative binding. When the protein binds to one molecule of substrate, its structure undergoes a change. This makes it easier for the other substrate molecules to bind. Binding proteins that sequester substrates often contain multiple binding sites. The first binding event at the first site makes it easier for the other substrate molecules to bind at other sites. In summary, binding proteins have high affinity for their substrates and are involved in sequestration of specific metabolites. To have a high percentage of substrate bound, a binding protein has to form a complex with its substrate at a specific ratio. The cooperative binding of the protein makes it easier for other substrate molecules to bind at other sites.

Learn more about Binding proteins

https://brainly.com/question/32816423

#SPJ11

Assume you have 2.00 moles of a gas with an initial volume of
2.10 L. Another 2.00 moles of gas were added to the container.
Calculate the final volume of the gas in the container in L.

Answers

The Ideal Gas Law, PV = nRT, is used to calculate the final volume of a gas in a container. The law of the conservation of matter states that mass cannot be destroyed or created in a chemical reaction. The final volume of gas in the container is 4.58 L.

As a result, in a closed system, the total mass before a reaction is equal to the total mass after the reaction, even if the reaction results in a phase change or the production of a gas.Therefore, the sum of the number of moles of gas before and after the reaction must be constant.

To determine the final volume of the gas, this knowledge can be used.Assume you have 2.00 moles of a gas with an initial volume of 2.10 L, and that another 2.00 moles of gas were added to the container.PV = nRT is the ideal gas law. Since we know the initial volume and number of moles of gas in the container, we may use it to find the initial pressure, P₁.P₁V₁ = n₁RT₂

Since 2.00 moles of gas were added to the container, the total number of moles of gas in the container is 4.00 moles.P₁V₁ = n₁RT₁ + n₂RT₂P₂ is the final pressure and V₂ is the final volume.P₁V₁ = (n₁ + n₂)RT₂P₂V₂ = (n₁ + n₂)RT₂

Therefore, we can use this equation to find the final volume:V₂ = P₁V₁ / P₂= n₁RT₁ + n₂RT₂ / P₂We now have all of the information we need to calculate the final volume of the gas in the container. We simply need to plug in the values and do the math.V₂ = [(2.00 mol × 0.0821 L atm K⁻¹ mol⁻¹ × 273 K) + (2.00 mol × 0.0821 L atm K⁻¹ mol⁻¹ × 273 K)] / [1 atm]= 4.58 L (rounded to two decimal places

Know more about Ideal Gas here:

https://brainly.com/question/13463215

#SPJ11

Which is the higher temperature: a) 368 K or b) 85°C?
Which is the lower temperature: a) -92°C or b) 191 K?
Which is the lower temperature: a) 317 K or b) 54°C?
Which is the lower temperature: a) -73°C or b) 190 K?
Which is the higher temperature: a) 56°C or b) 339 K?

Answers

Higher temperature: a) 368 K or b) 85°C?We know that the temperature in Kelvin (K) can be found by adding 273.15 to the temperature in Celsius (°C). So, 85°C = 85 + 273.15 = 358.15KTherefore, 368K is higher than 358.15K. Hence, the higher temperature is a) 368K.Lower temperature: a) -92°C or b) 191K?

We know that the temperature in Kelvin (K) can be found by adding 273.15 to the temperature in Celsius (°C). Therefore, -92°C = -92 + 273.15 = 181.15KTherefore, 181.15K is lower than 191K. Hence, the lower temperature is a) -92°C.

Lower temperature: a) 317 K or b) 54°C?

We know that the temperature in Celsius can be converted to Kelvin using the formula:K = °C + 273.15So, 54°C = 54 + 273.15 = 327.15KTherefore, 317K is lower than 327.15K. Hence, the lower temperature is a) 317K

Lower temperature: a) -73°C or b) 190 K?

We know that the temperature in Celsius can be converted to Kelvin using the formula:K = °C + 273.15So, -73°C = -73 + 273.15 = 200.15KTherefore, 190K is lower than 200.15K. Hence, the lower temperature is b) 190K.Higher temperature: a) 56°C or b) 339K?We know that the temperature in Celsius can be converted to Kelvin using the formula:K = °C + 273.15So, 56°C = 56 + 273.15 = 329.15KTherefore, 339K is higher than 329.15K. Hence, the higher temperature is b) 339K.

