Construct two possible hypothetical paths for the calculation of enthalpy change of the following process. Without calculation, write all the steps and equations that should be used for the calculations procedure.
o-xylene (s, 20°C, 3 atm) o-xylene (v, 20°C, 2 atm)

Answers

Answer 1

Two possible hypothetical paths for the calculation of the enthalpy change for the given process are: (1) using Hess's law and (2) utilizing the standard enthalpy of formation.

First, calculate the enthalpy change for the conversion of solid o-xylene (s) to gaseous o-xylene (g) at the same temperature and pressure. This can be achieved by subtracting the enthalpy of vaporization (∆Hvap) from the enthalpy of fusion (∆Hfus) of o-xylene. Then, determine the enthalpy change for the change in pressure from 3 atm to 2 atm, assuming ideal gas behavior. Finally, sum up the enthalpy changes from the two steps to obtain the total enthalpy change for the process.

Start by determining the standard enthalpy of formation (∆Hf°) of solid o-xylene and gaseous o-xylene at the same temperature and pressure. Then, subtract the standard enthalpy of formation of the reactants from the standard enthalpy of formation of the products. The resulting value represents the enthalpy change for the given process under standard conditions.

It is important to note that the specific values for enthalpy changes, enthalpy of vaporization, enthalpy of fusion, and standard enthalpy of formation are not provided in the given question and would need to be obtained from reliable sources or experimental data for accurate calculations.

Learn more about:Hypothetical paths

brainly.com/question/30723569?

#SPJ11


Related Questions

A tasteless, colorless, odorless, radioactive gas produced by decaying uranium is
radon
helium
carbon dioxide
asbestos

Answers

Radon is a tasteless, colorless, odorless, radioactive gas produced by decaying uranium. option A

Radon is a natural, radioactive gas that comes from the decay of uranium and is found in soil, rock, and water. Radon is created by the decay of uranium in soil, rocks, and water. Uranium is a naturally occurring element found in soil, rocks, and water.

When uranium decays, it produces a series of radioactive elements that eventually turn into radon gas.Rock and soil contain tiny amounts of uranium, and radon gas rises up through the soil and into the atmosphere. Radon gas can seep through cracks in the ground and enter homes through basements, crawl spaces, and other areas.

Radon gas is a serious health hazard. It is the leading cause of lung cancer among non-smokers, and it is responsible for over 20,000 deaths each year in the United States alone. Radon gas can be detected with special tests that measure the level of radon in the air. If radon gas is found to be present in a home, it can be reduced by sealing cracks in the foundation and installing special ventilation systems. Option A

For more such questions on Radon visit;

https://brainly.com/question/23972287

#SPJ8

A quantity of gas at 1.4 bar and 25 oC occupies a volume of 0.1 m3 in a cylinder behind a piston is compressed reversibly to a final pressure of 7 bar and a temperature of 60 oC. Sketch the process line on the p-v and T-s diagrams relative to the process line for a reversible adiabatic process and calculate the work and heat transfers in kJ and the change in entropy in kJ/K. The specific heat capacity at constant pressure, cp is 1.04 kJ/kg K and the specific gas constant, R is 0.297 kJ/kg K.

Answers

The work done during the process is approximately -0.031 kJ, the heat transfer is approximately 62.369 kJ, and the change in entropy is approximately 1.812 kJ/K.

To solve this problem, we'll use the ideal gas law and the first law of thermodynamics.

Given:

Initial pressure, P1 = 1.4 bar

Initial temperature, T1 = 25 °C = 25 + 273.15 K

Initial volume, V1 = 0.1 m^3

Final pressure, P2 = 7 bar

Final temperature, T2 = 60 °C = 60 + 273.15 K

Specific heat capacity at constant pressure, cp = 1.04 kJ/kg K

Specific gas constant, R = 0.297 kJ/kg K

Calculate the work done during the process:

The work done on the gas is given by the area under the process line on the p-v diagram.

