The mean absolute deviation for this population is 0.84.To calculate the mean absolute deviation (MAD) for a population, we need to find the absolute deviations of each individual from the mean, then calculate the average of those absolute deviations.
Mean = (24 + 24 + 21 + 24 + 24) / 5 = 23.4
Now, let's find the absolute deviations for each individual:
Mike: |24 - 23.4| = 0.6
Jun: |24 - 23.4| = 0.6
Sarah: |21 - 23.4| = 2.4
Claudia: |24 - 23.4| = 0.6
Robert: |24 - 23.4| = 0.6
Next, calculate the sum of the absolute deviations: Sum of Absolute Deviations = 0.6 + 0.6 + 2.4 + 0.6 + 0.6 which values to 4.2.
Finally, divide the sum of absolute deviations by the number of individuals:
MAD = Sum of Absolute Deviations / Number of Individuals = 4.2 / 5 which results to 0.84.
Therefore, the mean absolute deviation for this population is 0.84.
To know more about Mean visit-
brainly.com/question/15526777
#SPJ11
The OLS parameter estimates are unbiased. True O False
The statement "The OLS parameter estimates are unbiased." is True.
OLS (Ordinary Least Squares) parameter estimates are unbiased. This means that, on average, the estimated coefficients obtained through the OLS method will be equal to the true population coefficients. In other words, the OLS estimator does not systematically overestimate or underestimate the true parameter values.
The unbiasedness property of OLS is a desirable characteristic, as it ensures that the estimated coefficients provide an accurate representation of the relationship between the variables in the population. This property is a result of the mathematical properties of the OLS estimation procedure, which minimizes the sum of squared residuals.
Unbiasedness is an important assumption in statistical inference and hypothesis testing. It allows us to make valid inferences about the population parameters based on the estimated coefficients obtained from a sample.
In conclusion, the statement that "The OLS parameter estimates are unbiased" is true, and it highlights the reliability and validity of using OLS as an estimation method in regression analysis.
To know more about Average visit-
brainly.com/question/18029149
#SPJ11
Please help!!!! Please answer, this is my last question!!!
Step-by-step explanation:
See image below
what conclusions can be made about the series [infinity] 3 cos(n) n n = 1 and the integral test?
The Integral test, which is also known as Cauchy's criterion, is a method that determines the convergence of an infinite series by comparing it with a related definite integral.
In a series, the terms can either be decreasing or increasing. When the terms are decreasing, the Integral test is used to determine convergence, whereas when the terms are increasing, the Integral test can be used to determine divergence. For example, consider the series\[S = \sum\limits_{n = 1}^\infty {\frac{{\ln (n + 1)}}{{\sqrt n }}} \]. Now, we'll apply the Integral test to determine the convergence of the above series. We first represent the series in the integral form, which is given as\[f(x) = \frac{{\ln (x + 1)}}{{\sqrt x }},\] and it's integral from 1 to infinity is given as \[I = \int\limits_1^\infty {\frac{{\ln (x + 1)}}{{\sqrt x }}} dx\]. Next, we'll find the integral of f(x), which is given as \[I = \int\limits_1^\infty {\frac{{\ln (x + 1)}}{{\sqrt x }}} dx\]\[u = \ln (x + 1),\] so, the equation can be rewritten as \[I = \int\limits_0^\infty {u^2 e^{ - 2u} du}\]\[I = \frac{1}{{\sqrt 2 }}\int\limits_0^\infty {{y^2}e^{ - y} dy}\]\[I = \frac{1}{{\sqrt 2 }}\Gamma (3)\]. The given series [infinity] 3 cos(n) n n = 1 is a converging series because the Integral test is applied to determine its convergence.
The Integral test helps to determine the convergence of a series by comparing it with a related definite integral. The Integral test is only applicable when the terms of the series are decreasing. If the series fails the Integral test, then it's necessary to use other tests to determine the convergence or divergence of the series. The Integral test is a simple method for determining the convergence of an infinite series. Therefore, the series [infinity] 3 cos(n) n n = 1 is a converging series. The Integral test is applied to determine the convergence of the series and it is only applicable when the terms of the series are decreasing.
To know more about Cauchy's criterion visit:
brainly.com/question/31058232
#SPJ11
determine whether the series converges or diverges. [infinity] cos2(n) n5 1 n = 1
Let limn→∞cos^2(n)/n^5L'Hôpital's Rule should be used to evaluate the limit. On the top, take the derivative of cos^2(n) using the chain rule. The limit then becomes:limn→∞2cos(n)(−sin(n))/5n^4 = 0The given series converges by the p-test.
In order to determine whether the series converges or diverges, the given series is: ∞Σn=1cos^2(n)/n^5.Let's have a look at the limit below:limn→∞cos^2(n)/n^5The p-test should be used to test for convergence of the given series. This is because the power of n in the denominator is greater than 1 and the cos^2(n) term is bounded by 0 and 1.L'Hôpital's Rule should be used to evaluate the limit. On the top, take the derivative of cos^2(n) using the chain rule. The limit then becomes:limn→∞2cos(n)(−sin(n))/5n^4 = 0The given series converges by the p-test. Since the series converges, the conclusion can be made that the general term of the series decreases monotonically as n grows to infinity. Therefore, the given series convergesUsing the p-test, we discovered that the series converges. The general term of the series decreases monotonically as n grows to infinity. The given series converges.
To know more about p-test visit:
brainly.com/question/32659182
#SPJ11
The given series converges by the p-test.
In order to determine whether the series converges or diverges, the given series is:
∑ (n to ∞) cos²(n)/n⁵.
Let's have a look at the limit below:
⇒ limn → ∞cos²(n)/n⁵
The p-test should be used to test for convergence of the given series. This is because the power of n in the denominator is greater than 1 and the cos²(n) term is bounded by 0 and 1.
L' Hospital's Rule should be used to evaluate the limit.
On the top, take the derivative of cos^2(n) using the chain rule. The limit then becomes:
limn→∞2cos(n)(−sin(n))/5n⁴ = 0
Hence, The given series converges by the p-test.
Since the series converges, the conclusion can be made that the general term of the series decreases monotonically as n grows to infinity.
Therefore, the given series converges by Using the p-test, we discovered that the series converges.
The general term of the series decreases monotonically as n grows to infinity. The given series converges.