In the first question, we determined that the higher temperature is

a) 368K. In the second question, we determined that the lower temperature is a) -92°C. In the third question, we determined that the lower temperature is

a) 317K. In the fourth question, we determined that the lower temperature is b) 190K. In the fifth question, we determined that the higher temperature is

b) 339K. All the solutions were derived based on the formula and the conversion of temperature. Therefore, the correct answer is given in the solution.

To know more about temperature  visit

https://brainly.com/question/7510619

#SPJ11

If the complex [Ti(H2O)4]3+ existed, what would be
the approximate value for Dq?

Answers

The crystal field splitting energy (Dq) is an empirical term that describes the energy of the interaction between the d-orbitals of a metal ion and the ligand electron pairs, which determines the crystal field splitting in a crystal field theory.

This term is affected by various factors, including the metal ion's oxidation state, coordination number, and ligand type. The [Ti(H2O)4]3+ complex would have an octahedral coordination geometry, with water acting as a weak field ligand. The approximate value of Dq for an octahedral complex with weak field ligands, such as water, is around 200-300 cm-1.

Therefore, the estimated value of Dq for the [Ti(H2O)4]3+ complex would be around 200-300 cm-1.

To know more about  crystal field visit:

brainly.com/question/29805362

#SPJ11

a galvanic cell is constructed under standard conditions using cobalt in cobalt(ii) nitrate solution and indium in indium(iii) nitrate solution. which statements about this cell are correct?

Answers

The correct statements about this galvanic cell are:

A) The cobalt electrode is the anode.

B) The indium electrode is the cathode.

C) Electrons flow from the cobalt electrode to the indium electrode.

A) The cobalt electrode is the anode: In a galvanic cell, the anode is where oxidation occurs. Since cobalt is being oxidized in the cobalt(II) nitrate solution, it is the anode.

B) The indium electrode is the cathode: In a galvanic cell, the cathode is where reduction occurs. Since indium is being reduced in the indium(III) nitrate solution, it is the cathode.

C) Electrons flow from the cobalt electrode to the indium electrode: In a galvanic cell, electrons flow from the anode (cobalt electrode) to the cathode (indium electrode) through the external circuit.

D) The cobalt ion is reduced at the cobalt electrode: This statement is incorrect. In the cobalt(II) nitrate solution, cobalt is being oxidized, not reduced.

Therefore, options A, B, and C are the correct statements.

""

a galvanic cell is constructed under standard conditions using cobalt in cobalt(ii) nitrate solution and indium in indium(iii) nitrate solution. which statements about this cell are correct?

A) The cobalt electrode is the anode.

B) The indium electrode is the cathode.

C) Electrons flow from the cobalt electrode to the indium electrode.

D) The cobalt ion is reduced at the cobalt electrode.

""

You can learn more about  galvanic cell at

https://brainly.com/question/29765093

#SPJ11

3. Explain the following terms and what are its corresponding
requirements for Raman applications: a. Confocal microscope b.
Numerical aperture c. Infinity correction d. F-number

Answers

To conclude, confocal microscope, numerical aperture, infinity correction, and f-number are all essential requirements for Raman applications. These requirements ensure high-quality spectral acquisition with minimal background noise and distortion.

Confocal microscope: A confocal microscope is an optical imaging instrument that is designed to increase optical resolution and contrast by restricting the illumination to a small focal spot. It helps in improving image resolution, contrast, and depth of field. In Raman applications, a confocal microscope is required to ensure that the collected spectra are of high quality and are free from background noise.

Numerical aperture: The numerical aperture (NA) of an objective lens is a measure of the lens's light-gathering ability and its ability to resolve fine details. A higher numerical aperture allows for the collection of more photons and results in higher signal-to-noise ratios. Therefore, a high NA objective is required for Raman applications where the quality of the spectrum depends on the light collection.

Infinity correction: An infinity-corrected microscope uses a series of lenses and mirrors to create an image with parallel rays of light. This helps in improving the quality of the image by reducing optical aberrations. In Raman applications, infinity correction is required to ensure that the collected spectra are of high quality and are free from distortion.

F-number: The f-number is a measure of the light-gathering ability of a lens and is equal to the lens's focal length divided by its diameter. A low f-number indicates a lens with a wide aperture, which allows for more light collection. For Raman applications, a lens with a low f-number is required to collect more photons and achieve higher signal-to-noise ratios.

