Answer:
The ranks is
Ge: 3d10 4s2 4p2 (6 electrons in the outer shell)
Br: 3d10 4s2 4p5 (7 electrons in the outer shell)
Kr: 3d10 4s2 4p6 (8 electrons in the outer shell)
Explanation:
Electronic configuration reffers to the distribution of electrons of an atom or molecule in atomic or molecular orbitals. It gives us the understanding of the shape and energy of its electrons. The electronic configuration explain the The electron affinity or propensity to attract electrons
It Should be noted that the most stable configuration in an electronic configuration is attributed to when the last shell is full, i.e. when the last shell has 8 electrons.
When an atom is closer to reach the 8 electrons in the outer shell, then it's electron affinity big.
Considering the given three configuration of the elements above, we can see that "Br"needs requires only 1 electron to have 8 electrons in the outer shell, therefore, it is considered to have the biggest electron affinity among them which is reffers to as the LEAST NEGATIVE.
Ge: with the electronic configuration 3d10 4s2 4p2 has 6 electrons in the outer shell which means it still requires 2 electrons to complete 8 electrons in its outer shell, so it can be deducted that it posses an atom that is more negative than Br.
Kr: with the electronic configuration 3d10 4s2 4p6 which is a noble gas has 8 electrons in the outer shell cannot add more electrons to its outer shell because the 8 electrons is complete posses the least electron affinity among the three elements and it is the MOST NEGATIVE
During which stage of the water cycle could water enter the atmosphere as a gas? A. transpiration B. precipitation C. accumulation D. condensation
Answer: Transpiration---A
Explanation: Transpiration is the process in the water cycle whereby plant loose(excess) water by evaporation through the stomata of their leaves since not all water absorbed by the root is actually used for growth in plants.In order to allow the intake of carbon-dioxide, water must exit the leaves through transpiration which then provides the plant with cooling, rigidity and maintaining the overall water balance of the plant.
if 196L of air at 1 atm is compressed to 2600mL,what is the new temperature?
Answer:
Around 3.62 degrees kelvin
Explanation:
Assuming this is at STP:
The first step is to convert 2600mL to liters. There are 1000 milliliters in a liter, meaning that this is equal to 2.6L.
Now:
[tex]\dfrac{P_1V_1}{T_1}=\dfrac{P_2V_2}{T_2}\\\\\\\dfrac{196(1)}{273}=\dfrac{2.6(1)}{T_2} \\\\\\T_2\approx 3.62K[/tex]
Hope this helps!
Identify whether each species functions as a Brønsted-Lowry acid or a Brønsted-Lowry base in this net ionic equation. HF (aq) + SO32- ⇌ F- + HSO3- Brønsted-Lowry _____ Brønsted-Lowry _____ Brønsted-Lowry _____ Brønsted-Lowry _____ In this reaction: The formula for the conjugate _____ of HF is The formula for the conjugate _____ of SO32- is
Explanation:
A Bronsted-Lowry base is a substance that accepts a proton in the form of a hydrogen (H) atom.
On the other hand;
Bronsted-Lowry acid is the substance that donates the proton.
HF (aq) + SO32- ⇌ F- + HSO3-
In the forward reaction;
Bronsted-Lowry acid : HF
Bronsted-Lowry base: SO32-
In the backward reaction;
Bronsted-Lowry acid : HSO3-
Bronsted-Lowry base: F-
The conjugate base of HF is F-
The conjugate acid of SO32- is HSO3-
Ammonia will decompose into nitrogen and hydrogen at high temperature. An industrial chemist studying this reaction fills a tank with of ammonia gas, and when the mixture has come to equilibrium measures the amount of nitrogen gas to be 13. mol. Calculate the concentration equilibrium constant for the decomposition of ammonia at the final temperature of the mixture.