To know more about p-test visit:
brainly.com/question/32659182
#SPJ4
Find the dual of the following primal problem [5M]
Minimize z= 60x₁ + 10x2 + 20x3
Subject to 3x1 + x₂ + x3 ≥ 2
x₁ - x₂ + x3 ≥-1
X₁ + 2x₂ - X3 ≥ 1,
X1, X2, X3 ≥ 0."
The dual of the following primal problem Maximize w = 2y₁ + y₂ + y₃
3y₁ + y₂ + y₃ ≤ 60
y₁ - y₂ + y₃ ≤ 10
y₁ + 2y₂ - y₃ ≤ 20
y₁, y₂, y₃ ≥ 0
The dual of a linear programming problem is found by converting the constraints of the primal problem into the objective function of the dual problem, and vice versa. In this case, the primal problem minimizes a linear function subject to a set of linear constraints. The dual problem maximizes a linear function subject to the same set of constraints.
To find the dual of the primal problem, we first convert the constraints into the objective function of the dual problem. The first constraint, 3x₁ + x₂ + x₃ ≥ 2, becomes 2y₁ + y₂ + y₃ ≤ 60. The second constraint, x₁ - x₂ + x₃ ≥-1, becomes y₁ - y₂ + y₃ ≤ 10. The third constraint, X₁ + 2x₂ - X3 ≥ 1, becomes y₁ + 2y₂ - y₃ ≤ 20.
We then convert the objective function of the primal problem into the constraints of the dual problem. The objective function, 60x₁ + 10x2 + 20x3, becomes 0 ≤ x₁, x₂, x₃.
The dual problem is now:
Maximize
w = 2y₁ + y₂ + y₃
3y₁ + y₂ + y₃ ≤ 60
y₁ - y₂ + y₃ ≤ 10
y₁ + 2y₂ - y₃ ≤ 20
y₁, y₂, y₃ ≥ 0
Visit here to learn more about coefficients:
brainly.com/question/1038771
#SPJ11
consider the area shown in (figure) suppose that a=h=b= 250 mm .
The total area by the sum of the areas of the 93750 mm².
The total area of the figure is given by the sum of the areas of the rectangle, triangle, and parallelogram:
Total Area = 31250 mm² + 31250 mm² + 31250 mm² = 93750 mm².
The given area in the figure can be broken down into three different shapes: a rectangle, a triangle, and a parallelogram.
The area can be calculated as follows:
Rectangle: Length = b = 250 mm, Width = a/2 = 125 mm.
Area of rectangle = Length x Width = 250 mm x 125 mm = 31250 mm²
Triangle: Base = b = 250 mm, Height = h = 250 mm.
Area of triangle = (Base x Height)/2 = (250 mm x 250 mm)/2 = 31250 mm²
Parallelogram: Base = a/2 = 125 mm, Height = h = 250 mm.
Area of parallelogram = Base x Height = 125 mm x 250 mm = 31250 mm².
Therefore, the total area of the figure is given by the sum of the areas of the rectangle, triangle, and parallelogram:
Total Area = 31250 mm² + 31250 mm² + 31250 mm² = 93750 mm².
To know more parallelogram visit:
https://brainly.com/question/28854514
#SPJ11
(20 points) Let 3 7 4 and let W the subspace of Rª spanned by u and . Find a basis of W, the orthogonal complement of W in R¹. 13 15
Therefore, a basis for the orthogonal complement of W in ℝ³ is the vector n = [-14/√74, -6/√74, 14/√74].
To find a basis for the subspace W spanned by the vectors u = [3, 7, 4] and v = [13, 15, 13] in ℝ³, we can perform the Gram-Schmidt process to orthogonalize the vectors. q
Normalize the first vector u:
u₁ = u / ||u||, where ||u|| represents the norm of u.
||u|| = √(3² + 7² + 4²)
= √(9 + 49 + 16)
= √74
u₁ = [3/√74, 7/√74, 4/√74]
Find the projection of the second vector v onto u₁:
projᵥᵤ₁ = (v ⋅ u₁) * u₁, where ⋅ denotes the dot product.
(v ⋅ u₁) = [13, 15, 13] ⋅ [3/√74, 7/√74, 4/√74]
= (39/√74) + (105/√74) + (52/√74)
= 196/√74
projᵥᵤ₁ = (196/√74) * [3/√74, 7/√74, 4/√74]
= [588/74, 1372/74, 784/74]
= [42/5, 98/5, 56/5]
Subtract the projection from the second vector to obtain a new orthogonal vector:
w = v - projᵥᵤ₁
= [13, 15, 13] - [42/5, 98/5, 56/5]
= [65/5, 77/5, 65/5]
= [13, 77/5, 13]
Now, the vectors u₁ = [3/√74, 7/√74, 4/√74] and w = [13, 77/5, 13] form an orthogonal basis for the subspace W.
To find the orthogonal complement of W in ℝ³, we need to find a basis for the subspace of vectors that are orthogonal to both u₁ and w. This can be done by taking the orthogonal complement of the span of u₁ and w.
The orthogonal complement of W in ℝ³ is a subspace consisting of vectors that are orthogonal to both u₁ and w. Since the dimension of ℝ³ is 3 and the dimension of W is 2, the dimension of the orthogonal complement will be 1.
We can choose any vector that is orthogonal to both u₁ and w to form a basis for the orthogonal complement. One such vector is the cross product of u₁ and w:
n = u₁ × w
n = [3/√74, 7/√74, 4/√74] × [13, 77/5, 13]
Simplifying the cross product, we get:
n = [-14/√74, -6/√74, 14/√74]
To know more about vector,
https://brainly.com/question/16630618
#SPJ11
Exercise 1. In a certain course, suppose that letter grades are are given in the following manner: A to [100, 90], B to (90, 75], C to (75,60], D to (60,50], F to [0,50). Suppose the following number of grades A, B, C, D were observed for the students registered in the course. Use the data to test, at level a = .05, that data are coming from N(75, 81).
A B CDF
3 12 10 4 1
Based on the given data, we conduct a hypothesis test to determine if the grades in the course follow a normal distribution with a mean of 75 and a variance of 81. Using a significance level of 0.05, our test results provide evidence to reject the null hypothesis that the data are from a normal distribution with the specified parameters.
To test the hypothesis, we first calculate the expected frequencies for each grade category under the assumption of a normal distribution with mean 75 and variance 81. We can convert the grade intervals to z-scores using the formula z = (x - μ) / σ, where μ is the mean and σ is the standard deviation. For each grade category, we find the corresponding z-scores for the interval boundaries and use the standard normal distribution to calculate the probabilities.
