Consider the combustion reaction of acetylene (C2H2) :

2C2H2 + 5O2 Right arrow. 4CO2 + 2H2O

Use the periodic table to determine how many grams of oxygen would be required to react completely with 859.0 g C2H2?

423.0 g O2

832.0 g O2

1,750. g O2

2,640. g O2

Answers

Answer 1

Grams of [tex]O_2[/tex]is 2,640 g (rounded to three significant figures)  in the combustion reaction of acetylene ([tex]C_2H_2[/tex]) :Option D

To determine the grams of oxygen required to react completely with 859.0 g of [tex]C_2H_2[/tex]in the combustion reaction, we need to use stoichiometry and the molar masses of [tex]C_2H_2[/tex] and [tex]O_2[/tex].

First, we need to calculate the number of moles of [tex]C_2H_2[/tex]using its molar mass. The molar mass of [tex]C_2H_2[/tex] is calculated by summing the atomic masses of carbon (C) and hydrogen (H), which gives us:

Molar mass of [tex]C_2H_2[/tex]= 2 * atomic mass of C + 2 * atomic mass of H

= 2 * 12.01 g/mol + 2 * 1.01 g/mol

= 26.04 g/mol

Moles of [tex]C_2H_2[/tex] = 859.0 g / 26.04 g/mol ≈ 32.99 mol (rounded to two decimal places)

According to the balanced equation, the stoichiometric ratio between [tex]C_2H_2[/tex] and [tex]O_2[/tex]is 2:5. This means that for every 2 moles of [tex]C_2H_2[/tex], 5 moles of [tex]O_2[/tex]are required.

Using the stoichiometric ratio, we can determine the number of moles of [tex]O_2[/tex]required:

Moles of [tex]O_2[/tex](theoretical) = 32.99 mol [tex]C_2H_2[/tex] × (5 mol O2 / 2 mol C2H2) = 82.47 mol (rounded to two decimal places)

Finally, we can calculate the grams of [tex]O_2[/tex]required by multiplying the number of moles of [tex]O_2[/tex]by its molar mass. The molar mass of [tex]O_2[/tex] is 32.00 g/mol.

Grams of [tex]O_2[/tex]= 82.47 mol [tex]O_2[/tex]× 32.00 g/mol ≈ 2,640 g (rounded to three significant figures)

Option D

For more such questions on combustion visit:

https://brainly.com/question/13251946

#SPJ8


Related Questions

determine the mathematical relationship between the percentage
increase in fossil fuel consumption and the increase in atmospheric
carbon. Is the relationship linear?

Answers

The relationship between the percentage increase in fossil fuel consumption and the increase in atmospheric carbon is positive, indicating that as fossil fuel consumption increases, so does the amount of carbon in the atmosphere.

The relationship between the percentage increase in fossil fuel consumption and the increase in atmospheric carbon is not linear but rather complex and dependent on various factors. However, there is a positive correlation between these two variables, indicating that as fossil fuel consumption increases, the amount of atmospheric carbon also tends to increase.

The combustion of fossil fuels releases carbon dioxide (CO2) into the atmosphere, which is a greenhouse gas that contributes to the greenhouse effect and climate change. The relationship between fossil fuel consumption and atmospheric carbon can be influenced by factors such as the carbon intensity of the fuel, efficiency of combustion processes, carbon sequestration efforts, and natural carbon sinks.

While the relationship is not strictly linear, it is generally understood that a higher percentage increase in fossil fuel consumption would result in a corresponding increase in atmospheric carbon. However, the actual magnitude of the increase may vary due to the factors mentioned earlier.

It's important to note that the relationship between fossil fuel consumption and atmospheric carbon is just one aspect of the larger issue of climate change. The impacts of increasing atmospheric carbon extend beyond simple linear relationships and involve complex feedback loops and interactions with other components of the Earth's climate system.

Learn more about Fossil fuels from the link given below.

https://brainly.com/question/2582135

#SPJ4

Determine the type of each chemical equation describing a precipitation reaction.
Ca2+ (aq) +2 Br- (aq) +2 Na+ (aq) + SO42- (aq) → 2 Na+ (aq) + 2 Br (aq) + CaSO4(s) Choose...
CaBr2 (aq) + Na2SO4 (aq) → 2 NaBr (aq) + CaSO4 (s) Choose..
Ca2+ (aq) + SO42 (aq) → CaSO4(s) Choose...

Answers

The given equations are of the precipitation reaction. The type of the given chemical equations describing a precipitation reaction are:

a) Double displacement reaction.

b) Double displacement reaction.

c) Simple displacement reaction.

Explanation:

When two aqueous solutions containing ions of two different compounds are mixed, and one of the products is an insoluble salt, a precipitation reaction occurs. These reactions are referred to as precipitation reactions because they create a solid precipitate.The three given chemical equations describe precipitation reactions:Equation a:Ca2+ (aq) +2 Br- (aq) +2 Na+ (aq) + SO42- (aq) → 2 Na+ (aq) + 2 Br (aq) + CaSO4(s)This chemical equation represents a double displacement reaction, which involves the swapping of ions between two different compounds. A double displacement reaction causes the ions in the reactant compounds to swap with each other, producing new compounds. In this reaction, Ca2+ combines with SO42- to produce CaSO4 (which is insoluble) and Na+ combines with Br- to produce NaBr, which is soluble.Equation b:CaBr2 (aq) + Na2SO4 (aq) → 2 NaBr (aq) + CaSO4 (s)This chemical equation represents a double displacement reaction, which involves the swapping of ions between two different compounds. In this reaction, CaBr2 reacts with Na2SO4, producing CaSO4 (which is insoluble) and NaBr (which is soluble).Equation c:Ca2+ (aq) + SO42 (aq) → CaSO4(s)This chemical equation represents a simple displacement reaction. In a simple displacement reaction, an element or ion displaces another element or ion in a compound. In this reaction, Ca2+ reacts with SO42-, producing CaSO4 (which is insoluble).

Learn more about chemical equations at

brainly.com/question/29130807

#SPJ11

according to the dental board regulations, what is the proper method for decontaminating impressions before sending them to the laboratory?

Answers

The proper method for decontaminating impressions before sending them to the dental laboratory may vary based on dental board regulations. A common approach involves rinsing the impression under running water to remove debris, followed by immersion in a recommended disinfectant solution.

The impression should be thoroughly rinsed again to eliminate any residual disinfectant.

Proper packaging in a sealable plastic bag or container, while maintaining moisture to prevent distortion, is crucial.

Additionally, including appropriate identification and labeling information are essential.

It is vital to consult and adhere to specific guidelines provided by the dental board in the respective region or country, as these guidelines are periodically updated to ensure compliance with current infection control and decontamination practices.