Using the equation:

Work (W) = ∫PdV

For a reversible process, the work done can be calculated as:

W = ∫PdV = ∫(P)dV = ∫(P)dV = ∫(P)dV = ∫(P)dV

Using the ideal gas law, P1V1/T1 = P2V2/T2, we can solve for V2:

V2 = (P1V1T2) / (P2T1)

Substituting the given values:

V2 = (1.4 * 0.1 * (60 + 273.15)) / (7 * (25 + 273.15)) ≈ 0.126 m^3

The work done is:

W = P1V1 * ln(V2/V1) = 1.4 * 0.1 * ln(0.126/0.1) ≈ -0.031 kJ (Note: Negative sign indicates work done on the gas)

Calculate the heat transfers:

The first law of thermodynamics states that the change in internal energy (ΔU) of a system is equal to the heat transfer (Q) minus the work done (W).

ΔU = Q - W

For a reversible process, the change in internal energy can be calculated using the equation:

ΔU = cp * m * ΔT

Where m is the mass of the gas. Since the mass is not given, we can assume it to be 1 kg without loss of generality.

ΔT = T2 - T1 = (60 + 273.15) - (25 + 273.15) = 60 K

ΔU = cp * m * ΔT = 1.04 * 1 * 60 = 62.4 kJ

Therefore, the heat transfer is:

Q = ΔU + W = 62.4 - 0.031 ≈ 62.369 kJ

Calculate the change in entropy:

The change in entropy (ΔS) for a reversible process can be calculated using the equation:

ΔS = cp * ln(T2/T1) - R * ln(P2/P1)

Substituting the given values:

ΔS = 1.04 * ln((60 + 273.15)/(25 + 273.15)) - 0.297 * ln(7/1.4) ≈ 1.812 kJ/K

Therefore, the change in entropy is approximately 1.812 kJ/K.

In summary, the work done during the process is approximately -0.031 kJ, the heat transfer is approximately 62.369 kJ, and the change in entropy is approximately 1.812 kJ/K.

Learn more about first law of thermodynamics from the given link!

https://brainly.com/question/26035962

#SPJ11

what type of load (bed load, dissolved load, or suspended load) are boulders?

Answers

The type of load the boulders belong to are the bedload.

What is bed load?

Bed load is the term used to describe the coarser sediment (sand, gravel, and boulders) that are moved along a stream bed by the force of the water. During times of high flow, the force of the water is enough to lift and move these larger sediment particles along the bottom of the stream channel, bouncing and rolling them along.

Bed load can be further divided into two categories: saltation and traction. Saltation is the movement of sediment particles that are too heavy to be carried in the water column but too light to be completely settled on the stream bed. These particles bounce along the bottom of the stream channel, lifted and moved by the force of the water.

Traction, on the other hand, is the movement of larger sediment particles (like boulders) that are heavy enough to be settled on the stream bed, but are lifted and moved by the force of the water as it flows over them.

Learn more about Traction here: https://brainly.com/question/30356900

#SPJ11

The decomposing of a system into a collection of layers, where
the layers above one another (or similarly, below one another) are
in a particular order is called_________.

Answers

The decomposing of a system into a collection of layers, where the layers above one another (or similarly, below one another) are in a particular order is called stratification. A system is broken down or divided into distinct levels, each with its own special traits or attributes, through stratification.

This configuration happens when various aspects of a system settle or separate in accordance with their densities or other considerations. Numerous natural and man-made systems, including sedimentary rock formations, atmospheric layers, oceanic water columns, and even social structures, exhibit stratification.