Using the calculated z-scores, we determine the expected proportions of students falling into each grade category. Multiplying these proportions by the total number of students gives us the expected frequencies. In this case, we have 30 students in total (3 A's + 12 B's + 10 C's + 4 D's + 1 F = 30).
Comparing the calculated chi-squared statistic to the critical value from the chi-squared distribution table with appropriate degrees of freedom and significance level, we find that the calculated value exceeds the critical value. Therefore, we reject the null hypothesis, indicating that the observed data do not fit a normal distribution with the specified mean and variance.
To learn more about hypothesis click here: brainly.com/question/29576929
#SPJ11
A ball is dropped from the height of 10 feet. Each time it drops h feet, it rebounds feet.
Find the total distance traveled by the ball from the moment it hits the ground the third time
until the moment it hits the ground for the eighth time.
The total distance traveled by the ball from the moment it hits the ground until the moment it hits the ground for the eighth time is 10h.
The total distance traveled by the ball from the moment it hits the ground the third time until the moment it hits the ground for the eighth time can be determined by adding up the total distance traveled in each bounce.
The ball is dropped from the height of 10 feet and each time it drops h feet, it rebounds h feet.
Thus, the ball bounces from the ground to a height of h, and back to the ground again, covering a total distance of 2h.
The ball will bounce from the ground to a height of h feet and back to the ground a total of n times.
Therefore, it will cover a total distance of:Total distance = 2h × n
The ball hits the ground the third time, so it has bounced twice; hence, n = 2 when it hits the ground for the third time. Similarly, when the ball hits the ground for the eighth time, it has bounced seven times; thus, n = 7.
Substituting the appropriate values, we have:When the ball hits the ground the third time:
Total distance = 2h × n= 2h × 2 = 4h
When the ball hits the ground for the eighth time:Total distance = 2h × n= 2h × 7 = 14h
The total distance traveled by the ball from the moment it hits the ground the third time until the moment it hits the ground for the eighth time is given by the difference between the total distance traveled for the eighth bounce and that for the third bounce:Total distance = 14h - 4h= 10h
Thus, the total distance traveled by the ball from the moment it hits the ground the third time until the moment it hits the ground for the eighth time is 10h.
#SPJ11
Let us know more about total distance : https://brainly.com/question/28994474.
In an experiment, two 6-faced dice are rolled. The relevant sample space is ......................
In an experiment, two 6-faced dice are rolled. The probability of getting the sum of 7 is ......................
When two 6-faced dice are rolled, the sample space consists of all possible outcomes of rolling each die. There are 36 total outcomes in the sample space. The probability of obtaining a sum of 7 when rolling the two dice is 6/36 or 1/6. This means that there is a 1 in 6 chance of getting a sum of 7.
In this experiment, each die has 6 faces, numbered from 1 to 6. To determine the sample space, we consider all the possible combinations of outcomes for both dice. Since each die has 6 possible outcomes, there are 6 x 6 = 36 total outcomes in the sample space.
To calculate the probability of obtaining a sum of 7, we need to count the number of outcomes that result in a sum of 7. These outcomes are (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), and (6, 1), making a total of 6 favorable outcomes.
The probability is obtained by dividing the number of favorable outcomes by the total number of outcomes in the sample space. In this case, the probability of getting a sum of 7 is 6 favorable outcomes out of 36 total outcomes, which simplifies to 1/6.
Therefore, the probability of obtaining a sum of 7 when rolling two 6-faced dice is 1/6, meaning there is a 1 in 6 chance of getting a sum of 7.
learn more about probability here:brainly.com/question/31828911
#SPJ11
Question 2 Find the equation of the circle given a center and a radius. Center: (6, 15) Radius: √5 Equation: -
The equation of the circle is 4[tex]x^{2}[/tex] +4[tex]y^{2}[/tex] -40x -120y +4784 = 0.
Given center and radius of a circle:Center: (6, 15)Radius: √5
To find the equation of a circle, we use the standard form of the equation of a circle
(x - h)² + (y - k)² = r²
Where, (h, k) is the center of the circle and r is the radius.
Substituting the values in the equation of circle:
(x - 6)² + (y - 15)²
= (√5)²x² - 12x + 36 + y² - 30y + 225
= 5x² + 5y² - 50x - 150y + 5000
Simplifying the above equation, we get:
4x² + 4y² - 40x - 120y + 4784 = 0
Therefore, the equation of the circle is 4x² + 4y² - 40x - 120y + 4784 = 0.
#SPJ11
Let us know more about equation of circle : https://brainly.com/question/29288238.
evaluate 1c (x y) ds where c is the straight-line segment x = t, y = (1 - t), z = 0, from (0, 1, 0) to (1, 0, 0).
The value of the given integral is $\frac{\sqrt{2}}{6}$.
The given integral is: $\int_{c} (xy) ds $Where C is the straight line segment x = t, y = 1 - t, z = 0 from (0, 1, 0) to (1, 0, 0).Firstly, we need to parameterize the path of integration. We have, $x=t$, $y=1-t$ and $z=0$.Using the distance formula, we get the path length $ds$:$$ds = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2}dt$$$$ds = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}dt$$$$ds = \sqrt{1^2 + (-1)^2}dt$$$$ds = \sqrt{2}dt$$Thus, the given integral becomes$$\int_{c} (xy) ds = \int_{0}^{1}\left(t(1-t)\right)\sqrt{2}dt$$$$\implies \int_{c} (xy) ds = \sqrt{2}\int_{0}^{1}(t-t^2)dt$$Solving this integral, we get$$\int_{c} (xy) ds = \sqrt{2}\left[\frac{t^2}{2}-\frac{t^3}{3}\right]_{0}^{1}$$$$\implies \int_{c} (xy) ds = \frac{\sqrt{2}}{6}$$.
To know more about path of integration, visit:
https://brainly.com/question/30896873
#SPJ11
To evaluate the line integral of \(1c(x, y) \, ds\) along the straight-line segment defined by from \((0, 1, 0)\) to \((1, 0, 0)\), we need to parameterize the line segment and then compute the integral.