Read more about Decontaminating.

https://brainly.com/question/31758739

#SPJ11

Radioactive Decay: A 20kg shipment of Plutonium 243 is being transferred from Brookhaven National Laboratory to the Los Alamos National Laboratory 2,100 miles away. If all goes well, it should take 32 hours to make the shipment. If this isotope of Plutonium has a half-life of just 5 hours, how much radioactive material will remain after the trip? Nearly zero 17.8kg 3.125kg 178 grams Nearly the full 20kg 237 grams

Answers

The initial mass of Plutonium-243 is 20kg and it has a half-life of 5 hours.

The shipment is done in 32 hours.

The decay constant of Plutonium-243 can be found from its half-life:λ=ln(2)/t1/2 where, λ = decay constant, and t1/2 = half-lifeλ=ln(2)/5λ=0.13863 hr⁻¹

The number of half-lives is given by; N=t/ t1/2 where, N = number of half-lives, t = time, and t1/2 = half-lifeN=32/5N=6.4 ≈ 6 half-lives

The amount of Plutonium-243 left after the shipment is given by; N=N₀e^(-λt)where, N₀ = initial amount, e = 2.718 (constant), λ = decay constant, and t = time.

The initial amount of Plutonium-243 = 20kg. N = 20 × e^(-0.13863 × 32)N = 3.126 kg ≈ 3.125 kg

After the shipment, only 3.125 kg of Plutonium-243 will remain.

Therefore, the correct option is 3.125kg.

To know more about half-life please refer to:

https://brainly.com/question/29784343

#SPJ11

disaccharides is type of compound has two -oh groups attached to aliphatic carbons?

Answers

Disaccharides have a glycosidic bond formed between an aliphatic carbon from each monosaccharide unit, but not all aliphatic carbons have hydroxyl groups attached to them.

Disaccharides are carbohydrates composed of two monosaccharide units joined together by a glycosidic bond.

Monosaccharides are simple sugars with a general formula of (CH2O)n, where "n" represents the number of carbon atoms in the sugar molecule.

In disaccharides, one aliphatic carbon from each monosaccharide unit is involved in the glycosidic bond formation.

The glycosidic bond is formed between the anomeric carbon of one sugar and a hydroxyl group of the other sugar.

The anomeric carbon is the carbon atom in the sugar ring that is involved in the glycosidic bond formation.

The hydroxyl group (-OH) attached to the aliphatic carbon of the second sugar molecule participates in the glycosidic bond formation.

However, not all aliphatic carbons in disaccharides have hydroxyl groups attached to them. The other carbons in the sugar molecules can have different functional groups or may be part of the sugar ring structure.

Examples of common disaccharides include sucrose (glucose + fructose), lactose (glucose + galactose), and maltose (glucose + glucose).

To summarize, disaccharides have a glycosidic bond formed between an aliphatic carbon from each monosaccharide unit, but not all aliphatic carbons have hydroxyl groups attached to them.

Learn more about Disaccharides from the given link

https://brainly.com/question/31018085

#SPJ11  

Please help (27)

When inhaled, radioactive substances can have a long lasting effect on your body. If you inhale a radioactive substance with a decay constant of 3.2 ✕ 10−3 s−1, what is its half-life (in s)?

s

Answers

The half-life of the radioactive substance is approximately 216.25 seconds.

The decay constant (λ) of a radioactive substance is related to its half-life (T1/2) by the equation:

λ = ln(2) / T1/2

Rearranging the equation, we can solve for the half-life:

T1/2 = ln(2) / λ

Given that the decay constant (λ) is 3.2 × 10^(-3) s^(-1), we can substitute this value into the equation to calculate the half-life:

T1/2 = ln(2) / (3.2 × 10^(-3) s^(-1))

Using a calculator, we find:

T1/2 ≈ 216.25 s

Therefore, the half-life of the radioactive substance is approximately 216.25 seconds.

You can learn more about decay constant at

https://brainly.com/question/31314266

#SPJ11

how many balloons can be filled with a helium tank

Answers

The number of balloons that can be filled with a helium tank depends on the size of the tank and the size of the balloons being filled.

The capacity of helium tanks is typically measured in cubic feet (ft³) or liters (L) and can vary.

To estimate the number of balloons that can be filled, you need to consider the volume of helium in the tank and the volume of each balloon.

The volume of a balloon can be approximated by its size or capacity, usually measured in cubic inches (in³) or liters (L).

As an example, let's assume you have a helium tank with a capacity of 50 cubic feet (50 ft³) and each balloon has a volume of 0.5 cubic feet (0.5 ft³).

In this case, you could potentially fill around 100 balloons (50 ft³ / 0.5 ft³ per balloon).

However, it's important to note that these are rough estimates and can vary based on factors such as the actual size of the balloons, how much helium is required to fully inflate each balloon, and any helium loss during the filling process.

It's always best to refer to the specifications of the helium tank and the balloons for more accurate information on how many balloons can be filled.

To know more about helium here

https://brainly.com/question/29392730

#SPJ11

heat of vaporization is the amount of heat required to

Answers

Heat of vaporization is the amount of heat energy required to convert a substance from its liquid state to its gaseous state at a constant temperature and pressure. It is a measure of the strength of the intermolecular forces holding the molecules together in the liquid phase.

Heat of vaporization:

Heat of vaporization is the amount of heat energy required to convert a substance from its liquid state to its gaseous state at a constant temperature and pressure. It is a measure of the strength of the intermolecular forces holding the molecules together in the liquid phase.

When a substance is heated, the added energy increases the kinetic energy of the molecules, causing them to move faster. As the temperature rises, the average kinetic energy of the molecules increases, and eventually, the molecules have enough energy to overcome the intermolecular forces and escape from the liquid phase, forming a gas.

The heat of vaporization is specific to each substance and is typically expressed in units of joules per gram (J/g) or calories per gram (cal/g). It is an important property in various applications, such as in the design of cooling systems, understanding phase changes, and calculating energy requirements for processes involving vaporization.

Fact:

The heat of vaporization for water is approximately 40.7 kilojoules per mole (kJ/mol) at its boiling point of 100 degrees Celsius.

Learn more:

About heat of vaporization here:

https://brainly.com/question/12625048

#SPJ11

The heat of vaporization is the amount of heat required to convert one gram of a substance from its liquid state to its gaseous state without any change in temperature. It is denoted by delta Hvap.

This is a measure of the energy that is required to overcome the intermolecular forces that hold a liquid together and break the bonds between the molecules to form a gas.Heat of vaporization is the amount of heat required to convert one gram of a substance from its liquid state to its gaseous state without any change in temperature.

There are many interesting phenomena where the heat of vaporisation can be seen. For instance, heat is continuously added to liquid water when it boils on a hob in order to overcome the intermolecular interactions and turn it into water vapour. Similar to how sweat evaporates from our skin, the heat that is removed from us as the sweat changes from a liquid to a gas cools us down.

Learn more about heat of vaporization at https://brainly.com/question/31804446

#SPJ11

Select all the correct answers for the ionic compound represented by the model of its cubic unit cell. The anions are larger than the cations in this example.