Complete Question
The complete question is shown on the first uploaded image
Answer:
The concentration equilibrium constant is [tex]K_c = 14.39[/tex]
Explanation:
The chemical equation for this decomposition of ammonia is
[tex]2 NH_3[/tex] ↔ [tex]N_2 + 3 H_2[/tex]
The initial concentration of ammonia is mathematically represented a
[tex][NH_3] = \frac{n_1}{V_1} = \frac{29}{75}[/tex]
[tex][NH_3] = 0.387 \ M[/tex]
The initial concentration of nitrogen gas is mathematically represented a
[tex][N_2] = \frac{n_2}{V_2}[/tex]
[tex][N_2] = 0.173 \ M[/tex]
So looking at the equation
Initially (Before reaction)
[tex]NH_3 = 0.387 \ M[/tex]
[tex]N_2 = 0 \ M[/tex]
[tex]H_2 = 0 \ M[/tex]
During reaction(this is gotten from the reaction equation )
[tex]NH_3 = -2 x[/tex](this implies that it losses two moles of concentration )
[tex]N_2 = + x[/tex] (this implies that it gains 1 moles)
[tex]H_2 = +3 x[/tex](this implies that it gains 3 moles)
Note : x denotes concentration
At equilibrium
[tex]NH_3 = 0.387 -2x[/tex]
[tex]N_2 = x[/tex]
[tex]H_2 = 3 x[/tex]
Now since
[tex][NH_3] = 0.387 \ M[/tex]
[tex]x= 0.387 \ M[/tex]
[tex]H_2 = 3 * 0.173[/tex]
[tex]H_2 = 0.519 \ M[/tex]
[tex]NH_3 = 0.387 -2(0.173)[/tex]
[tex]NH_3 = 0.041 \ M[/tex]
Now the equilibrium constant is
[tex]K_c = \frac{[N_2][H_2]^3}{[NH_3]^2}[/tex]
substituting values
[tex]K_c = \frac{(0.173) (0.519)^3}{(0.041)^2}[/tex]
[tex]K_c = 14.39[/tex]
There are __________ moles of N atoms present in a 2.0 g C8H10O2N4.
Answer:
[tex]n_N=0.041molN[/tex]
Explanation:
Hello,
In this case, for this mole-mass relationship, we are able to compute the moles of nitrogen atoms by firstly obtaining the moles of the given compound, considering its molar mass that is 194 g/mol:
[tex]n_{C_8H_{10}O_2N_4}=2.0gC_8H_{10}O_2N_4*\frac{1molC_8H_{10}O_2N_4}{194gC_8H_{10}O_2N_4} =0.01molC_8H_{10}O_2N_4[/tex]
Then, by knowing that one mole of the given compound has four moles of nitrogen atoms, we apply the following relationship:
[tex]n_N=0.01molC_8H_{10}O_2N_4*\frac{4molN}{1molC_8H_{10}O_2N_4} \\\\n_N=0.041molN[/tex]
Best regards.
A chemist working as a safety inspector finds an unmarked bottle in a lab cabinet. A note on the door of the cabinet says the cabinet is used to store bottles of diethylamine, tetrahydrofuran, chloroform, ethanolamine, and acetone. First, from her collection of Material Safety Data Sheets (MSOS), the chemist finds the following information:
liquid density
diethylamine 1.1 gcm-3
tetrahydrofuran 0.7 9gcm-3
chloroform 0.71 gcm-3
ethanolamine 0.89 gcm-3
acetone 1.6 gcm-3
Next, the chemist measures the volume of the unknown liquid as 0.767 L and the mass of the unknown liquid as 682 g.
1. Calculate the density of the liquid.
2. Given the data above, is it possible to identify the liquid?
3. If it is possible to identify the liquid, do so.
a. dimethyl sulfoxide.
b. acetone.
c. diethylamine.
d. tetrahydrofuran .
e. carbon tetrachloride
Answer:
1. density = 0.89 g/cm3
2. Yes is possible to identify the liquid
3. ethanolamine
Explanation:
Data:
mass = 682 g
volume = 0.767 L = 767 mL or cm3
1.
To calculate the density of the liquid it is necessary to know that the density formula is:
[tex]density=\frac{mass(g)}{volume(cm^{3}) }[/tex]
The data obtained is replaced in the formula:
[tex]density=\frac{682g)}{767(cm^{3}) }=0.89\frac{g}{cm^{3} }[/tex]
2.
With the given data it is possible to identify the liquid, this because the density value is a basic property of each liquid.
3.
It is possible to determine what liquid it is, since when comparing the value obtained with those reported in the collection of Material Safety Data Sheets (MSOS), the value that agrees is that of ethanolamine.
After recrystallizing an impure sample with isopropanol, you isolate your product by filtration. What solvent do you use to wash your crystals? Room temperature distilled water Room temperature isopropanol Ice cold distilled water Ice cold isopropanol
Answer:
The correct answer is ice cold isopropanol.