The parameterization of the line segment can be obtained by letting \(t\) vary from 0 to 1. Thus, the position vector \(\mathbf{r}\) of the line segment is given by:
\[\mathbf{r}(t) = (x(t), y(t), z(t)) = (t, 1-t, 0)\]
To calculate \(ds\), we differentiate \(\mathbf{r}(t)\) with respect to \(t\) and take its magnitude:
\[\begin{aligned}
\frac{d\mathbf{r}}{dt} &= \left(\frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt}\right) \\
&= (1, -1, 0)
\end{aligned}\]
The magnitude of \(\frac{d\mathbf{r}}{dt}\) is:
\[ds = \left\lVert \frac{d\mathbf{r}}{dt} \right\rVert = \sqrt{1^2 + (-1)^2 + 0^2} = \sqrt{2}\]
Now, we can evaluate the line integral:
\[\begin{aligned}
\int_{C} 1c(x, y) \, ds &= \int_{0}^{1} 1c(t, 1-t) \, ds \\
&= \int_{0}^{1} 1c(t, 1-t) \cdot \sqrt{2} \, dt \\
\end{aligned}\]
To complete the evaluation, we need the specific function \(1c(x, y)\). Please provide the function \(1c(x, y)\) so that we can proceed with the calculation.
To know more about straight-line segment visit:
https://brainly.com/question/4695375
#SPJ11
Use the four implication rules to create proof for the following argument.
1.(P ∨ Q) ∨ (R ∨ S)
2. ~S
3. ~S ⊃ ~ (P ∨ Q) /R ∨ S
Using the four implication rules, S is true.∴ R ∨ S is true as the argument holds. Hence, we have proven R ∨ S.
We are to use the four implication rules to create proof for the given argument. We are to prove R ∨ S as it is the conclusion of the given argument. The four implication rules are:
Modus ponens (MP): p, p ⊃ q ⇒ q
Modus tollens (MT): ¬q, p ⊃ q ⇒ ¬p
Hypothetical syllogism (HS): p ⊃ q, q ⊃ r ⇒ p ⊃ r
Disjunctive syllogism (DS): p ∨ q, ¬p ⇒ q
The proof is as follows: Given, ~S ⊃ ~ (P ∨ Q) ~S / /Assume R ∨ S is false. ¬(R ∨ S) / / (1) and (2) MP~S ⊃ ~(P ∨ Q) ~S/ / (3) MP by (1)Therefore, ~(P ∨ Q) / / (4) MP by (2)Therefore, ~S and ~(P ∨ Q) / / (2), (4) HS~S/ / (2)MP ~(P ∨ Q)/ / (4)MP~P ∧ ~Q/ / (5)De Morgan's law(P ∨ Q) ∨ (R ∨ S) / / (1)DSR/ / (6)Assume S is true.(R ∨ S) / / (6)DS or HS~S/ / (2)MP
Therefore, S is true.∴ R ∨ S is true as the argument holds. Hence, we have proven R ∨ S by using the four implication rules.
More on implication rules: https://brainly.com/question/32621129
#SPJ11
Determine the truth value of each of these statements if the
domain of each variable consists of all integers. Show each
step.
a) ∀x∃y(x2 = y) b) ∀x∃y(x = y2)
The truth value of statement a) is true, and the truth value of statement b) is false.
a) To evaluate statement a), we consider each integer value for x and find a corresponding value for y such that x² = y. Since every integer x has a corresponding square y, the statement "for all x, there exists a y such that x² = y" is true.
b) For statement b), we also consider each integer value for x and find a corresponding value for y such that x = y². However, not every integer x has a corresponding square y. For example, if we take x = -1, there is no integer value for y that satisfies the equation -1 = y². Hence, the statement "for all x, there exists a y such that x = y²" is false.
Therefore, statement a) is true because for every integer x, we can find a corresponding y such that x² = y. However, statement b) is false because there are integer values of x for which there is no corresponding y satisfying x = y².
To know more about mathematical logic, visit:
https://brainly.com/question/30557027
#SPJ11
A card is dealt from a standard 52-card deck. Are the events "being dealt a jack" and "being dealt a spade" independent? Prove mathematically. Are the events "being dealt a jack" and "being dealt a spade" mutually exclusive?
The events are neither independent nor mutually exclusive.
Let A be the event of being dealt a jack, and B be the event of being dealt a spade.
Let's check if the events A and B are independent or not.
In order to show that A and B are independent, the following must be true:
P(A ∩ B) = P(A)P(B)
If A and B are independent events, then P(A|B) = P(A) and P(B|A) = P(B)
It can be observed that the card of a 52-card deck is drawn once and replaced after each draw, implying that every card has an equal chance of being drawn.
Let's calculate the probability of getting a jack:P(A) = 4/52 = 1/13
Since there are four jacks and 52 cards in a deck.
Let's calculate the probability of getting a spade:P(B) = 13/52 = 1/4
Since there are 13 spades and 52 cards in a deck.
Let's calculate the probability of getting both a jack and a spade at the same time:P(A ∩ B) = 1/52
Since there is only one jack of spades in a deck.
Substituting the values in the formula,P(A ∩ B) = P(A)P(B)1/52 = (1/13) x (1/4)
Since the above equation is not true, events A and B are not independent.
Therefore, events "being dealt a jack" and "being dealt a spade" are not independent mathematically.
Now let's check if the events "being dealt a jack" and "being dealt a spade" are mutually exclusive.
Since a jack of spades exists in the deck, it's possible to be dealt both a jack and a spade, so they aren't mutually exclusive.
Thus, the events "being dealt a jack" and "being dealt a spade" are neither independent nor mutually exclusive.
#SPJ11
Let us know more about mutually exclusive : https://brainly.com/question/12947901.
In the 2000 U.S.? Census, a small city had a population of 60,000. By the? 2010, the population had reached 80,635.
If the population grows by the same percent each? year, when will the population reach? 100,000?
To find when the population will reach 100,000, we need to determine the growth rate per year. The population is estimated to reach 100,000 approximately 3.56 years from the year 2010.
From the given information, we can calculate the growth rate by finding the percentage increase in population over a 10-year period.
Between 2000 and 2010, the population increased by (80,635 - 60,000) / 60,000 = 0.3439, or 34.39%.
Since the population grows by the same percent each year, we can use this growth rate to estimate the time it takes for the population to reach 100,000.
Let's denote the number of years as t. We can set up the equation: 60,000 * (1 + 0.3439)^t = 100,000.
Simplifying the equation, we have (1.3439)^t = 100,000 / 60,000.
Taking the logarithm of both sides, we get t * log(1.3439) = log(100,000 / 60,000).