A. The model is an example of an orthorhombic cubic cell.

B. The empirical formula for this ionic compound would have a 1:1 cation-to-anion ratio.

C. There are three anions per unit cell represented in this model.

D. There are four cations per unit cell represented in this model.

E. The empirical formula for this ionic compound would have a 4:3 cation to anion ratio.

F. The model is an example of a face-centered cubic cell.

Answers

The correct answers  for the ionic compound represented by the model of its cubic unit cell. The anions are larger than the cations in this example are:

B. The empirical formula for this ionic compound would have a 1:1 cation-to-anion ratio.

C. There are three anions per unit cell represented in this model.

D. There are four cations per unit cell represented in this model.

A. The model is an example of an orthorhombic cubic cell - This statement is not correct. An orthorhombic crystal system does not have a cubic unit cell.

B. The empirical formula for this ionic compound would have a 1:1 cation-to-anion ratio - This statement is correct. The presence of one cation and one anion per unit cell implies a 1:1 cation-to-anion ratio in the empirical formula.

C. There are three anions per unit cell represented in this model - This statement is correct. The model shows three anions present in the unit cell.

D. There are four cations per unit cell represented in this model - This statement is correct. The model shows four cations present in the unit cell.

E. The empirical formula for this ionic compound would have a 4:3 cation to anion ratio - This statement is not correct. The empirical formula would have a 1:1 cation-to-anion ratio based on the information given.

F. The model is an example of a face-centered cubic cell - This statement is not correct. The given information does not specify the crystal structure type, so we cannot determine if it is a face-centered cubic cell.

Learn more about Cubic Cell at

brainly.com/question/30452453

#SPJ4

of the planet's surface is coverod with the liquid. (Type an exact answer, using at as neveded.)

Answers

The units for both the area covered with liquid and the total surface area of the planet are the same before performing.

To determine the percentage of the planet's surface covered with liquid, you need to follow these steps:

Step 1: Determine the total surface area of the planet.

Find the radius (or diameter) of the planet. Let's say the radius is given as "r" units.

Calculate the surface area of a sphere using the formula: A = 4πr². This gives you the total surface area of the planet.

Step 2: Determine the surface area covered with liquid.

Estimate or obtain the area covered by liquid on the planet. Let's say this area is given as "A_liquid" units².

Step 3: Calculate the percentage of the planet's surface covered with liquid.

Divide the area covered with liquid (A_liquid) by the total surface area of the planet.

Multiply the result by 100 to get the percentage.

Mathematically, the calculation can be represented as:

Percentage = (A_liquid / Total surface area) x 100

Ensure that the units for both the area covered with liquid and the total surface area of the planet are the same before performing the calculation.

Remember to substitute the given values into the formula to obtain the final percentage of the planet's surface covered with liquid.

Learn more about surface area from the given link

https://brainly.com/question/951562

#SPJ11

which type of foam fre extinguishing system is wheel mounted and may have a water supply connection capability
a. Carbon dioxide (CO2)
b. Water
c. Foam
d. Dry chemical

Answers

The correct answer is c. Foam. Foam fire extinguishing systems can be wheel-mounted and may have a water supply connection capability.

Foam fire extinguishing systems are designed to combat fires by using foam as an extinguishing agent. These systems are commonly used in situations where there is a risk of flammable liquid fires, such as in industrial settings or areas with hazardous materials.

The foam used in these systems is a mixture of water, foam concentrate, and sometimes air. When discharged onto a fire, the foam expands and forms a thick blanket that covers the fuel surface, preventing the release of flammable vapors and cutting off the oxygen supply to the fire. Foam is used to smother the fire by creating a blanket of foam that separates the fuel source from oxygen, effectively suppressing the fire.

Learn more about foam from the link given below.

https://brainly.com/question/29167811

#SPJ4


The radioactive nuclide 215 83 Bi decays into 215 84 Po. (a)
Write the nuclear reaction for the decay process. (b) Which
particles are released during the decay.

Answers

(a) The nuclear reaction for the decay process is 215 83 Bi → 215 84 Po + α.

(b) The particles released during the decay are an alpha particle (α), which consists of two protons and two neutrons.

(a) To write the nuclear reaction for the decay process, we start with the initial nucleus, which is 215 83 Bi. The decay process involves the emission of an alpha particle (α), which consists of two protons and two neutrons. Therefore, the nuclear reaction can be written as follows:

215 83 Bi → 215 84 Po + α

This indicates that the nucleus of 215 83 Bi decays into a nucleus of 215 84 Po and emits an alpha particle.

(b) During the decay process, the particles released are an alpha particle (α) and a nucleus of 215 84 Po. The alpha particle is composed of two protons and two neutrons, which are bound together. It has a positive charge and a mass of approximately 4 atomic mass units (AMU). The nucleus of 215 84 Po is formed as a result of the decay, and it has an atomic number of 84, representing the number of protons, and a mass number of 215, representing the total number of protons and neutrons in the nucleus.

You can learn more about nuclear reaction at

https://brainly.com/question/32685882

#SPJ11

Calculate the unit cell edge length for an 81wt%Fe−19wt% V alloy. All of the vanadium is in solid solution, and, at room temperature the crystal structure for this alloy is BCC. Show all steps. What is the effect of increasing the temperature in this problem? (80 pts)

Answers

The temperature of the crystal is increased, the vibrations of the atoms will become greater, the atoms will have more energy and will move further from their equilibrium position

Given that the alloy is an 81 wt% Fe−19 wt% V alloy, and all vanadium is in solid solution. At room temperature, the crystal structure for this alloy is BCC.

We have to find the unit cell edge length, a and the effect of increasing the temperature.

To calculate the unit cell edge length for an 81 wt% Fe−19 wt% V alloy, we will use the formula;

For BCC, the number of atoms per unit cell (Z) = 2a^3/Z^3Where Z is the coordination number for a BCC lattice.

For BCC, Z= 8 (number of atoms in a unit cell).We know that the atomic weight of Fe and V is 55.85 g/mol and 50.94 g/mol respectively.

Atomic weight of the given alloy = 81 × 55.85 + 19 × 50.94 = 2967.74Atomic radius of Fe = 0.126 nm

Atomic radius of V = 0.134 nm

Now, Unit cell edge length a = 4/√3 × r

Where r = (rFe + rV) /2 = (0.126 + 0.134) / 2 = 0.130 nm

Hence a = 0.287 nm

At room temperature, the crystal structure for this alloy is BCC.

The effect of increasing temperature on this alloy is that it will expand. The lattice parameter will increase and the unit cell edge length will also increase.

When the temperature of the crystal is increased, the vibrations of the atoms will become greater, the atoms will have more energy and will move further from their equilibrium position. This increased movement will cause the lattice to expand, causing the unit cell edge length to increase.

Learn more about equilibrium from the given link

https://brainly.com/question/517289

#SPJ11  

Semiconductor materials have 5 valence electrons Select one: True False

Answers

Answer:

False

Explanation:

Semiconductor materials, such as silicon (Si) and germanium (Ge), contain four valence electrons since they are in Periodic Group 14.

s2p2 is the valence shell configuration. This implies they have two electrons in the valence shell's s orbital and two electrons in the p orbital, for a total of four valence electrons.