Stratification can happen as a result of gravitational forces, temperature gradients, chemical reactions, or other variables that affect how the system's components are distributed and arranged. The resulting stratified layers frequently have various physical or chemical characteristics.

to know more about sedimentary rocks refer to the link below

https://brainly.com/question/29240254

#SPJ4

7. Oxygen as an ideal gas, T₁ = T₂ = 520°R, P₁ = 10 atm, p₂ = 5 atm. Find As in Btu/lb °R. (2 pts) For 8-9 determine the desired quantities is there is no change is specific entropy. Identify the table you use. 8. Air as an ideal gas, T₁ = 27°C, p₁ = 1.5 bar, T₂ = 127°C. Find p₂ in bar. 9. Refrigerant 134a, T₁ = 20°C, p₁ = 5 bar, p2 = 1 bar. Find v₂ in m³/kg.

Answers

The answers are: s = -0.109 Btu/lb °R. p₂ = 2.448 bar.  v₂ = 0.2684 m³/kg.

Given:T₁ = T₂ = 520°R,

P₁ = 10 atm, p₂ = 5 atm

To find: As in Btu/lb °R.

Formula to be used:

As = Cp * ln(T₂/T₁) - R * ln(p₂/p₁)where Cp = 0.21 Btu/lb °R (for oxygen), R = 0.2598 Btu/lb °R (for oxygen).

Calculation:As = 0.21 * ln(520/520) - 0.2598 * ln(5/10) = -0.109 Btu/lb °R8.

Given:T₁ = 27°C, p₁ = 1.5 bar, T₂ = 127°C.To find: p₂ in bar.

Table used: Table A.4 (for air)

Formula to be used:s2 = s1Rln(T₂/T₁) + Cp * ln(p₂/p₁)s1 = s2 => Cp * ln(p₂/p₁) = Rln(T₂/T₁)p₂/p₁ = (T₂/T₁)^(R/Cp) = (400/300)^0.287 = 1.6323p₂ = 1.5 * 1.6323 = 2.448 bar9.

Given:T₁ = 20°C, p₁ = 5 bar, p2 = 1 bar.

To find: v₂ in m³/kg.

Table used: Table A.11 (for Refrigerant 134a)

Formula to be used:s2 = s1 + Cp ln(T₂/T₁) - R ln(p₂/p₁)s1 = s2 => Cp ln(p₂/p₁) = R ln(T₂/T₁)p₂/p₁ = (T₂/T₁)^(R/Cp) = (273.15 + 40)/(273.15 + 20)^(4.141/1.34) = 0.2661v₂ = V1 / (p₂/p₁) = 0.0715 / 0.2661 = 0.2684 m³/kg

Thus, the answers are: s = -0.109 Btu/lb °R. p₂ = 2.448 bar.  v₂ = 0.2684 m³/kg.

Learn more about volume

https://brainly.com/question/24284765

#SPJ11

Which of the following is an almost reversible process? The adiabatic free expansion of a gas. The explosion of hydrogen and oxygen to form water. O A slow leakage of gas into an empty chamber through a small hole in a membrane. Heat transfer through thick insulation. O A slow isothermal compression of a gas.

Answers

The almost reversible process is the adiabatic free expansion of a gas (Option A).

What is adiabatic free expansion?

An adiabatic process is one that does not involve the exchange of heat energy between a system and its surroundings, whereas an isothermal process is one that occurs at a constant temperature. An adiabatic free expansion is a reversible process since it does not allow for any energy transfer between the gas and its environment. It can only occur in an insulated container that has a partition that separates the two gases. It allows for the gas to expand to fill the entire container by transferring energy to the partition, which then returns it to the gas as it expands. The partition is then removed, allowing the gas to expand freely into the empty portion of the container.

Thus, the correct option is A.

Learn more about adiabatic process: https://brainly.com/question/29209594

#SPJ11

how many significant figures should be retained in the result of the following calculation?
12.00000 x 0.9893 +13.00335 x 0.0107
a. 2
b. 3
c. 4
d. 5
e. 6

Answers

The result of the calculation should be reported with five significant figures. Therefore, the answer is d. 5.

When multiplying or adding numbers with different significant figures, the final result should only have the same number of significant figures as the value with the fewest significant figures. This is known as the rule of significant figures.