To know more about illumination visit:

https://brainly.com/question/29156148

#SPJ11

write the semideveloped foula of:
1.- 2,5 nonadi-ino
2.- ​​​​​​4,5 dietil - 3 metil - 2 octeno
i need the answer like these: (CH3-CH-=CH2-CH it´s only demostrative

Answers

Semideveloped formula is a representation of a molecular structure that lies between the fully condensed structural formula and the fully skeletal formula. It shows a partial representation of the connectivity of atoms in a molecule while also indicating certain functional groups or substituents. Here are the semideveloped formulas for the given compounds:

1. 2,5-nonadiyne:

[tex]CH3-CH2-C≡C-CH2-CH2-CH3[/tex]

In this compound, "yne" indicates a triple bond (-C≡C-) between the carbon atoms. The numbers "2,5" indicate the positions of the triple bond in the carbon chain. The methyl (-CH3) groups are shown at the ends of the chain.

2. 4,5-diethyl-3-methyl-2-octene:

[tex]CH3-CH2-CH(CH3)-CH(C2H5)-CH=CH-CH2-CH3[/tex]

In this compound, "ene" indicates a double bond (-CH=CH-) between the carbon atoms. The numbers "4,5" indicate the positions of the double bond in the carbon chain. The ethyl (-CH2CH3) and methyl (-CH3) groups are shown at their respective positions in the chain.

Please note that the semideveloped formulas provided are representations of the structural arrangement of the atoms in the compounds, where the bonds and functional groups are explicitly shown.

To know more about atoms visit :

https://brainly.com/question/1566330

#SPJ11

Using the tables, what is the standard Gis free energy change for the following reaction?
2 Cu (s) + O2 (g) → 2 CuO (s)
Report your answer in units of kJ, but do not type the units. Do not round your answer.

Answers

The specific numerical value for the standard Gibbs free energy change for the reaction 2 Cu (s) + O2 (g) → 2 CuO (s)

determine the standard Gibbs free energy change for the reaction:

2 Cu (s) + O2 (g) → 2 CuO (s)

we need to refer to tables or thermodynamic data to obtain the standard Gibbs free energy (ΔG°) values for the formation of the compounds involved.

The standard Gibbs free energy change for the reaction can be calculated using the formula:

ΔG° = ΣΔG°f(products) - ΣΔG°f(reactants)

where ΔG°f represents the standard Gibbs free energy of formation.

Looking up the standard Gibbs free energy of formation values for CuO (s), Cu (s), and O2 (g) in a table or using thermodynamic data.

we can substitute these values into the formula to calculate the standard Gibbs free energy change for the reaction.

To know more about Gibbs free energy refer here

https://brainly.com/question/13795204#

#SPJ11

lements in the same group in the periodic table often have similar chemical reactivity. which of the following statements is the best explanation for this observation? multiple choice question. elements in the same group have the same effective nuclear charge and total nuclear charge. elements in the same group have the same radius. elements in the same group have the same valence electron configuration. elements in the same group have the same ionization energy.

Answers

Elements in the same group have the same valence electron configuration.

What factor contributes to similar chemical reactivity among elements in the same group?

The best explanation for the observation that elements in the same group of the periodic table often exhibit similar chemical reactivity is that they have the same valence electron configuration.

The chemical behavior of an element is primarily determined by the arrangement and number of electrons in its outermost energy level, known as the valence electrons.

Elements in the same group have similar valence electron configurations because they have the same number of valence electrons.

Valence electrons are responsible for forming chemical bonds and participating in chemical reactions.

Elements with the same valence electron configuration tend to have similar chemical properties because they have similar tendencies to gain, lose, or share electrons to achieve a stable electron configuration.

For example, elements in Group 1 (such as lithium, sodium, and potassium) all have one valence electron in their outermost energy level.

As a result, they exhibit similar reactivity, readily losing that one valence electron to form a +1 ion.

In contrast, elements in Group 17 (such as fluorine, chlorine, and bromine) have seven valence electrons. They tend to gain one electron to achieve a stable electron configuration of eight electrons, forming -1 ions.

In summary, the similar chemical reactivity observed among elements in the same group of the periodic table can be attributed to their having the same valence electron configuration, which influences their ability to form chemical bonds and participate in reactions.