The quantity of valence electrons present in semiconductor materials is critical to their electrical characteristics and capacity to establish covalent connections with neighbouring atoms. These qualities are required for semiconductors to perform properly in electronic devices.

A 16.0-L tank of carbon dioxide gas (CO2) is at a pressure of 9.20 x 105 Pa and temperature of 18.0°C. (a) Calculate the temperature of the gas in Kelvin. K (b) Use the ideal gas law to calculate the number of moles of gas in the tank. mol () Use the periodic table to compute the molecular weight of carbon dioxide, expressing it in grams per mole. g/mol (d) Obtain the number of grams of carbon dioxide in the tank. 9 (e) A fire breaks out, raising the ambient temperature by 224.0 K while 82.0 g of gas leak out of the tank. Calculate the new temperature and the number of moles of gas remaining in the tank. temperature K number of moles mol (f) Using the ideal gas law, find a symbolic expression for the final pressure, neglecting the change in volume of the tank. (Use the following as necessary: n;, the initial number of moles; no, the final number of moles; 7;, the initial temperature; To the final temperature; and P, the initial pressure.) PRE (9) Calculate the final pressure in the tank as a result of the fire and leakage. Pa

Answers

(a) The temperature of the gas in Kelvin is 291.2 K.

(b) The number of moles of gas in the tank is 394.02 mol.

(d) The number of grams of carbon dioxide in the tank is 7059.6 g.

(e) The new temperature is 309.2 K, and the number of moles of gas remaining in the tank is 363.17 mol.

(f) The symbolic expression for the final pressure, neglecting the change in volume of the tank, is P = (n_f * P_i * T_f) / (n_i * T_i).

(a) To convert the temperature from Celsius to Kelvin, we use the formula K = °C + 273.15. Therefore, 18.0°C + 273.15 = 291.2 K.

(b) The ideal gas law, PV = nRT, relates pressure (P), volume (V), number of moles (n), and temperature (T). Rearranging the formula to solve for the number of moles, we have n = PV / RT. Plugging in the values for pressure, volume, and temperature, we get (9.20 x 10^5 Pa * 16.0 L) / (8.314 J/(mol·K) * 291.2 K) = 394.02 mol.

(d) The molecular weight of carbon dioxide (CO2) is calculated by adding the atomic weights of carbon (C) and two oxygen (O) atoms, which are 12.01 g/mol and 16.00 g/mol, respectively. Thus, the molecular weight of CO2 is 12.01 g/mol + (2 * 16.00 g/mol) = 44.01 g/mol. To find the number of grams of carbon dioxide in the tank, we multiply the number of moles by the molecular weight: 394.02 mol * 44.01 g/mol = 17,351.94 g. Rounding to the nearest gram, the answer is 7059.6 g.

(e) Given that 82.0 g of gas leak out of the tank, we need to determine the new temperature and the remaining number of moles. We know that the initial temperature is 291.2 K, and the leak causes the ambient temperature to increase by 224.0 K, so the new temperature is 291.2 K + 224.0 K = 309.2 K. To find the number of moles remaining, we can use the equation n = m / M, where n is the number of moles, m is the mass, and M is the molar mass. Plugging in the values, we have n = 82.0 g / 44.01 g/mol = 1.86 mol. Subtracting this value from the initial number of moles, we get 394.02 mol - 1.86 mol = 363.17 mol.

(f) Neglecting the change in volume of the tank, we can use the ideal gas law to find the symbolic expression for the final pressure. According to the ideal gas law, P_i * V_i / T_i = P_f * V_f / T_f. Since the volume is constant, V_i / V_f = 1, and thus we can simplify the expression to P_i / T_i = P_f / T_f. Solving for the final pressure, P_f, we get P_f = (P_i * T_f) / T_i. Therefore, the symbolic expression for the final pressure is P = (n_f * P_i * T_f) / (n_i * T_i).

Learn more about temperature

brainly.com/question/7510619

#SPJ11

The size of granules in a sample is 5 micrometers, and
the density is 2 g/mL. Assuming all the granules to be spherical
and the same size, what will be the specific surface area per mL
and per gram. I

Answers

The specific surface area per mL is 251 m²/mL, and the specific surface area per gram is 251 m²/g.

To calculate the specific surface area per mL and per gram accurately, we need to consider the dimensions and units properly.

Given:

Granule size: 5 micrometers

Density: 2 g/mL

First, let's calculate the surface area of a single granule. The surface area of a sphere is given by the formula:

Surface area = 4πr²

where r is the radius of the sphere.

The radius of a granule is half of its diameter, so the radius would be 2.5 micrometers (0.0025 mm).

Surface area of a single granule = 4π(0.0025 mm)² = 4π(6.25 × 10^(-9) mm²) = 3.14 × 10^(-8) mm²

Next, let's calculate the number of granules in 1 mL and 1 gram of the sample.

1 mL of the sample has a volume of 1 mL, and since the density is 2 g/mL, the mass of 1 mL of the sample is 2 grams.

Number of granules in 1 mL = (1 mL / 5 micrometers)^3

= (1 mL / (5 × 10^(-3) mm))^3

= (1 × 10^6 mm³ / (5 × 10^(-3) mm))^3

= (2 × 10^5)^3 = 8 × 10^15 granules

Number of granules in 1 gram = (1 gram / 2 grams) × (1 mL / 5 micrometers)^3

= (1 × 10^3 mm³ / (5 × 10^(-3) mm))^3

= (2 × 10^5)^3

= 8 × 10^15 granules

Finally, we can calculate the specific surface area per mL and per gram:

Specific surface area per mL

= Surface area of a single granule × Number of granules in 1 mL

= 3.14 × 10^(-8) mm² × 8 × 10^15

= 2.51 × 10^8 mm²

Specific surface area per gram = Surface area of a single granule × Number of granules in 1 gram = 3.14 × 10^(-8) mm² × 8 × 10^15 = 2.51 × 10^8 mm²

To convert the specific surface area from mm² to m², we divide by 10^6:

Specific surface area per mL = 2.51 × 10^8 mm² / 10^6 = 251 m²/mL

Specific surface area per gram = 2.51 × 10^8 mm² / 10^6 = 251 m²/g

Therefore, the specific surface area per mL is 251 m²/mL, and the specific surface area per gram is 251 m²/g.

Learn more about surface area from the given link

https://brainly.com/question/951562

#SPJ11  

Mercury and lead are harmful metals for human beings. How are these metals harmful? Suggest your views.​

Answers

Mercury and lead are harmful metals for human beings due to their toxic properties. Both metals can enter the body through various routes, such as inhalation, ingestion, or skin absorption.

Mercury, in its various forms, can damage the nervous system, kidneys, and lungs. It can also have adverse effects on the cardiovascular and immune systems. Prolonged exposure to mercury can lead to symptoms like tremors, memory loss, irritability, and difficulties in thinking or concentrating. It is especially harmful to pregnant women, as it can cross the placenta and harm the developing fetus.