Explanation:
Any compound in the initial stage is first dissolved in any suitable solvent and is heated for a certain duration for the process of recrystallization. Afterward, the compound is kept at room temperature so that it gets cooled gradually. In the process, the impurities remain dissolved in the solvent and the pure compound gets separated in the form of a precipitate.
Post all this, the filtration of the pure compound is done and is then washed with the cold solvent, which was initially used to dissolve the compound. Therefore, the appropriate solvent to use in the process is ice-cold isopropanol.
How many significant figures are in 382.90?
Answer:
5
Explanation:
Answer:
5
Explanation:
Which best describes thermal energy? It is the difference between internal energies of two or more substances. It is the sum of internal energies of two or more substances. It is the portion of internal energy that can be transferred from one substance to another. It is the portion of potential energy that can be transferred from one substance to another.
Answer:
It is the portion of internal energy that can be transferred from one substance to another.
Thermal energy is the portion of internal energy that can be transferred from one substance to another.
What is thermal energy?Thermal energy is the energy an object posses which is as a result of particles movement within it.
It is also the internal energy system in a state of thermodynamic equilibrium which is as a result of its temperature. Thermal energy cannot be concert to useful work easily.
Therefore, thermal energy is the portion of internal energy that can be transferred from one substance to another.
Learn more about thermal energy from the link below.
https://brainly.com/question/19666326
What is it called when a gas changes into a liquid?
Answer:
Explanation:
Condensation is the word you seek.
Answer:
Condensation
Explanation:
When a gas is subjected to decrease in temperature it is condensed
What is the systematic name of the following compound?
Mn3(PO4)2
The polyatomic ion phosphate has the formula PO
Answer:
Manganese(II) phosphate | Mn3(PO4)2 - PubChem
Answer:
Magnese(ll) posphate M23 (p042) Molecular weight.
That is what the leters stand for!
IF THIS HELPED AND IF YOU DON'T MIND CAN YOU PLEASE MARK ME BRAINLIEST?which element causes burning when me mix it with oxygen
Answer:
Hydrogen peroxide is ans
rinking water suggest an upper limit of 250 mg/L for chloride ion. If 1.03×104 liters of water in a storage tank contains 1.40 grams of Cl-, what is the contaminant level in ppm? in ppb? Is this level acceptable based on EPA guidelines?
Answer:
This water has a level acceptable, 0.1359ppm and 135.9ppb.
Explanation:
1.40g of Cl⁻ are:
1.40g Cl⁻ × (1000mg / 1g) = 1400mg Cl⁻
In 1.03x10⁴L:
1400mg / 1.03x10⁴L = 0.1359mg/L.
As the upper limit of Cl⁻ in water is 250mg/L, this water has a level acceptable
ppm are the ratio between mg of solute and liters of solution, that means the tank contains 0.1359mg/L = 0.1359ppm
ppb, parts per billion are 1000 times ppm, thus, parts per billion of the storage tank are:
0.1359ppm × 1000 = 135.9ppb
Asbestosis is a lung disease caused by inhaling asbestos fibers. The US Department of Health and Human Services considers a particular form of asbestos to be a carcinogen. The composition of this form of asbestos is 26.31% Mg, 20.20% Is, 1.45% H and the rest of the mass is due to oxygen. The molar mass of the compound is 277 g/mol. What is the molecular formula for the carcinogenic form of asbestos
Answer: The molecular formula for the carcinogenic form of asbestos [tex]Mg_3Si_2H_4O_9[/tex]
Explanation:
a) If percentage are given then we are taking total mass is 100 grams.
So, the mass of each element is equal to the percentage given.
Mass of Mg = 26.31 g
Mass of Si= 20.20 g
Mass of H= 1.45 g
Mass of O= (100-(26.31+ 20.20+ 1.45)) = 52.04 g
Step 1 : convert given masses into moles
Moles of Mg=[tex]\frac{\text{ given mass of Mg}}{\text{ molar mass of Mg}}= \frac{26.31g}{24g/mole}=1.10moles[/tex]
Moles of Si=[tex]\frac{\text{ given mass of Si}}{\text{ molar mass of Si}}= \frac{20.20g}{28g/mole}=0.72moles[/tex]
Moles of H=[tex]\frac{\text{ given mass of H}}{\text{ molar mass of H}}= \frac{1.45g}{1g/mole}=1.45moles[/tex]
Moles of O=[tex]\frac{\text{ given mass of O}}{\text{ molar mass of O}}= \frac{52.04g}{16g/mole}=3.25moles[/tex]
Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.