Learn more about periodic table

brainly.com/question/28747247

#SPJ11

The number of noal modes of vibration and the number of vibrations that give rise to absorptions in the IR spectrum of {XeF}_{4} are, respectively: 9 and 2 9 and 3 6 and 2 6 and 3

Answers

The number of normal modes of vibration and the number of vibrations that give rise to absorptions in the IR spectrum of XeF4 are, respectively: 9 and 3.

In XeF4, the central xenon atom is surrounded by four fluorine atoms. To determine the number of normal modes of vibration, we use the formula 3N - 6, where N is the number of atoms in the molecule. XeF4 has five atoms (one xenon and four fluorine), so the total number of normal modes of vibration is 3(5) - 6 = 9.

In the IR spectrum, only certain vibrational modes lead to absorptions. These absorptions occur when there is a change in the dipole moment of the molecule during the vibration. Since XeF4 is a symmetrical molecule, not all vibrational modes result in a change in the dipole moment. In this case, only three of the nine normal modes of vibration give rise to absorptions in the IR spectrum.

Learn more about IR spectrum

brainly.com/question/31386197

#SPJ11

salts that dissociate into ions are called ________. a. electrolytes b. angiotensinogens c. antidiuretics d. diuretics e. osmolytes

Answers

Answer:

a. electrolytes

Explanation:

Electrolytes are substances that, when dissolved in water or in a solvent, dissociate into ions. In other words, they break apart into positively and negatively charged particles called ions. These ions are responsible for the conductivity of the solution, as they can move and carry electric charge.

When an electrolyte dissolves in water, the positive and negative ions become surrounded by water molecules through a process called hydration. This hydration allows the ions to move freely in the solution and carry electric charge, enabling the solution to conduct electricity.

Common examples of electrolytes include salts like sodium chloride (NaCl), potassium sulfate (K2SO4), and calcium nitrate (Ca(NO3)2). These substances, when dissolved in water, readily dissociate into their respective ions: Na+ and Cl-, K+ and SO42-, Ca2+ and 2NO3-. Other examples of electrolytes include acids, bases, and some other ionic compounds.

Although we often show protons that evolve in chemical processes by using the notation Ht, "free" the conditions of ordinary organic reactions? Answe The kinetics of haloalkane solvolysis lead us to a three-step mechanism. The crucial, rate-deteining step is the initial dissociation of a leaving group from the starting material to fo a carbocation. Because only the substrate molecule participates in the rate-limiting step, this process is called_(blank)_ nucieophilic substitution, SN1. Any hydrogen positioned on any carbon next to the center bearing the leaving group can participate in the Gwanh. Strong - effect bimolecular elimination. Answer: Weakly _ nucleophiles give substitution. Answer.

Answers

The process of nucleophilic substitution in organic reactions is called SN1 (substitution nucleophilic unimolecular), where the rate-determining step involves the dissociation of a leaving group to form a carbocation.

Weakly nucleophilic species are more likely to participate in SN1 reactions.

In the kinetics of haloalkane solvolysis, the rate-determining step is the initial dissociation of the leaving group from the starting material, resulting in the formation of a carbocation. This step is crucial because it determines the overall rate of the reaction. Since only the substrate molecule is involved in this step, the process is referred to as SN1, which stands for substitution nucleophilic unimolecular.

The term "weakly nucleophilic" indicates that the nucleophilic species participating in the reaction are not highly reactive or potent. In SN1 reactions, weakly nucleophilic species are preferred over strongly nucleophilic ones because the rate-determining step primarily depends on the stability of the carbocation intermediate formed.

Weakly nucleophilic species, such as water or alcohols, are better suited for SN1 reactions as they can stabilize the carbocation through solvation or resonance effects.

On the other hand, strongly nucleophilic species are more commonly associated with nucleophilic substitution reactions of the SN2 (substitution nucleophilic bimolecular) type, where the nucleophile directly attacks the substrate in a concerted manner without the formation of a stable carbocation intermediate.

Learn more about Nucleophilic

brainly.com/question/32761121

#SPJ11

Protein and nucleic acid sequencing is often less complex than polysaccharide sequencing because ____.
a) O-glycosidic bonds are much harder to cleave than peptide or phosphodiester bonds
b) Proteins and nucleic acids have unique ends (e.g. N-terminal and 5' end) for sequence initiation; polysaccharides do not
c) Many polysaccharides have an indefinite length due to the way they are biosynthesized
d) Proteins and nucleic acids are linear polymers whereas polysaccharides may be branched, which adds much complexity to sequencing

Answers

Protein and nucleic acid sequencing is often less complex than polysaccharide sequencing because proteins and nucleic acids are linear polymers whereas polysaccharides may be branched, which adds much complexity to sequencing. The correct option is (d).