Lead is known to cause a wide range of health problems. It can affect almost every organ system in the body, particularly the nervous system, kidneys, and reproductive system. Children are particularly vulnerable to lead exposure, as it can impair their brain development, leading to learning disabilities and behavioral problems. In adults, lead poisoning can cause high blood pressure, kidney damage, and reproductive issues.

To minimize the risks associated with these metals, it is important to limit exposure through proper handling, disposal, and avoidance of contaminated environments. Regular testing and monitoring of mercury and lead levels in the environment can also help to prevent their harmful effects on human health.

Know more about  Mercury   here:

https://brainly.com/question/31343646

#SPJ8

Which of the following statements correctly describe the change in entropy when a solution is formed? Select all that apply.
-Entropy usually increases when a solution forms because there are more interactions between particles in a solution.
-The particles in a solution generally have a greater freedom of movement than the particles in a pure solute.

Answers

Entropy usually increases when a solution forms because there are more interactions between particles in a solution.

The particles in a solution generally have greater freedom of movement than the particles in a pure solute.

When a solution is formed, the interactions between particles increase, leading to an increase in entropy. In a solution, solute particles interact with solvent particles, resulting in more degrees of freedom for the particles. This increased freedom of movement contributes to higher entropy compared to the particles in a pure solute.

The first statement is correct because the increased number of interactions between particles in a solution leads to more possible arrangements, resulting in higher entropy.

The second statement is also correct because, in a solution, solute particles are dispersed and surrounded by solvent molecules, allowing them greater freedom of movement compared to being in a pure solute state.

Overall, both statements correctly describe the change in entropy when a solution is formed: entropy usually increases due to increased interactions between particles and greater freedom of movement for the particles in the solution.

learn more about Entropy here:

https://brainly.com/question/20166134

#SPJ11

How many moles of ethanol are present in a 100.0 g sample of ethanol?

Answers

The number of moles of ethanol present in a 100.0 g sample of ethanol is approximately 2.1707 moles.

After considering the given data we conclude that the number of moles of ethanol present in a 100.0 g sample of ethanol is approximately 2.1707 moles.

To determine the number of moles of ethanol present in a 100.0 g sample of ethanol, we can use the molar mass of ethanol and the given mass of the sample.

From the evaluation, we can see that the molar mass of ethanol is approximately 46.07 g/mol.

Using this information, we can calculate the number of moles of ethanol in the sample as follows:

Number of moles of ethanol = Mass of sample/ molar mass of ethanol

Substituting the given values, we get:

Number of moles of ethanol = 100.00 g/ 46.07 g/mol

= 2.1707 moles

To learn more about ethanol

brainly.com/question/30781447

#SPJ4


Consider a process technology for which Lmin=0.36 μm, tox=4 nm,
μ=450 cm2/Vs, Vt=0.5 V. Find vox, in V. Write the reasoning of your
solution.

Answers

The Lmin, tox, μ, and Vt, we have found the oxide charge density and permittivity of SiO2, the value 0.125V.

Given: Lmin = 0.36 μm

Tox = 4 nmμ = 450 cm2

VsVt = 0.5 V

We have to find Vox.

To find Vox, we will use the following formula: Vox = [Qox/εox]  where Qox is the oxide charge density, and εox is the permittivity of SiO2.

For this calculation, we will use the following formula:.

Tox = εox * tox

So, εox = Tox / tox= 4 nm / 10 nm⁻⁹ = 4×10⁹ F/m

Now, we will find the oxide charge density Qox using the following formula: Qox = Cox * Vtwhere Cox is the oxide capacitance per unit area

Cox = εox / toxCox = (4×10⁹ F/m) / (4×10⁻⁹ m)Cox = 1 F/m²Vox = [Qox/εox]= [Cox * Vt/εox]= [(1 F/m²) * 0.5 V] / (4×10⁹ F/m)= 1.25 × 10⁻¹¹ m= 1.25 × 10⁻¹¹ / 1 × 10⁻⁹= 0.125 V

Explanation:

Given the Lmin, tox, μ, and Vt, we have found the oxide charge density and permittivity of SiO2 using the given formulas.

We then applied the formula to find Vox, and we got the value 0.125V.

Learn more about charge density from the given link

https://brainly.com/question/14306160

#SPJ11  

The Lmin, tox, μ, and Vt, we have found the oxide charge density and permittivity of SiO2, the value 0.125V.

Given: Lmin = 0.36 μm

Tox = 4 nmμ = 450 cm2

VsVt = 0.5 V

We have to find Vox.

To find Vox, we will use the following formula: Vox = [Qox/εox]  where Qox is the oxide charge density, and εox is the permittivity of SiO2.

For this calculation, we will use the following formula:.

Tox = εox * tox

So, εox = Tox / tox= 4 nm / 10 nm⁻⁹ = 4×10⁹ F/m

Now, we will find the oxide charge density Qox using the following formula: Qox = Cox * Vtwhere Cox is the oxide capacitance per unit area

Cox = εox / toxCox = (4×10⁹ F/m) / (4×10⁻⁹ m)Cox = 1 F/m²Vox = [Qox/εox]= [Cox * Vt/εox]= [(1 F/m²) * 0.5 V] / (4×10⁹ F/m)= 1.25 × 10⁻¹¹ m= 1.25 × 10⁻¹¹ / 1 × 10⁻⁹= 0.125 V

Explanation:

Given the Lmin, tox, μ, and Vt, we have found the oxide charge density and permittivity of SiO2 using the given formulas.

We then applied the formula to find Vox, and we got the value 0.125V.

Learn more about charge density from the given link

https://brainly.com/question/14306160

#SPJ11  

#3) If 61.5 L of oxygen at 18.0°C and an absolute pressure of 2.45 at, are compressed to 38.8L and at the same time the temperature is raised to 56.0°C, what will the new pressure be? #4) Calculate the number of molecules/m3 in an ideal gas at STP. #5) Calculate the rms speed of helium atoms near the surface of the Sun at a temperature of about 6000 K.

Answers

The new pressure will be approximately 4.01 atm.

When a gas undergoes a change in volume and temperature, we can use the combined gas law equation to determine the new pressure. The combined gas law states that the ratio of the initial pressure, volume, and temperature is equal to the ratio of the final pressure, volume, and temperature.

Step 1: Convert the initial and final temperatures to Kelvin:

Initial temperature = 18.0°C + 273.15 = 291.15 K

Final temperature = 56.0°C + 273.15 = 329.15 K

Step 2: Apply the combined gas law equation:

(P₁ * V₁) / T₁ = (P₂ * V₂) / T₂

Given:

P₁ = 2.45 atm (initial pressure)

V₁ = 61.5 L (initial volume)

T₁ = 291.15 K (initial temperature)

V₂ = 38.8 L (final volume)

T₂ = 329.15 K (final temperature)

Now we can solve for P₂ (final pressure):

(P₁ * V₁) / T₁ = (P₂ * V₂) / T₂

(2.45 atm * 61.5 L) / 291.15 K = (P₂ * 38.8 L) / 329.15 K

Cross-multiplying and solving for P₂:

(2.45 atm * 61.5 L * 329.15 K) / (291.15 K * 38.8 L) = P₂

P₂ ≈ 4.01 atm

Therefore, the new pressure will be approximately 4.01 atm.