For Mg = [tex]\frac{1.10}{0.72}=1.5[/tex]
For Si =[tex]\frac{0.72}{0.72}=1[/tex]
For H=[tex]\frac{1.45}{0.72}=2[/tex]
For O =[tex]\frac{3.25}{0.72}=4.5[/tex]
The ratio of Mg : Si: H: O = 1.5 : 1 : 2 : 4.5
Converting them into whole numbers :
The ratio of Mg : Si: H: O = 3 : 2 : 4 : 9
Hence the empirical formula is [tex]Mg_3Si_2H_4O_9[/tex]
Empirical mass =[tex]3\times 24+2\times 28+4\times 1+9\times 16=276g[/tex]
Molecular mass = 277 g
[tex]n= \frac{\text {Molecular mass}}{\text {Empirical mass}}=\frac{277}{276}=1[/tex]
Thus molecular formula =[tex]1\times Mg_3Si_2H_4O_9=Mg_3Si_2H_4O_9[/tex]
Coefficient of balanced equation: __Fe + ___020) — _Fe_036)
Answer:
- Four for iron, three for oxygen and 2 for iron (III) oxide:
[tex]4Fe+3O_2\rightarrow 2Fe_2O_3[/tex]
Explanation:
Hello,
In this case, the oxidation of iron is a widely acknowledged reaction occurring in ships and other machines exposed to the air or highly oxidizing medias. Thus, by the effect of oxygen, iron undergoes oxidation typically to iron (III) oxide:
[tex]Fe+O_2\rightarrow Fe_2O_3[/tex]
Nonetheless, the law of conservation of mass must be respected, therefore the coefficients balancing the reaction are four for iron, three for oxygen and 2 for iron (III) oxide:
[tex]4Fe+3O_2\rightarrow 2Fe_2O_3[/tex]
Best regards.
1 Ammonia, NH3, reacts with incredibly strong bases to produce the amide ion, NH2 -. Ammonia can also react with acids to produce the ammonium ion, NH4 +. (a) Which species (amide ion, ammonia, or ammonium ion) has the largest H ¬ N ¬ H bond angle? (b) Which species has the smallest H¬N¬H bond angle?
Answer:
a) ammonium ion
b) amide ion
Explanation:
The order of decreasing bond angles of the three nitrogen species; ammonium ion, ammonia and amide ion is NH4+ >NH3> NH2-. Next we need to rationalize this order of decreasing bond angles from the valence shell electron pair repulsion (VSEPR) theory perspective.
First we must realize that all three nitrogen species contain a central sp3 hybridized carbon atom. This means that a tetrahedral geometry is ideally expected. Recall that the presence of lone pairs distorts molecular structures from the expected geometry based on VSEPR theory.
The amide ion contains two lone pairs of electrons. Remember that the presence of lone pairs causes greater repulsion than bond pairs on the outermost shell of the central atom. Hence, the amide ion has the least H-N-H bond angle of about 105°.
The ammonia molecule contains one lone pair, the repulsion caused by one lone pair is definitely bless than that caused by two lone pairs of electrons hence the bond angle of the H-N-H bond in ammonia is 107°.
The ammonium ion contains four bond pairs and no lone pair of electrons on the outermost nitrogen atom. Hence we expect a perfect tetrahedron with bond angle of 109°.
symbol for carboxylic acid
A filtration system continuously removes water from a swimming pool, passes the water through filters, and then returns it to the pool. Both pipes are located near the surface of the water. The flow rate is 15 gallons per minute. The water entering the pump is at 0 psig, and the water leaving the pump is at 10 psig.
A. The diameter of the pipe that leaves the pump is 1 inch. How much flow work is done by the water as it leaves the pump and enters the pipe?
B. The water returns to the pool through an opening that is 1.5 inches in diameter, located at the surface of the water, where the pressure is 1 atm. How much work is done by the water as it leaves the pipe and enters the pool?
C. "The system" consists of the water in the pump and in the pipes that transport water between the pump and the pool. Is the system at steady state, equilibrium, both, or neither?
Answer:
A . [tex]\mathbf{W = 7133.2 \dfrac{ft. lb_f}{min} }[/tex]
B. [tex]\mathbf{W = 4245.24 \dfrac{ft. lb_f}{min} }[/tex]
C. The system is at steady state but not at equilibrium
Explanation:
Given that:
The volumetric flow rate of the water = 15 gallons per minute
The diameter of the pipe that leaves the pump is 1 inch.