In protein and nucleic acid sequencing, the sequence determination of proteins and nucleic acids is less complex compared to that of polysaccharides. The reason behind this is that proteins and nucleic acids are linear polymers whereas polysaccharides may be branched, which adds much complexity to sequencing.

Proteins are linear polymers of amino acids, while nucleic acids are linear polymers of nucleotides. These two molecules have a simpler structure compared to that of polysaccharides. In addition, proteins and nucleic acids have unique ends (e.g., N-terminal and 5' end) for sequence initiation; polysaccharides do not.

Polysaccharides, on the other hand, are a complex group of carbohydrates that have an indefinite length due to the way they are biosynthesized. Because of these reasons, the sequence determination of polysaccharides is more complex than that of proteins and nucleic acids.

Learn more about Proteins from the given link:

https://brainly.com/question/30986280

#SPJ11

A 6.235-g sample of a pesticide was decomposed with metallic sodium in alcohol, and the liberated chloride ion was precipitated as {AgCl}. Express the results of this analysis in tes of percent DDT ({C}_{14} {H}_9 {Cl}_5 based on the recovery of 0.2316 {~g} of {AgCl}
_____% {C}_{14} {H}_9 {Cl}_5

Answers

A 6.235-g sample of a pesticide was decomposed with metallic sodium in alcohol, and the liberated chloride ion was precipitated as {AgCl} the sample has 0.853% of {C}{14}{H}{9}{Cl}{5}.

A 6.235-g sample of a pesticide was decomposed with metallic sodium in alcohol, and the liberated chloride ion was precipitated as {AgCl}.Expressing the results of this analysis in terms of percent DDT ({C}{14}{H}{9}{Cl}{5}) based on the recovery of 0.2316 g of {AgCl} would be calculated as follows

First, calculate the amount of chloride ions in the 0.2316 g of {AgCl}.{AgCl} → Ag+ + Cl-    1 mole of AgCl corresponds to 1 mole of Cl-35.45 g of Cl- = 1 mole Cl- = 0.2316 g of {AgCl}/ 143.32 g of {AgCl/mol} = 0.00162 moles of Cl-

Therefore, 0.00162 moles of {Cl}- is present in the sample.Next, determine the number of moles of DDT ({C}{14}{H}{9}{Cl}{5}) that corresponds to the number of moles of {Cl}- in the sample.1 mole of {C}{14}{H}{9}{Cl}{5} corresponds to 5 moles of {Cl}-Therefore, 0.00162 moles of {Cl}- is equivalent to 0.000324 moles of {C}{14}{H}{9}{Cl}{5}.

Finally, determine the percentage of {C}{14}{H}{9}{Cl}{5} in the original sample.0.000324 moles of {C}{14}{H}{9}{Cl}{5} = 0.000324 mol/L × 221.7 g of {C}{14}{H}{9}{Cl}{5}/mol × 1000 mL/L × 6.235 g of sample = 0.853% of {C}{14}{H}{9}{Cl}{5}.Therefore, the sample has 0.853% of {C}{14}{H}{9}{Cl}{5}.

Know more about sodium here:

https://brainly.com/question/30878702

#SPJ11

3. Calculate the moles of sucrose in 4.34 g of sucrose. 4. How many molecules are there in 0.2337 moles of sucrose?

Answers

There are approximately 0.01267 moles of sucrose in 4.34 g of sucrose, and there are approximately 1.404 × 10²³ molecules in 0.2337 moles of sucrose.

1. Moles of sucrose in 4.34 g:

- Calculate the molar mass of sucrose (C₁₂H₂₂O₁₁):

Molar mass of C₁₂H₂₂O₁₁ = (12.01 g/mol × 12) + (1.01 g/mol × 22) + (16.00 g/mol × 11) ≈ 342.34 g/mol

- Use the formula:

Moles of sucrose = mass of sucrose / molar mass of sucrose

Moles of sucrose = 4.34 g / 342.34 g/mol ≈ 0.01267 mol

2. Number of molecules in 0.2337 moles of sucrose:

- Use Avogadro's number: 1 mole ≈ 6.022 × 10²³ molecules

- Multiply the moles of sucrose by Avogadro's number:

Number of molecules = 0.2337 mol × 6.022 × 10²³ molecules/mol ≈ 1.404 × 10²³ molecules

Learn more about sucrose here:

https://brainly.com/question/29186350

#SPJ11

Calculate the effective nuclear charge of a 5 s electron of Rb. C. 1.00 D. 2.57 1.85 2.20 Question 19 Calculate the effective nuclear charge of a 3 d electron of Cu. 13.02 17.05 7.85 8.20

Answers

Effective Nuclear Charge:The effective nuclear charge (Zeff) is the net positive charge experienced by valence electrons of an atom. It is equivalent to the atomic number minus the number of inner-shell electrons in an atom.