Finally, solving for t, we find t ≈ 3.56 years.
Therefore, the population is estimated to reach 100,000 approximately 3.56 years from the year 2010.
To learn more about logarithm click here: brainly.com/question/30226560
#SPJ11
Question 1 (5 points). Let y(x) = Σamam be the power series solution of the m=0 equation (1+x²)y' = 2y. (3 points). Find the coefficient recursive relation. (b) (2 points). If ao = 63, find the coef
The coefficient recursive relation for the power series solution of the equation (1+x²)y' = 2y is given by aₘ = -aₘ₋₁/((m+1)(m+2)), where a₀ = 63.
To find the coefficient recursive relation, let's first consider the power series solution of the given equation:
y(x) = Σamxm
Differentiating y(x) with respect to x, we get:
y'(x) = Σmamxm-1
Substituting these expressions into the equation (1+x²)y' = 2y, we have:
(1+x²) * Σmamxm-1 = 2 * Σamxm
Expanding both sides of the equation and collecting like terms, we get:
Σamxm-1 + Σamxm+1 = 2 * Σamxm
Now, let's compare the coefficients of like powers of x on both sides of the equation. The left-hand side has two summations, and the right-hand side has a single summation. For the coefficients of xm on both sides to be equal, we need to equate the coefficients of xm-1 and xm+1 to the coefficient of xm.
For the coefficient of xm-1, we have:
am + am-1 = 0
Simplifying this equation, we get:
am = -am-1
This gives us the recursive relation for the coefficients.
Now, to find the specific coefficient values, we are given that a₀ = 63. Using the recursive relation, we can calculate the values of the other coefficients:
a₁ = -a₀/((1+1)(1+2)) = -63/6 = -10.5a₂ = -a₁/((2+1)(2+2)) = 10.5/20 = 0.525and so on.
Learn more about power series
brainly.com/question/29896893
#SPJ11
Q.8 Suppose that (Y) is an AR(1) process with-1<< +1. (a)Find the auto-covariance function for Wi= VY₁=Y₁-Y₁: in terms of p and o 20² (b) In particular, show that Var(W) = (1+0) Q.9 Let (Y) be an AR(2) process of the special form Y₁-92 Yta +e. Use first principles to find the range of values of q2 for which the process is stationary.
Previous question
a.) The autocovariance function for Wᵢ is:
Cov(Wᵢ, Wⱼ) =
2ρVar(Y), if i = j
ρ^|i - j| * Var(Y), if i ≠ j
b.)Var(W) = Var(W₁) = (1 - ρ) * 2Var(Y) = (1 + ρ) * Var(Y).
(a) To find the autocovariance function for Wᵢ = Yᵢ - Yᵢ₋₁, we can start by expressing Wᵢ in terms of Y variables:
W₁ = Y₁ - Y₀
W₂ = Y₂ - Y₁
W₃ = Y₃ - Y₂
...
Wₙ = Yₙ - Yₙ₋₁
We can see that Wᵢ depends only on the differences between consecutive Y variables. Now, let's find the autocovariance function Cov(Wᵢ, Wⱼ) for any i and j.
If i ≠ j, then Cov(Wᵢ, Wⱼ) = Cov(Yᵢ - Yᵢ₋₁, Yⱼ - Yⱼ₋₁) = Cov(Yᵢ, Yⱼ) - Cov(Yᵢ₋₁, Yⱼ) - Cov(Yᵢ, Yⱼ₋₁) + Cov(Yᵢ₋₁, Yⱼ₋₁)
Since Y is an AR(1) process, Cov(Yᵢ, Yⱼ) only depends on the time difference |i - j|. Therefore, we can express Cov(Yᵢ, Yⱼ) as ρ^|i - j| * Var(Y), where ρ is the autocorrelation coefficient and Var(Y) is the variance of Y.
If i = j, then Cov(Wᵢ, Wⱼ) = Var(Wᵢ) = Var(Yᵢ - Yᵢ₋₁) = Var(Yᵢ) + Var(Yᵢ₋₁) - 2Cov(Yᵢ, Yᵢ₋₁) = Var(Y) + Var(Y) - 2ρVar(Y).
Therefore, the autocovariance function for Wᵢ is:
Cov(Wᵢ, Wⱼ) =
2ρVar(Y), if i = j
ρ^|i - j| * Var(Y), if i ≠ j
(b) In particular, if we substitute i = j into the equation for Var(Wᵢ), we get:
Var(Wᵢ) = Var(Y) + Var(Y) - 2ρVar(Y) = 2Var(Y) - 2ρVar(Y) = (1 - ρ) * 2Var(Y).
Therefore, Var(W) = Var(W₁) = (1 - ρ) * 2Var(Y) = (1 + ρ) * Var(Y).
Learn more about autocorrelation coefficient here:-
https://brainly.com/question/28175782
#SPJ11
(3) Determine if the geometric series converges or diverges. If a series converges, find its sum 2 4 3 (a) › ¹ + (?) + (? ) ² + ( 3 ) ² + ( 3 ) * + ) ) + ()* - * - )* + + ( ( * +....(b) · +...
a) The given geometric series diverges.
(b) The given series is not specified, so we cannot determine if it converges or diverges.
(a) To determine if the series converges or diverges, we need to examine the common ratio, which is the ratio between consecutive terms. However, in the given series 2 4 3 (a) › ¹ + (?) + (? ) ² + ( 3 ) ² + ( 3 ) * + ) ) + ()* - * - )* + + ( ( * +..., the pattern or values of the terms are not clear. Without a clear pattern or values, it is difficult to determine the common ratio and analyze convergence. Therefore, the
convergence
of this series cannot be determined.
(b) The given series is not specified, so we cannot determine if it converges or diverges without additional information. To determine convergence or
divergence
of a series, we usually examine the common ratio or apply various convergence tests. However, in this case, without any specific information about the series, it is not possible to make a determination.
In summary, for part (a), the given geometric series is indeterminate as the pattern or values of the terms are not clear, making it difficult to determine convergence or divergence. For part (b), without any specific information about the series, we cannot determine if it converges or diverges.
To learn more about
diverges
brainly.com/question/31778047
#SPJ11
First, use the disk/washer method to set up a definite integral (set-up only, do not evaluate the integral) for the volume of a solid obtained by rotating the region bounded by y = x2 and y = 2x by
A. the line x = number of people live in your household (including yourself). If this number is less than 2, then use 3.
B. the line y = negative number of siblings (brothers and sister) you have
To set up the definite integral using the disk/washer method, we need to consider the cross-sectional area of the solid obtained by rotating the region bounded by the given curves.