A. The objective here is to determine how much work flow is done by the water as it leaves the pump and enters the pipe
The work flow that is said to be done can be expressed by the relation :
W = P × V
where;
P = pressure
V = volume
Also the given outlet pressure is the gauge pressure
The pressure in the pump P is can now be expressed by the relation:
[tex]P_{absolute} = P_{guage} + P_{atmospheric}[/tex]
[tex]P_{absolute}[/tex] = 10 psig + 14.7 psig
[tex]P_{absolute}[/tex] = 24.7 psig
W = P × V
W = 24.7 psig × 15 gal/min
[tex]W = (24.7 \ psig * \dfrac{\frac{lb_f}{in^2}}{psig}) * ( 15 \frac{gal}{min}* \dfrac{0.1337 \ ft^3}{1 \ gal }* \dfrac{144 \ in^2}{1 \ ft^2})[/tex]
[tex]\mathbf{W = 7133.2 \dfrac{ft. lb_f}{min} }[/tex]
Thus ; the rate of flow of work is said to be done by the water at [tex]\mathbf{W = 7133.2 \dfrac{ft. lb_f}{min} }[/tex]
B.
Given that :
The water returns to the pool through an opening that is 1.5 inches in diameter.
where the pressure is 1 atm.
Then ; the rate of work done by the water as it leaves the pipe and enter the pool is as follows:
W = P × V
W = 1 atm × 15 gal/min
[tex]W = 1 \ atm * ( 15 \frac{gal}{min}* \dfrac{0.1337 \ ft^3}{1 \ gal }* \dfrac{144 \ in^2}{1 \ ft^2})[/tex]
[tex]\mathbf{W = 4245.24 \dfrac{ft. lb_f}{min} }[/tex]
Thus ; the rate of flow of work done by the water leaving the pipe and enters into the pool is at [tex]\mathbf{W = 4245.24 \dfrac{ft. lb_f}{min} }[/tex]
C.
We can consider the system to be at steady state due to the fact that; the data given for the flow rate and pressure doesn't reflect upon the change in time in the space between the pump and the pool.
On the other-hand the integral factor why the system is not at equilibrium is that :
the pressure leaving the pipe is different from that of the water at the surface of the pool as stated in the question.
In this problem, you will use Lenz's law to explore what happens when an electromagnet is activated a short distance from a wire loop.
You will need to use the right-hand rule to find the direction of the induced current. When the switch is open, which of the following statements about the magnetic flux through the wire loop is true? Assume that the direction of the vector area of the wire loop is to the right.
A) There is no magnetic flux through the wire loop.
B) There is a positive flux through the wire loop.
C) There is a negative flux through the wire loop.
Answer:
The correct answer is Option A (There is no magnetic flux through the wire loop.)
Explanation:
Magnetic flux measures the entire magnetic field that passes through the wire loop.
The right hand rule can be demonstrated on how magnetic flux is generated through the moving current in the wire loop. The magnetic flux through the wire loop will decrease as it moves upward through the magnetic field region.
If the direction of the vector area of the wire loop is to the right, and the switch is closed, it will push the magnetic flux to the right which will now be increased due to an equal increase in the current in the wire loop. But, when the switch is open, this will halt the movement of current through the wire loop thus affecting the generation of magnetic field. This would make the magnetic flux to be zero.
The statement related to the magnetic flux is option A i.e. no magnetic flux is there.
What is magnetic flux?It determined the overall magnetic field that should be passed via the looping of the wire. here the right-hand rule represent how the magnetic flux should be created via the movement of the current.
Also, it should be decreased in the case when it should be moved upward. Also, in the case when the direction of the vector area should be right so the switch should be closed.
Therefore, the option A is correct.
Learn more about magnetic here: https://brainly.com/question/18704022
Best example of potential energy?
Answer:
water stored in a dam
Explanation:
when the water is in dam it is ready to move bit is not moving
A sample of helium has a volume of 325 mL and a pressure of 655 mmHg. What will be the pressure, in mmHg, if the sample of helium is compressed to 125 mL (T, n constant)? (Show calculations.)