The screening impact of internal electrons decreases the attraction between the positively charged nucleus and the negatively charged valence electrons. As a result, the valence electrons experience a lower effective nuclear charge. The effective nuclear charge can be calculated by the formula Zeff = Z – S where Z is the atomic number and S is the screening constant.

a. The electron configuration of Rb is [Kr] 5s1. Rb has 37 electrons in total and has a Kr noble gas core. The screening constant is S=0.35. Therefore, Zeff = Z – S = 37 – 0.35 = 36.65.
b. The electron configuration of Cu is [Ar] 3d10 4s1. The Cu+ ion, which lacks one electron, is the ion most frequently encountered in Cu compounds. Since the question is about a 3d electron, let's first fill the 3d orbitals: [Ar] 3d10. The 4s electron comes before the 3d electron because 4s has a lower energy level. S=0.78 for 3d electrons. Therefore, Zeff = Z – S = 29 – 0.78 = 28.22.

To know more about  Effective Nuclear visit:

brainly.com/question/30459988

#SPJ11

1. Compound X has a solubility in toluene of 20mg per 100ml at 20C, and a solubility of 0.60 g per 100ml at 75C. You are given 0.52 g sample of compound X that is contaminated with 35mg of compound Y. Use this infoation to answer questions A&B. A. If compound Y is completely soluble in toluene at all temperatures, describe the steps to purify X to obtain the maximum % recovery. Calculate the % recovery. (4 pts) B. If compound X has a solubility in toluene of 20mg per 100ml at 20C, and a solubility of 0.60 g per 100ml at 75C, what can be done to purify compound Y by recrystallization?

Answers

Recrystallization allows for the purification of compounds based on differences in solubility between the desired compound and impurities. By choosing an appropriate solvent system, compound Y can be selectively recrystallized, resulting in a purer sample.

A. To purify compound X and obtain the maximum % recovery, you can follow these steps:

1. Determine the solubility of compound Y in toluene at the given temperatures (20°C and 75°C). Since it is stated that compound Y is completely soluble in toluene at all temperatures, its solubility is not a limiting factor.

2. Dissolve the 0.52 g sample of compound X, contaminated with 35 mg of compound Y, in the minimum amount of toluene required to fully dissolve compound X at the higher temperature (75°C). This ensures that both compound X and Y are in the solution.

3. Slowly cool the solution to room temperature (20°C). As the temperature decreases, compound X's solubility in toluene decreases, resulting in the crystallization of compound X. Compound Y, being completely soluble, remains in the solution.

4. Filter the solution to separate the solid crystals of compound X from the liquid solution containing compound Y.

5. Wash the solid crystals of compound X with a cold solvent (such as cold toluene) to remove any impurities or residual compound Y.

6. Allow the washed solid crystals of compound X to dry, either by air-drying or under vacuum, to remove any remaining solvent.

7. Weigh the purified compound X obtained from the solid crystals. Calculate the % recovery using the formula:

% recovery = (mass of purified compound X / initial mass of compound X) * 100

B. To purify compound Y by recrystallization, you need to consider its solubility characteristics. Since compound Y is completely soluble in toluene at all temperatures, recrystallization using toluene alone may not be effective.

However, you can explore recrystallization using a different solvent system that has a selective solubility for compound Y. The general steps for recrystallization are as follows:

1. Choose a suitable solvent or solvent mixture that exhibits a temperature-dependent solubility behavior for compound Y. The solvent should have a low solubility for compound Y at low temperatures and a higher solubility at elevated temperatures.

2. Dissolve the impure sample of compound Y in the minimum amount of hot solvent required to fully dissolve it. If necessary, you can use gentle heating to aid dissolution.