A. When rotating the region about the line x = a (where 'a' represents the number of people living in your household), we can consider taking vertical slices of thickness dx. Each slice forms a disk with radius given by the difference between the two curves: r = 2x - x^2. The height of the disk is dx. Therefore, the cross-sectional area of the disk is A = π(r^2) = π(2x - x^2)^2. To find the volume, we integrate this expression over the appropriate range of x-values.
B. When rotating the region about the line y = b (where 'b' represents the negative number of siblings you have), we can consider taking horizontal slices of thickness dy. Each slice forms a washer (or annulus) with inner radius given by the curve y = x^2 and outer radius given by the curve y = 2x. The height of the washer is dy. Therefore, the cross-sectional area of the washer is A = π((2x)^2 - (x^2)^2) = π(4x^2 - x^4). To find the volume, we integrate this expression over the appropriate range of y-values.
In both cases, the definite integral will represent the volume of the solid obtained by rotating the region bounded by the given curves.
Learn more about integral here: brainly.com/question/31059545
#SPJ11
What are the x-intercepts of the quadratic function? parabola going down from the left and passing through the point negative 2 comma 0 and 0 comma negative 6 and then going to a minimum and then going up to the right through the point 3 comma 0 a (−2, 0) and (3, 0) b (0, −2) and (0, 3) c (0, −6) and (0, 6) d (−6, 0) and (6, 0)
To find the x-intercepts of a quadratic function, we need to determine the x values for which the function equals zero.
In this case, we have a parabola that opens downward, passes through the points (-2, 0) and (3, 0), and has a minimum point.
To find the x-intercepts, we can set the quadratic function equal to zero and solve for x. Let's denote the quadratic function as f(x).
Since the parabola passes through the points (-2, 0) and (3, 0), we know that these points are on the function graph. Therefore, we can set up the following equations:
1. When x = -2, f(x) = 0
f(-2) = a(-2)^2 + b(-2) + c = 0
2. When x = 3, f(x) = 0:
f(3) = a(3)^2 + b(3) + c = 0
We also know that the parabola has a minimum point, which means that its vertex lies on the symmetry axis. The axis of symmetry is the line that passes through the vertex and divides the parabola into two symmetric parts. The vertex's x-coordinate is given by the formula x = -b / (2a). In our case, since the parabola passes through the point (0, -6), we can find the symmetry axis as follows:
x = -b / (2a)
0 = -b / (2a)
Simplifying the equation, we find b = 0.
Substituting b = 0 in the equations we set up earlier, we get:
1. When x = -2:
a(-2)^2 + c = 0
2. When x = 3:
a(3)^2 + c = 0
Simplifying these equations, we have:
1. 4a + c = 0
2. 9a + c = 0
We can solve these two equations simultaneously to find the values of a and c.
Subtracting equation 1 from equation 2, we get:
9a + c - (4a + c) = 0 - 0
5a = 0
a = 0
Substituting a = 0 into equation 1, we find:
4(0) + c = 0
c = 0
Therefore, the quadratic function is f(x) = 0x^2 + 0x + 0, which simplifies to f(x) = 0.
Since the coefficient of x^2 is zero, the quadratic function reduces to a linear function with a slope of 0. This means that the graph is a horizontal line passing through the y-axis at y = 0.
In summary, the given information does not define a quadratic function with x-intercepts. The graph is a horizontal line passing through the Y-axis. Thus, the answer is none of the given options (a, b, c, d).
Consider following linear programming problem maximize Z= x1 + X2 subject to X1 + 2x2 < 6 5x1+ 3x2 ≤ 12 X1, X2 ≥ 0 a). Solve the model graphically b). Indicate how much slack resource is available at the optimal solution point c). Determine the sensitivity range for objective function X₁ coefficient (c₁)
(a) In this case, the optimal solution point is at (2, 2), where Z takes the maximum value of 4. (b)there is no slack resource available.(c)The sensitivity range is from -∞ to ∞,
(a) We first plot the feasible region determined by the given constraints. The feasible region is the intersection of the shaded regions formed by the inequalities. Then, we draw lines representing the objective function Z = x1 + x2 with different values of Z. (b) At the optimal solution point (2, 2), we can determine the amount of slack resources available by (LHS-RHS) of each constraint. For the first constraint, the slack resource is 6 - (2 + 2(2)) = 0. For the second constraint, the slack resource is 12 - (5(2) + 3(2)) = 0.
c)By increasing or decreasing the value of c₁, we can observe the changes in the optimal solution. In this case, the coefficient c₁ is 1 in the objective function Z = x1 + x2. As we increase c₁, the optimal solution will shift along the line representing the objective function, maintaining the same slope. The sensitivity range is from -∞ to ∞, as there is no restriction on the coefficient c₁ and it does not affect the feasible region or the optimal solution.
Learn more about intersection click here:
brainly.com/question/12089275
#SPJ11
A random sample of 487 nonsmoking women of normal weight (body mass index between 19.8 and 26.0) who had given birth at a large metropolitan medical center was selected. It was determined that 7.2% of these births resulted in children of low birth weight (less than 2500 g) Calculate a confidence interval (C) using a confidence level of 99% for the proportion of all such births that result in children of low birth weight.
The 99% confidence interval for the proportion of births resulting in children of low birth weight is (0.038, 0.106).
To calculate the confidence interval (CI) for the proportion of births resulting in children of low birth weight, we can use the sample proportion and the normal approximation to the binomial distribution.
Sample size (n) = 487
Proportion of births resulting in low birth weight (p') = 0.072 (7.2%)
Calculate the standard error (SE):
Standard error (SE) = sqrt((p' * (1 - p')) / n)
= sqrt((0.072 * (1 - 0.072)) / 487)
≈ 0.0132
Determine the critical value (z*) for a 99% confidence level.
For a 99% confidence level, the critical value (z*) is approximately 2.576. (You can find this value from the standard normal distribution table or use a statistical software.)