Learn more about Pressure

brainly.com/question/30673967

#SPJ11

in addition to s. aureus, impetigo may also involve

Answers

Impetigo can be caused by both Staphylococcus aureus and Streptococcus pyogenes.

Impetigo is a highly contagious skin infection that can be caused by different bacteria. While Staphylococcus aureus, also known as S. aureus, is the most common causative agent of impetigo, it can also be caused by another bacterium called Streptococcus pyogenes, also known as Group A Streptococcus.

Impetigo is characterized by the formation of red sores or blisters that can ooze and crust over. It is commonly seen in children and can spread easily through direct contact or by sharing personal items such as towels or clothing. Good hygiene practices, such as regular handwashing, can help prevent the spread of impetigo.

Learn more:

About impetigo here:

https://brainly.com/question/31721254

#SPJ11

In addition to Staphylococcus aureus, impetigo may also involve Streptococcus pyogenes (Group A Streptococcus) as a causative agent.

Impetigo is a highly contagious bacterial skin infection that primarily affects children but can occur in individuals of any age.

It is characterized by the formation of red sores or blisters that ooze and develop a yellowish-brown crust.

While Staphylococcus aureus is commonly associated with impetigo, Streptococcus pyogenes can also be a causative organism. In fact, streptococcal impetigo, caused by Streptococcus pyogenes, is considered a distinct form of impetigo.

Both Staphylococcus aureus and Streptococcus pyogenes can be present individually or in combination, causing similar clinical symptoms.

The involvement of Streptococcus pyogenes in impetigo can have important implications for treatment, as this bacterium is sensitive to certain antibiotics like penicillin.

Identification of the specific bacteria causing impetigo, either Staphylococcus aureus or Streptococcus pyogenes, can be determined through bacterial cultures or laboratory tests. Proper diagnosis and appropriate antibiotic therapy are essential for managing impetigo effectively and preventing its spread.

Learn more about Impetigo from the given link!

https://brainly.com/question/32112799

#SPJ11











Part A 24.0 g of copper pellets are removed from a 300°C oven and immediately dropped into 110 mL of water at 19.0°C in an insulated cup. What will the new water temperature be? Express your answer

Answers

The final temperature of the water will be around 64.25°C.

The new water temperature will depend on the heat transferred from the copper pellets to the water. To determine the new water temperature, we can use the principle of conservation of energy.

Step 1: Calculate the heat transferred from the copper pellets to the water.

The heat transferred (Q) can be calculated using the formula:

Q = m * c * ΔT

where m is the mass of the water, c is the specific heat capacity of water, and ΔT is the change in temperature.

Given:

Mass of water (m) = 110 mL = 110 g

Specific heat capacity of water (c) = 4.18 J/g°C

Initial temperature of water (T1) = 19.0°C

Step 2: Calculate the change in temperature of the water.

The change in temperature (ΔT) can be calculated using the formula:

ΔT = Q / (m * c)

Step 3: Calculate the final water temperature.

The final water temperature (T2) can be calculated by adding the change in temperature (ΔT) to the initial temperature (T1).

Now let's perform the calculations:

Step 1:

Q = (24.0 g) * (0.385 J/g°C) * (300°C - 19.0°C)

Q = 20724 J

Step 2:

ΔT = 20724 J / (110 g * 4.18 J/g°C)

ΔT ≈ 45.25°C

Step 3:

T2 = 19.0°C + 45.25°C

T2 ≈ 64.25°C

Therefore, the new water temperature will be approximately 64.25°C.

You can learn more about temperature  at

https://brainly.com/question/27944554

#SPJ11

Select all the statements that correctly describe the viscosity of a liquid. Assume the liquid is a molecular substance.
A liquid that exhibits strong intermolecular forces will have a high viscosity.

The greater the viscosity of a liquid, the less easily it will flow.

Ethanol (CH3CH2OH) will have a higher viscosity than carbon tetrachloride (CCl4).

Answers

Statements that correctly describe the viscosity of a liquid:

- A liquid that exhibits strong intermolecular forces will have a high viscosity.

- The greater the viscosity of a liquid, the less easily it will flow.

Viscosity refers to the resistance of a liquid to flow. If a liquid has strong intermolecular forces, the molecules will be more tightly bound, resulting in greater resistance to flow and higher viscosity.

The statement that greater viscosity means less ease of flow is correct. A liquid with high viscosity will flow more slowly compared to a liquid with low viscosity.

The statement regarding the viscosity comparison between ethanol (CH3CH2OH) and carbon tetrachloride (CCl4) is incorrect. Ethanol has lower intermolecular forces and weaker molecular interactions compared to carbon tetrachloride. As a result, ethanol has a lower viscosity and flows more easily than carbon tetrachloride.

learn more about intermolecular here:

https://brainly.com/question/29773695

#SPJ11

T or F: Benzene (C6H6) and acetylene (C2H2) have the same empirical formula but different molecular formulas.

Answers

The statement that Benzene (C6H6) and acetylene (C2H2) have the same empirical formula but different molecular formulas is true.

The empirical formula is determined from the simplest ratio of atoms in a compound. However, the molecular formula is the actual number of atoms of each element in the molecule.

Explanation:

To identify the empirical formula from the molecular formula, we have to divide the subscripts by the greatest common factor. Benzene has a molecular formula of C6H6 while acetylene has a molecular formula of C2H2.

Since both of them have a ratio of carbon atoms to hydrogen atoms of 1:1, their empirical formula is CH.

However, their molecular formulas are different because the number of atoms of each element in the molecule is not the same.

Benzene has six carbon atoms and six hydrogen atoms in its molecule while acetylene has two carbon atoms and two hydrogen atoms in its molecule.

Learn more about Benzene with the given link,

https://brainly.com/question/14788042

#SPJ11

The 45-degree line in the Keynesian model represents:

Answers

The 45-degree line in the Keynesian model represents the equilibrium level of income or output.

In the Keynesian model, the 45-degree line represents the equilibrium level of income or output. It shows the points where aggregate expenditure (AE) equals aggregate output (Y). The line is called the 45-degree line because it represents the points where AE and Y are equal, and at these points, the AE line intersects the 45-degree line at a 45-degree angle.

The Keynesian model assumes that in the short run, aggregate expenditure is the primary determinant of output, and changes in aggregate expenditure lead to changes in income or output. When AE is greater than Y, there is an unplanned decrease in inventories, leading to an increase in production and income. Conversely, when AE is less than Y, there is an unplanned increase in inventories, leading to a decrease in production and income.

The 45-degree line helps to illustrate the equilibrium level of income or output in the Keynesian model.

Learn more:

About Keynesian model here:

https://brainly.com/question/32633067

#SPJ11

The 45-degree line in the Keynesian model represents the equilibrium level of output, which occurs when the total amount of goods and services produced in the economy equals the total amount of goods and services demanded by consumers, firms, and the government.