3. Filter the hot solution to remove any insoluble impurities or undissolved material.

4. Cool the filtered solution slowly to room temperature or lower temperatures, allowing compound Y to crystallize out. The slower the cooling rate, the larger and purer the crystals obtained.

5. Collect the crystals of compound Y by filtration and wash them with a cold portion of the recrystallization solvent to remove any remaining impurities.

6. Dry the purified crystals of compound Y, either by air-drying or under vacuum, to remove any residual solvent.

Recrystallization allows for the purification of compounds based on differences in solubility between the desired compound and impurities. By choosing an appropriate solvent system, compound Y can be selectively recrystallized, resulting in a purer sample.

To know more about Recrystallization  visit :

https://brainly.com/question/32928097

#SPJ11

Which atom has higher shielding effect Li and Na

Answers

Answer: Sodium (Na) has a higher shielding effect compared to lithium (Li).

Explanation:

Shielding effect refers to the ability of inner electron shells to shield the outermost electrons from the positive charge of the nucleus. In the case of sodium, it has 11 electrons arranged in three energy levels or shells (2, 8, and 1), while lithium has only 3 electrons arranged in two energy levels (2 and 1).

The additional electron shell in sodium provides more shielding for the outermost electron from the positive charge of the nucleus. This increased shielding effect in sodium compared to lithium means that the outermost electron in sodium experiences a weaker attraction to the nucleus, making it easier to remove or ionize.

Sodium (Na) has a greater shielding effect than lithium (Li). This is because the atomic number of sodium is more than the atomic number of lithium.

The shielding effect is defined as the ability of inner electrons in a particle to shield the outer electrons from the entire nuclear charge. Elements that have larger atomic numbers have more inner electron shells, so they offer more shielding for the outer electrons.

In this case, we are comparing lithium (Li) and sodium (Na). The atomic number of lithium is 3, whereas the atomic number of sodium is 11. Because sodium has a higher atomic number than lithium, it has more inner electron shells than lithium. As a result, sodium has a greater shielding effect than lithium.

In conclusion, sodium (Na) has a stronger shielding effect than lithium (Li).

Learn more about the shielding effect from the below link:

brainly.com/question/27985711

oxidation number
Oxidation number of red labeled oxygen is -1 , True or False?

Answers

The statement "Oxidation number of red labeled oxygen is -1" is False.

The oxidation number of an element is a number assigned to it in a compound or ion to indicate the distribution of electrons. The oxidation number of oxygen (-2) is most commonly encountered in compounds, except for a few cases.

In general, oxygen has an oxidation number of -2 in most compounds, such as water (H₂O) and carbon dioxide (CO₂). However, there are some exceptions where the oxidation number of oxygen can be different.

One common exception is in peroxides, such as hydrogen peroxide (H₂O₂), where oxygen has an oxidation number of -1. In this case, each oxygen atom in the peroxide molecule carries an oxidation number of -1.

Therefore, the statement that the oxidation number of red-labeled oxygen is -1 is possible if it is referring to a peroxide compound, but it cannot be generalized for all oxygen-containing compounds.

learn more about Oxidation number here:

https://brainly.com/question/29257381

#SPJ11

Other Questions
_______ certificates are used in most network security applications, including IP security, secure sockets layer, secure electronic transactions, and S/MIME.A. X.509B. PKIC. FIMD. SCA Dr. Rice administers a selection test to a group of job applicants for a manufacturing job. Years later, he then collects performance appraisal ratings of these workers so he can asseis to what extent scores on the selection test correlate with performance on the job. Dr, Rice is assessing the of the test Content Validity Predictive Validity Reliability Construct Validity 20.63 poevis Test X is a highiy respected selection test for postal workers. Test Yis a new selection test for postal workers that is shorter and easier to administer than Test X. The. correlation of Text X and Test Y would represent Divergent Validity Predictive Vakidity Content Validity Convergent Validity 3. 063 oolnts A researcher believes that physical theragists are extremely conscientious warkers as a whole. To assess her belief, she decides to create a measure of conscientiousness. In order to determine the questions to include, the interviews various 5ME on which questions should appropriately cover the construct. This is an example of - validity Internal External Construct Content You have been asked what laboratory tests should be requested to assess the electrolyte balance regulatory function of an individual's kidneys. Which of the following is your reply?a. Serum creatinine, serum urea, serum uric acid, and creatinine clearanceb. Serum sodium and potassium, and arterial blood pHc. Serum renin and erythropoietind. Serum and urine proteinB61) The major artery that expands into the capillary bed that forms the glomerulus is the:a. renal artery.b. nephronic artery.c. vasa recta.d. arcuate artery. you take cash out of the bank and use it to buy an apple ipad. a. money increases. b. wealth increases. c. income increases. d. all of the above. - What did you benefit from coop course- Importance of social networks in your job search- What is networking and outreach to you and its impact on career search An inlet pipe can fill Reynaldo's pool in 5hr, while an outlet pipe can empty it in 8hr. In his haste to surf the Intenet, Reynaldo left both pipes open. How long did it take to fill the pool? in an amortization schedule of monthly mortgage payments with a fixed interest rate, over time the fraction of each monthly payment that reflects interest and the fraction of the payment that reflects principal of all the mass consumption activities, this was the most popular form of mass entertainment. If f(x)=(1)/(3)x-5,g(x)=-4x^(2)-5x+9, and h(x)=(1)/(x-8)+3, find g(-2). Type your exact answer, simplified if necessary, in the empty text box. You are the manager of a monopoly, and your analysts have estimated your demand and cost functions as P=5002Q and qQ ) = 2,000+2Q 2, respectively. a. What price-quantity combination maximizes your firm's profits? Instructions: Round your response to the nearest penny (two decimal places? Price: $ Quentity: units b. Calculate the maximum profits. Instructions: Round your response to the nearest penny (two decimal placesk. 5 c. Is demand elastic, inelastic, or unit elastic at the profit-maximizing price-quantify combination? Eiastic inelastic Unit elastic d. What price-quantily combination maximizes revenue? Instructions: Round your response to the nearest penny (two decimal places). Price: $ Quantity? units c. Is demand elastic, inelastic, or unit elastic at the profit-maximizing price-quantity comblnation? Elastic Inelastic Unit elastic d. Whot price-quantity combination maximizes revenue? Instructions: Round your response to the nearest penny (two decimal places). Price: $L Quentity: Quenits e. Colculate the maximum revenues. Instructionst Round your response to the nearest penny (two decimal places). C. Is demond elastic, inelastc, or unit elastic at the revenue-maximizing price-quantity combination? Elastic Inelastic Unit elastic in a speech about the global economy, rachel starts with a story about a local grocery store. she is establishing _______. The Hope club had a fundraising raffle where they sold 2505 tickets for $5 each. There was one first place prize worth $811 and 7 second place prizes each worth $20. The expected value can be computed by:EV=811+(20)(7)+(5)(250517)2505EV=811+(20)(7)+(-5)(2505-1-7)2505Find this expected value rounded to two decimal places (the nearest cent). from smallest to largest, what is the correct order of the following distances? (ly stands for light year) 1 ly, 1 km, 1 AU, 1 cm you are studying the effects of climate change on the geographic ranges of species living in the mountains, and your climate records show that mean temperatures are increasing. from a conservation standpoint, which species would you be most concerned about? HeyCan you help me out on this? I also need a sketchUse the following information to answer the next question The function y=f(x) is shown below. 20. Describe the transformation that change the graph of y=f(x) to y=-2 f(x+4)+2 and ske The Fibonacci numbers {fi} are defined recurrently by f1=1f2=1f3=f1+f2fn=fn1+fn2 Use Euclidean lemma to prove that gcd(fn,fn+1)=1 for every nN. The Language Arts department conducts a study to see if the number of books a student reads per month affects the score on the SAT Verbal Test. Here is the data that the Language Arts department collected for 8 students. Create the scatter plot for this data set. What is the equation of the line of best fit? Let U,V,W be finite dimensional vector spaces over F. Let SL(U,V) and TL(V,W). Prove that rank(TS)min{rank(T),rank(S)}. 3. Let V be a vector space, TL(V,V) such that TT=T. Now you are ready to implement parse_arguments (). If you find a name, you have to access the argument after it. A for loop makes this awkward: a whi le loop is easier. Begin with this code: index =1 while index < len (sys.argv): arg = sys. argv[index] index +=1 arg is a name, you should - figure out if the name is "width" or "height". - increment index, and retrieve the next argument (which is a value). - remember to convert the value into an int! - change either the width or height variable. arg is not a name, then it's a positional argument. In this case, you should just store it into symbol. the primary goal of external monitoring is to maintain an informed awareness of the state of all of the organizations networks, information systems, and information security defenses.true or false