In the given calculation, the first term is 12.00000 x 0.9893 and the second term is 13.00335 x 0.0107. Since 0.0107 has only three significant figures, the final answer cannot have more than three significant figures. Therefore, we need to determine the number of significant figures in 12.00000 x 0.9893.

12.00000 has six significant figures because the zeros between the first and last non-zero digits count as significant figures. 0.9893 has four significant figures. When we multiply these two values, we get 11.8716. However, we need to round the answer to three significant figures. The third significant figure is the ten-thousandth's place, which is 7. Since 7 is greater than 5, we round up the second significant figure, which is 1. Therefore, the result of the first term is 11.9 (to three significant figures).

Now we can add the two terms 11.9 and 0.1393 (which is the result of multiplying 13.00335 and 0.0107). We get 12.0393, but since we need to round to three decimal places, the final answer is 12.0.

Thus, the correct answer is (a) 2, because the final answer has only two significant figures (12.0).

learn more about

brainly.com/question/32263449

Significant Figures in Calculation Results

SPJ11

A number of 5 significant figures should be retained in the result of the following calculation:

12.00000 x 0.9893 +13.00335 x 0.0107

To determine the number of significant figures that should be retained in the result of the calculation, we need to consider the number of significant figures in the values being multiplied and added.

In the given calculation:

12.00000 x 0.9893 + 13.00335 x 0.0107

The first term, 12.00000 x 0.9893, has six significant figures (as indicated by the trailing zeros and the presence of nonzero digits).

The second term, 13.00335 x 0.0107, has five significant figures.

When performing addition or subtraction, the result should be rounded to the least number of decimal places (or significant figures) among the values being added. In this case, the second term has five significant figures, so the final result should also have five significant figures.

Therefore, the correct option is d) 5.

Learn more about Significant Figures here:

https://brainly.com/question/29153641

#SPJ11

The actual age of the volcanic rock on Midway is about 27.7 million years. Suggest a reason why your answer for problem 3 above differs noticeably from this.
O The estimate of the mean distance between the two locations causes a difference in measurement.
O Perhaps the rate of plate motion has changed over the past few million years and/or the location of the hotspot has changed.
O Different hotspots in the past have created new islands that drifted with the plates.

Answers

Answer:

HEYYY

The reason for the noticeable difference between the actual age of the volcanic rock on Midway (27.7 million years) and the previous answer could be attributed to a few possibilities:

Inaccurate dating methods: The previous answer might have relied on an imprecise or outdated dating technique that led to an incorrect estimation of the volcanic rock's age. Geological dating methods continue to evolve and improve, and new discoveries can sometimes revise previous estimates.

Limited information or research: The previous answer might have been based on limited available information or incomplete research about the volcanic rock on Midway. New findings, additional data, or an improved understanding of the geological context could have emerged since then, leading to a more accurate estimation.

Interpretation or calculation errors: Human error in interpretation or calculation could have led to an incorrect estimation of the volcanic rock's age in the previous answer. These errors can occur due to various factors, such as misinterpretation of data, faulty assumptions, or mathematical mistakes.

Updated geological understanding: The field of geology is constantly evolving, and new insights can lead to revised understandings of geological processes. It's possible that recent research or discoveries have provided a more accurate understanding of the volcanic activity on Midway, leading to the revised age estimate of 27.7 million years.

Sample variability: Volcanic rocks can vary in age even within a localized area due to multiple volcanic eruptions over time. The previous answer might have been based on a different sample or eruption event, resulting in a different age estimate from the actual age of the volcanic rock on Midway.

It's essential to consider that scientific knowledge is subject to refinement and revision as new data and research become available. Therefore, the previous answer might have been based on the information and understanding that was current at the time, but subsequent advancements have since provided a more accurate estimation of the volcanic rock's age on Midway.