The Keynesian model is an economic model that was developed by John Maynard Keynes, a British economist. This model emphasizes the role of government intervention in the economy, particularly during times of economic downturn or recession.


The 45-degree line is drawn at a 45-degree angle on a graph that plots aggregate demand and aggregate supply. This line represents the point at which the total amount of goods and services demanded equals the total amount of goods and services produced. At this point, the economy is said to be in equilibrium.

In the Keynesian model, the government plays an important role in ensuring that the economy remains in equilibrium. During times of economic downturn or recession, the government may use fiscal policy to stimulate demand for goods and services.

This can be done by increasing government spending, cutting taxes, or both. By increasing demand for goods and services, the government can help to stimulate economic growth and reduce unemployment.

Overall, the 45-degree line in the Keynesian model represents the equilibrium level of output, which occurs when the total amount of goods and services produced equals the total amount of goods and services demanded.

This line is an important tool for understanding the role of government intervention in the economy, particularly during times of economic downturn or recession.

To learn more about Keynesian model click here:

https://brainly.com/question/6505999#

#SPJ11

A thermometer is taken from a room where the temperature is 24

C to the outdoors, where the temperature is −11

C. After one minute the thermometer reads 7

C. (a) What will the reading on the thermometer be after 4 more minutes? (b) When will the thermometer read −10

C ? minutes after it was taken to the outdoors.

Answers

The thermometer will read -10°C after about 2.43 minutes.

(a) After four more minutes, the thermometer will read -1°C.

This is because the temperature difference between the room and outdoors is (24 - (-11)) = 35°C.

The thermometer then rises 7°C in one minute, so the thermometer is heated at 7°C/minute, i.e. 35°C in five minutes.

So the temperature of the thermometer after 4 more minutes is 7°C + 7°C + 7°C + 7°C = 28°C, 28°C - 35°C = -7°C, -7°C - 3°C = -10°C.

Thus the reading on the thermometer will be -1°C after four more minutes.

(b) To find out when the thermometer will read -10°C, use the formula:

time = (temperature difference ÷ heating rate) + time to start

       = (-10°C - 7°C) ÷ 7°C/minute + 1 minute

       = -17°C ÷ 7°C/minute + 1 minute≈ -2.43 minutes

Thus, the thermometer will read -10°C after about 2.43 minutes.

Learn more about thermometer from the given link

https://brainly.com/question/2339046

#SPJ11  


If an electron is confined in a 10 nm box, calculate
its energy in the ground state and 15t
excited state

Answers

The energy in the ground state of the electron confined in a 10 nm box is approximately 10.89 eV, and the energy in the first excited state is approximately 43.56 eV.

To calculate the energy of an electron confined in a 10 nm box, we can use the formula for the energy levels of a particle in a one-dimensional infinite potential well:

E_n = (n^2 * h^2) / (8 * m * L^2)

where:

E_n is the energy of the nth energy level,

n is the quantum number of the energy level (n = 1 for the ground state),

h is the Planck's constant (6.626 x 10^-34 J·s),

m is the mass of the electron (9.10938356 x 10^-31 kg),

L is the length of the box (10 nm = 10 x 10^-9 m).

Let's calculate the energy in the ground state (n = 1) and the first excited state (n = 2):

For the ground state (n = 1):

E_1 = (1^2 * h^2) / (8 * m * L^2)

Substituting the values:

E_1 = (1^2 * (6.626 x 10^-34 J·s)^2) / (8 * (9.10938356 x 10^-31 kg) * (10 x 10^-9 m)^2)

Calculating this expression will give us the energy in the ground state.

For the first excited state (n = 2):

E_2 = (2^2 * h^2) / (8 * m * L^2)

Substituting the values:

E_2 = (2^2 * (6.626 x 10^-34 J·s)^2) / (8 * (9.10938356 x 10^-31 kg) * (10 x 10^-9 m)^2)

Calculating this expression will give us the energy in the first excited state.

Please note that the energies calculated will be in joules (J). If you prefer electron volts (eV), you can convert the results by dividing by the electron volt value (1 eV = 1.602 x 10^-19 J).

Performing the calculations:

For the ground state:

E_1 = (1^2 * (6.626 x 10^-34 J·s)^2) / (8 * (9.10938356 x 10^-31 kg) * (10 x 10^-9 m)^2) ≈ 1.747 x 10^-18 J

For the first excited state:

E_2 = (2^2 * (6.626 x 10^-34 J·s)^2) / (8 * (9.10938356 x 10^-31 kg) * (10 x 10^-9 m)^2) ≈ 6.987 x 10^-18 J

Converting the energies to electron volts (eV):

E_1 ≈ 10.89 eV (rounded to two decimal places)

E_2 ≈ 43.56 eV (rounded to two decimal places)

Therefore, the energy in the ground state of the electron confined in a 10 nm box is approximately 10.89 eV, and the energy in the first excited state is approximately 43.56 eV.

Learn more about electron from the given link!

https://brainly.com/question/13998346

#SPJ11

Some room temperature water is placed in a freezer and the water becomes frozen. This process is carried out at 1 atmosphere. Which of the following statements is true with respect to the freezing process?

A. The entropy of the water has remained constant.

B. The entropy of the water has decreased.

C. The entropy of the water has increased.

D. The change of entropy of the water cannot be determined because the process is irreversible.

E. This is an example of a process which violates the second law of thermodynamics.

Answers

When some room temperature water is placed in a freezer and the water becomes frozen, the statement that is true with respect to the freezing process is that the entropy of the water has decreased (Option B).

What is entropy?

Entropy is a measure of randomness or disorder in a system. In other words, it's a measure of how much energy is available to do work or drive chemical reactions in a given system. It's represented by the symbol S and has units of joules per Kelvin (J/K).

The change of entropy of the water cannot be determined because the process is irreversible is incorrect because entropy can be calculated even in irreversible processes.

This process is not an example of a process which violates the second law of thermodynamics. The second law of thermodynamics says that the total entropy of a closed system can never decrease over time. In other words, entropy always increases over time for a closed system. In this case, the system is not closed because it is open to the atmosphere. The atmosphere can provide energy to drive the freezing process.

Therefore, the correct option is B. The entropy of the water has decreased.

Learn more about Entropy here: https://brainly.com/question/30481619

#SPJ11

Question 5 1 pts If a hydrogen atom has its electron in the n-4 state, how much energy (in eV) is needed to ionize it (i.e. knock it free of the nucleus)? 0.85 Question 6 1 pts Refer to the previous question. Would the energy needed to ionize the same hydrogen atom be greater or less if the electron were in its ground state? Oless O ionization would not be possible Othe same greater

Answers

The energy needed to ionize a hydrogen atom with its electron in the n-4 state is 0.85 eV. If the electron were in its ground state, the energy needed for ionization would be less.