Answer:
1703 mmHg
Explanation:
Volume and pressure are presumed to be inversely proportional. Hence a change in volume by a factor of 125/325 = 5/13 is expected to change the pressure by a factor of 13/5:
(13/5)(655 mmHg) = 1703 mmHg
Which of the following structures in the human body has the highest level of organization
Answer:
The brain
Explanation:
With all those instructions the body recqures to respond to it must be so
Hope it helps
¿What are the units that make up the 3 quantities (mass, volume of a substance and density)?
Answer:
Grams , centimeters cubed, and grams per centimeter
Explanation:
What is the atomic mass of AlNO2?
Answer:
I am not sure, but I think this is the answer 72.987 g/mol
If you prepare a solution by adding sufficient amount of solute so that after heating and cooling the solution there is a visible amount of solid solute left in the bottom of the beaker, the solution would be considered ________.
Answer:
saturated
Explanation:
Give the IUPAC name for the following compound
Answer:
3–bromo–5–chloro–4–methylhexane.
Explanation:
To name the compound given in the question, the following must be observed:
1. Locate the longest continuous carbon chain. This gives the parent name of the compound. In this case, the longest chain is carbon 6 i.e Hexane.
2. Identify the substituents attached. In this case the substituents attached are:
a. Chloro i.e Cl.
b. Bromo ie Br.
c. Methyl i.e CH3.
3. Give the substituents the lowest possible count alphabetically. Bromo comes before Chloro alphabetically, so we shall consider bromo first. Their positions are given below:
Bromo i.e Br at carbon 3
Chloro i.e Cl is at carbon 5
Methyl i.e CH3 is at carbon 4
4. Combine the above to get the name of the compound.
Therefore, the name of the compound is:
3–bromo–5–chloro–4–methylhexane.
A vegetable soup recipe requires one teaspoonful of salt. A chef accidentally puts in one tablespoonful. Now the soup is much too salty.
a) What can the chef do to reduce the salty taste of the soup?
b) What effects would your suggestion in a) have on the soup?
Answer:
a. Put a piece of fresh sliced yam with a bore into it into the soup.
Explanation:
b. Osmosis may occur
The chef can put a slice of yam in the soup with a hole in it as it will absorb excess of salt by process of diffusion.
What is diffusion?
Diffusion is defined as the process of movement of molecules which takes place under concentration gradient. It helps in movement of substances in and out from the cell.The molecules move from lower concentration region to a higher concentration region till the concentration becomes equal.
There are 2 main types of diffusion:
1) simple diffusion-process in which substances move through a semi-permeable membrane without the aid of transport proteins.
2) facilitated diffusion- It is a passive movement of molecules across cell membrane from higher concentration region to lower concentration.
There are 2 types of facilitated diffusion one is osmosis and dialysis.
Learn more about diffusion,here:
https://brainly.com/question/14852229
#SPJ2
3.01 × 1023 molecules H2O
Answer:
0.5 mole
Explanation:
The question isn't even clear
But I'm guessing you want to ask the number of moles
n= Number of molecules/ Avogadros number
n= 1/2
When a saturated solution of NH4Br dissolved in 100 grams of water is cooled from 60°C to 30°C, how much NH4Br will precipitate?
Answer:
[tex]m_{precipitated}=24.8g[/tex]
Explanation:
Hello,
In this case, since at 60 °C, 108 grams of ammonium bromide are completely dissolved in 100 grams of water for a saturated solution, once it is cooled to 30 °C, wherein only 83.2 grams are completely dissolved in 100 grams of water, the following mass will precipitate:
[tex]m_{precipitated}=108g-83.2g\\\\m_{precipitated}=24.8g[/tex]
Best regards.
Coral reefs support more species per unit area than any other marine
environment on Earth. What role do coral reefs play in the health of the
biosphere?
A. Coral reefs tend to drain nearby wetlands of stagnant water.
B. Their productive organisms play a major role in nutrient recycling.
C. Their colorful organisms attract millions of tourists each year.
D. Coral reefs require very specific environmental conditions.
SUBMIT
Answer:
B. Their productive organisms play a major role in nutrient recycling.
Explanation:
Coral reefs contain photosynthetic algae that help coral reefs in processing nutrients and contribute in the nutrient cycle.
The process of photosynthesis in corals leads to carbon fixing in which corals transform, carbon dioxide, into organic carbon. carbon fixing property allows corals to become primary producers.
Dissolve organic matter produced by corals is consumed by several organisms such as crabs, worms, fish, and snails.
Hence, coral reefs maintain the flow of energy and nutrient cycle in the biosphere and the correct option is B.