Calculate the margin of error (E):
Margin of error (E) = z* * SE
= 2.576 * 0.0132
≈ 0.034
Calculate the confidence interval:
Lower bound of the confidence interval = p' - E
= 0.072 - 0.034
≈ 0.038
Upper bound of the confidence interval = p' + E
= 0.072 + 0.034
≈ 0.106
Learn more about confidence interval click here:
brainly.com/question/15712887
#SPJ11
Evaluate the definite integral
a) Find an anti-derivative
b) Evaluate • f,ª (2ª − 7)*¹112³dx = If needed, round part b to 4 decimal places. ₁*₁ (x² − 7) * 112³ da - = f(x² − 7) * 11x³dx =
We are asked to evaluate the definite integral ∫[a to b] f(x)dx, where f(x) = (2x - 7) (112³). To do this, we first need to find an antiderivative of f(x) and then substitute the upper and lower limits into the antiderivative.
Additionally, we are asked to evaluate the definite integral ∫[1 to x] (x² - 7) ( 112³) dx, and again we need to find an antiderivative and substitute the limits to evaluate the integral.
a) To find an antiderivative of f(x) = (2x - 7) * 112³, we can use the power rule for integration. The antiderivative of 2x is x², and the antiderivative of -7 is -7x. Thus, the antiderivative of f(x) is F(x) = (x² - 7x) * 112³.
b) To evaluate the definite integral ∫[a to b] f(x)dx, we substitute the upper and lower limits into the antiderivative. The definite integral becomes F(b) - F(a), where F(x) is the antiderivative we found in part a.
c) Similarly, to evaluate the definite integral ∫[1 to x] (x² - 7) * 112³ dx, we find the antiderivative of (x² - 7) * 112³, which is F(x) = [(x³/3) - 7x] * 112³. Then, we substitute the upper and lower limits into the antiderivative, resulting in F(x) - F(1).
By evaluating the expressions F(b) - F(a) and F(x) - F(1), we can determine the values of the definite integrals.
To know more about definite integrals click here: brainly.com/question/30772555
#SPJ11
Find the domain of the following vector-valued function. r(t) = √t+4i+√t-9j ... Select the correct choice below and fill in any answer box(es) to complete your choice.
OA, ít:t>= }
OB. {t: t≤ }
OC. {t: ≤t≤ }
OD. {t: t≤ or t>= }
The domain of the vector-valued function [tex]r(t) = \sqrt{t+4i} + \sqrt{t-9j}[/tex] is {t: t ≥ 9}.
In the given functiovector-valued n, we have [tex]\sqrt{t+4i} + \sqrt{t-9j}[/tex]. To determine the domain, we need to identify the values of t for which the function is defined.
In this case, both components of the function involve square roots. To ensure real-valued vectors, the expressions inside the square roots must be non-negative. Hence, we set both t + 4 ≥ 0 and t - 9 ≥ 0.
For the first inequality, t + 4 ≥ 0, we subtract 4 from both sides to obtain t ≥ -4.
For the second inequality, t - 9 ≥ 0, we add 9 to both sides to get t ≥ 9.
Combining the results, we find that the domain of the function is {t: t ≥ 9}. This means that the function is defined for all values of t greater than or equal to 9.
Therefore, the correct choice is OA: {t: t ≥ 9}.
To learn more about vector valued function visit:
brainly.com/question/31399483
#SPJ11
1. Evaluate the following limits, if they exist. If they do not exist, explain why. (Either way, you must justify your answers.) x² + 2 (a) lim x1x² + x +1 x² + x 2 (b) lim x1 x² + 2x - 3 sin(4x)
(a) To evaluate the limit: lim(x->1) (x^2 + 2) / (x^2 + x + 2), we can directly substitute x = 1 into the expression:
(1^2 + 2) / (1^2 + 1 + 2) = 3 / 4 = 0.75.
Therefore, the limit evaluates to 0.75.
(b) To evaluate the limit:
lim(x->1) (x^2 + 2x - 3) / sin(4x),
we need to consider the behavior of the function as x approaches 1.
For the numerator, we have:
x^2 + 2x - 3 = (x - 1)(x + 3).
As x approaches 1, the numerator becomes 0 * (1 + 3) = 0.
For the denominator, sin(4x) oscillates between -1 and 1 as x approaches 1.
Since the numerator becomes 0 and the denominator oscillates between -1 and 1, the limit does not exist.
In conclusion, the limit in (a) evaluates to 0.75, while the limit in (b) does not exist.
Learn more about Limits and Derivatives here -: brainly.com/question/5313449
#SPJ11
1. Find the area of the region that lies inside the first curve and outside the second curve. r = 3 - 3 sin(θ), r = 3. 2. Find the area of the region that lies inside the first curve and outside the second curve. r = 9 cos(θ), r = 4 + cos(θ)
The area of the region in the curves of r = 3 - 3sin(θ) and r = 3 is 6 square units
The area in r = 9cos(θ) and r = 4 + cos(θ) is 16π/3 +8√3 square units
How to find the area of the region in the curvesFrom the question, we have the following parameters that can be used in our computation:
r = 3 - 3sin(θ) and r = 3
In the region that lies inside the first curve and outside the second curve, we have
θ = 0 and π
So, we have
[0, π]
This represents the interval
For the surface generated from the rotation around the region bounded by the curves, we have
A = ∫[a, b] [f(θ) - g(θ)] dθ
This gives
[tex]A = \int\limits^{\pi}_{0} {(3 - 3\sin(\theta) - 3)} \, d\theta[/tex]
[tex]A = \int\limits^{\pi}_{0} {(-3\sin(\theta))} \, d\theta[/tex]
Integrate
[tex]A = 3\cos(\theta)|\limits^{\pi}_{0}[/tex]
Expand
A = |3[cos(π) - cos(0)]|
Evaluate
A = 6
Hence, the area of the region in the curves is 6 square units
Next, we have
r = 9cos(θ) and r = 4 + cos(θ)
In the region that lies inside the first curve and outside the second curve, we have
θ = π/3 and 5π/3
So, we have
[π/3, 5π/3]
This represents the interval
For the surface generated from the rotation around the region bounded by the curves, we have
A = ∫[a, b] [f(θ) - g(θ)] dθ
This gives
[tex]A = \int\limits^{\frac{5\pi}{3}}_{\frac{\pi}{3}} {(4 + \cos(\theta) - 9\cos(\theta))} \, d\theta[/tex]
This gives
[tex]A = \int\limits^{\frac{5\pi}{3}}_{\frac{\pi}{3}} {(4 - 8\cos(\theta))} \, d\theta[/tex]
Integrate
[tex]A = (4\theta - 8\sin(\theta))|\limits^{\frac{5\pi}{3}}_{\frac{\pi}{3}}[/tex]
Expand
A = |[4 * 5π/3 - 8 * sin(5π/3)] - [4 * π/3 - 8 * sin(π/3)]|
Evaluate
A = |[4 * 5π/3 - 8 * -√3/2] - [4 * π/3 - 8 * √3/2|
So, we have
A = |20π/3 + 4√3 - 4π/3 + 4√3|
Evaluate
A = 16π/3 +8√3
Hence, the area of the region in the curves is 16π/3 +8√3 square units
Read more about integral at
https://brainly.com/question/32513753
#SPJ4
the temperature in a hot tub is 103° and the room temperature is 75°. the water cools to 90° in 10 minutes. what is the water temperature after 20 minutes? (round your answer to one decimal place.)