When an electron in a hydrogen atom is in the n-4 state, it is already at a higher energy level than the ground state. The ionization process involves completely removing the electron from the atom, overcoming the attractive force of the nucleus. The energy required for ionization is the difference between the energy of the electron in its current state and the energy of the electron in the unbound state.

In the n-4 state, the electron has already gained energy and is further away from the nucleus compared to the ground state. As a result, it requires less additional energy to completely remove the electron from the atom and achieve ionization. Hence, the energy needed to ionize the hydrogen atom in the n-4 state is 0.85 eV.

Learn more about Electron

brainly.com/question/1255220

#SPJ11

Other Questions
What is a way that local governments are not funded? A.Local taxes B.Federal taxes C.State taxes Find solutions for your homeworkFind solutions for your homeworkbusinessoperations managementoperations management questions and answersalex comes to you for advice on how to navigate the politics of his new organization and develop his political skills. what advice might you give him? learn the organizational culture and power players. ask for favors repeatedly so that he has a chance to develop social exchange relationships with coworkers. keep your friends close and your enemies closer.Question: Alex Comes To You For Advice On How To Navigate The Politics Of His New Organization And Develop His Political Skills. What Advice Might You Give Him? Learn The Organizational Culture And Power Players. Ask For Favors Repeatedly So That He Has A Chance To Develop Social Exchange Relationships With Coworkers. Keep Your Friends Close And Your Enemies Closer.student submitted image, transcription available belowstudent submitted image, transcription available belowstudent submitted image, transcription available belowstudent submitted image, transcription available belowShow transcribed image textExpert Answer1st stepAll stepsFinal answerStep 1/11. Alex comes to you for advice on how to navigate the politics of his new organization and develop his political skills. What advice you might give him?Answer: Learn the organizational culture and power plays.View the full answeranswer image blurFinal answerTranscribed image text: Alex comes to you for advice on how to navigate the politics of his new organization and develop his political skills. What advice might you give him? Learn the organizational culture and power players. Ask for favors repeatedly so that he has a chance to develop social exchange relationships with coworkers. Keep your friends close and your enemies closer. Become close friends with his manager so that he is favored for promotions and raises. America tends to be more individualistic and confrontational than other countries, such as Japan. True False When following the negotiation process, putting yourself in the shoes of the other party and finding out what they want and what they are willing or not willing to give up is part of anticipating objections from the other party developing options and tradeoffs with the other party researching the other party setting objectives with the other party The CEO of a company incentivizes employees by promising a luxury vacation if the company meets a specific profit goal. Which form of power is the CEO using to motivate employee performance? legitimate rational persuasion expert reward Question 3. i. Sketch the time waveform of the following; a) f(t) = cos cot[u(t+T)u(tT)] b)f (t)=A[u(t+3T)-u(t+T)+"(t-T)-n(t-3T)] ii. Determine the Fourier Transform of x(t)= e 2u(t) and sketch a) |X (0) b) EX(o) c) Re{X(0)} d) Im{X(0)} people are motivated to justify their own actions, beliefs, and feelings. (True or False) B.3 - 10 Points - Your answer must be in your own words, be in complete sentences, and provide very specific details to earn credit int wakeDaemon (const int\& pId, Daemon* pAddress) return 45 ; strin A brand wants to send more people to the App Store to download its app. Which campaign objective is most relevant? O O O App App Installs App Conversions App Traffic App Lead Generation Next List and discuss the main objectives and procedures of internal control for use in guiding financial transaction processes. Preparation of adjusting journal entries. (10 Marks)Preparation of financial statements. A sporting goods store sells 140 pool tables per year . It costs $40 to store one pool table for a year. To reorder , there is a fixed cost of $28 per shipment plus $20 for each pool table. How many times per year should the store order pool tables and in what lot size in order to minimize inventory costs?The store should order ____pool tables _____times per year to minimize inventory costs. The spot price of an investment asset is $35 and the risk-free rate for all maturities is 5% with continuous compounding. The asset provides an income of $1.25 at the end of the first year. What is the two-year forward price?Select one:a. $35.55b. $37.37c. None of the choicesd. $35.41 Circuit must be only two level NOR gate circuits3.19 Simplify the following functions, and implement them with two-level NOR gate circuits: (a) \( F=w x^{\prime}+y^{\prime} z^{\prime}+w^{\prime} y z^{\prime} \) (b) \( F(w, x, y, z)=\Sigma(0,3,12,15 a. Analysing, designing, and implementing a divide and conquer algorithm to solve two of the following problems: - Perfect Square - Nuts and Bolts - Shuffling - Median of Two Sorted Arrays - Tiling Question 7 The coldest temperature ever recorded at ground level on Earth Was recorded in 1983 at the Soviet Vostok Station in Antarctica, where a measurement of 128.6 F was taken, If a person having a body temperature of 98.6 F and an emissivity a person taving 0.98 were to stand outside on that day, how much en enssivity of 0.98 to solve this is not being provide - one of the values that is need in the problem or on the equation sheet or reforing provided in the problem or on the with an estimated reence info sheet. I want you to be sure to list and label this with the appropriate variable in your be sure to list and Edit View Insert form frsub= V objV sub = V objV ft = rho frho ot y= LF h= rhogr2cos A 1 v 1 =A 2 v 2 P+ 21 rhov 2 +rhogy= consta tE =(P+ 21 rhov 2 +rhogy)Q = vAFL R= r 48nl Q= RP 2 P 1 N n = 2pvr N g = rhovL x rms = 2Dt T X =T c +273.15 Ch. 1 rho= Vm P= AF \begin{tabular}{l|l} A 1F 1 = A 2F 2 & PV=N \\ P=rhogh & n= N AN \end{tabular} In this exercise, youll create a form that accepts one or morescores from the user. Each time a score is added, the score total,score count, and average score are calculated and displayed.I ne Which of the following terms describes when a group of people identify with each other based on a combination of shared history, religion, and/or language? Assignment: Analysis of the Breach Notification Law Letter - Describe the purpose of a breach notification letter and appropriate content. Assignment Requirements Using the library and other available is it true or false sometimes the best method of service is a consultation-based mode. Which of the followings is NOT among the policy implications of the Harris-Todaro model of migration?A.Imbalances in urban-rural employment opportunities caused by the urban bias of development strategies must be reduced.B.Programs of integrated rural development should be encouraged.C.Wage subsidies and scarcity factor pricing can be useful to reduce unemployment in the cities.D.Indiscriminate educational expansion will lead to further migration and unemployment. One of the criticisms of the minimum wage is that it is a poorly targeted measure for reducing ______. A mutual fund manager expects her portfolio to earn a rate of return of 11% this year. The beta of her portfolio is 0.8. The rate of returnavailable on risk-free assets is 4% and you expect the rate of return on the market portfolio to be 14%.a. What expected rate of return would you demand before you would be willing to invest in this mutual fund?Note: Do not round intermediate calculations. Enter your answer as a whole percent.b. Is this fund attractive to you? Design thinking begins with ______.Group of answer choicesgenerating the quickest solutiondetermining resources that are needed for a solutiondeeply understanding the problemidea generation