The temperature in a hot tub is 103° and the room temperature is 75°. the water cools to 90° in 10 minutes. The water temperature after 20 minutes ≈ 92.9°F.
Given: Temperature of hot tub = 103°, Room temperature = 75°, Water cools to 90° in 10 minutes Formula used: T = T_r + (T_o - T_r)e^(-kt)Where, T = Temperature after time "t", T_o = Initial Temperature, T_r = Room Temperature, k = Decay constant. We need to find the temperature of water after 20 minutes. Let "t" be the time in minutes, then,T1 = 90°F (temperature after 10 minutes)Substitute the given values in the formula:90 = 75 + (103 - 75)e^(-k × 10) => e^(-10k) = 15/28 ------ equation (1)Similarly, Let T2 be the temperature after 20 minutes, thenT2 = 75 + (103 - 75)e^(-k × 20)Substitute the value of e^(-k × 10) from equation (1):T2 = 75 + (103 - 75) × (15/28)^2 => T2 ≈ 92.9°F.
To know more about Decay constant, visit:
https://brainly.com/question/29473809
#SPJ11
The water temperature after 20 minutes is 84.6°F (rounded to one decimal place).
Given data:
Temperature in the hot tub = 103°F
Room temperature = 75°F
Water cools down to 90°F in 10 minutes
We need to find the temperature of water after 20 minutes.
Let T be the temperature of the water after 20 minutes.
From the given data, we can write the following formula for cooling:
Temperature difference = (Initial temperature - Final temperature)
Exponential decay law states that:
Final temperature = Room temperature + Temperature difference * [tex](e^(-kt))[/tex]
Where k is a constant and t is the time in minutes.
In our case, we have
Initial temperature = 103°F
Final temperature = 90°F
Temperature difference = (103°F - 90°F)
= 13°F
Room temperature = 75°F
Time = 10 minutes
We can use the above formula to find the constant k:
(90°F) = (75°F) + (13°F) * [tex]e^(-k*10)15[/tex]
= [tex]13 * e^(-10k)1.1538 \\[/tex]
=[tex]e^(-10k)[/tex]
Taking natural logarithm on both sides, we get
-0.1477 = -10k
Dividing by -10, we get
k = 0.0148
We can now use this value of k to find the temperature of water after 20 minutes:
t = 20 minutes
T = 75 + 13 * [tex]e^(-0.0148 * 20)[/tex]
T = 75 + 13 * [tex]e^(-0.296)[/tex]
T = 75 + 13 * 0.7437
T = 84.64°F
Know more about the Exponential decay
https://brainly.com/question/27822382
#SPJ11
"
At a certain point on the ground, the tower at the top
of a 20-m high building subtends an angle of 45°. At another point
on the ground 25 m closer the building, the tower subtends an angle
of 45°.
"
Given that the tower at the top of a 20-m high building subtends an angle of 45° at a certain point on the ground. At outlier another point on the ground 25 m closer to the building, the tower subtends an angle of 45°.
We have to find the distance of the second point from the foot of the tower.Let AB be the tower at the top of the building and C and D be the two points on the ground such that CD = 25 m and CD is nearer to A (the top of the tower).Let BC = x and BD = y.
Hence, AB = 20 m.Since we have to find the distance of the second point from the foot of the tower, we have to find y.It is given that the tower subtends an angle of 45° at C.
Hence we have tan 45° = (20/x) => x = 20 m.
It is also given that the tower subtends an angle of 45° at D. Hence we have tan 45° = (20/y) => y = 20 m.Thus, the distance of the second point from the foot of the tower = BD = 25 - 20 = 5 m.
The distance of the second point from the foot of the tower = BD = 5m.Given that the tower at the top of a 20-m high building subtends an angle of 45° at a certain point on the ground. At another point on the ground 25 m closer to the building, the tower subtends an angle of 45°.We have to find the distance of the second point from the foot of the tower.
Hence, we have taken two points on the ground. Let AB be the tower at the top of the building and C and D be the two points on the ground such that CD = 25 m and CD is nearer to A (the top of the tower).Let BC = x and BD = y. Hence, AB = 20 m.
Since we have to find the distance of the second point from the foot of the tower, we have to find y.It is given that the tower subtends an angle of 45° at C. Hence we have tan 45° = (20/x) => x = 20 m.It is also given that the tower subtends an angle of 45° at D. Hence we have tan 45° = (20/y) => y = 20 m.
To know know more about outlier visit:
https://brainly.com/question/26958242
#SPJ11
show work please
A picture frame measures 14 cm by 20 cm, and 160 cm² of picture shows. Find the width of the frame.
The picture frame measures 14 cm by 20 cm. Therefore, the area of the picture frame is:14 x 20 = 280 cm². The width of the frame is 2 cm.
Let the width of the frame be w cm. Then, the total area of the picture frame along with the frame will be:(14 + 2w) cm × (20 + 2w) cm = 280 + 4w² + 68w ...(i)Now, let the area of the picture showing inside the frame be 160 cm². Therefore, the area of the frame only will be:Total area of the picture frame along with the frame - Area of the picture showing inside the frame.= 4w² + 68w + 280 - 160= 4w² + 68w + 120So, 4w² + 68w + 120 = 0Dividing both sides by 4:w² + 17w + 30 = 0Factoring:w² + 15w + 2w + 30 = 0(w + 15)(w + 2) = 0w + 15 = 0 or w + 2 = 0w = - 15 or w = - 2But, w can’t be negative. Hence, width of the frame is 2 cm.Answer: The width of the frame is 2 cm.
To know more about frame visit:
https://brainly.com/question/21856114
#SPJ11