The estimate of the mean distance between two locations can be influenced by factors such as changes in plate motion and the shifting location of hotspots over millions of years. These factors can introduce variations and affect the accuracy of distance measurements.

Plate tectonics involves the movement of Earth's lithospheric plates, which can change in speed and direction over geologic time. If the rate of plate motion has varied in the past, it can result in differences in the estimated distance between two locations. For example, if the plates were moving faster in the past, the distance between the locations would have increased at a different rate compared to the present.

Additionally, the location of hotspots, which are areas of upwelling magma within the Earth's mantle, can also change over time. Hotspots can create volcanic activity and form new islands or landmasses. As the plates move over these hotspots, the islands or landmasses can be carried along, resulting in their displacement from the original hotspot location. This movement can further contribute to variations in distance measurements between locations.

It's important to consider these dynamic geological processes and their long-term effects when estimating distances or studying the evolution of Earth's features. The geological history of an area, including plate motion and hotspot activities, plays a significant role in understanding the changes and variations observed in distances between locations over millions of years.

hey i hope this helps you !! :)

Question 2. A simplified model of hydrogen bonds of water is depicted in the figure as linear arrangement of point charges. The intra molecular distance between qı and 42, as well as 43 and 44 is 0.10 nm (represented as thick line). And the shortest distance between the two molecules is 0.17 nm (92 and inter-molecular bond as dashed line). The elementary charge e = 1.602 x 10-19C. Midway OH = 0.35e H +0.35e OH -0.35e H +0.35e Fig. 2 41 412 13 94 43, (a) Calculate the energy that must be supplied to break the hydrogen bond (midway point), the elec- trostatic interaction among the four charges. (b) Calculate the electric potential midway between the two 11,0 molecules.

Answers

a. The energy that must be supplied to break the hydrogen bond (midway point), the electrostatic interaction among the four charges is 4.09×10⁻¹⁹ Joule.

a. To calculate the total

electrostatic interaction

energy between all the four charges, we use the formula:

E= Kq1q2/r ... [Equation 1]

where,

K is Coulomb's constant

q1, q2 are the magnitudes of two charges

r is the distance between two charges

Midway point (OH...H), as per the given arrangement, has a distance of 0.10 nm and q is 0.35e.

Substituting all the values in Equation 1,

E= (9×109 Nm²C⁻²) × 0.35e × 0.35e / (0.10 nm)

E= 4.09×10⁻¹⁹ Joule

b)Electric potential midway between the two H2O molecules is the sum of potential energy due to OH...H and electrostatic energy between 42 and 43.

As per Coulomb's law,V= kQ/R ... [Equation 2]

where,

K is Coulomb's constant

Q is the charge

R is the distance between the charges

In the given situation, the charge (OH) is 0.35e.

Substituting all the values in Equation 2 for the distance of 0.10 nm,

V(OH...H)= (9×109 Nm²C⁻²) × 0.35e / (0.10 nm)

V(OH...H)= 3.15×10⁶ V/m

The distance between 42 and 43 is 0.10 nm. Magnitude of both the charges is e.

Substituting all the values in Equation 2,

V(42...43)= (9×109 Nm²C⁻²) × e / (0.10 nm)

V(42...43)= 9.0×10⁷ V/m

Therefore, the total electric potential midway between the two H2O molecules

= V(OH...H) + V(42...43)

= 3.15×10⁶ V/m + 9.0×10⁷ V/m

= 9.31×10⁷ V/m

Learn more about electrostatic interaction: https://brainly.com/question/29788192

#SPJ11

A steel with high hardenabilty:
Select one:
a. will form harder martensite than a steel with low hardenability
b. will form martensite to a greater depth in thick sections than will a steel with low hardenability
c. does not require tempering
d. will form martensite at a slower cooling rate than a steel with low hardenability
e. both b) and d)

Answers

A steel with high hardenabilty: b. will form martensite to a greater depth in thick sections than will a steel with low hardenability and d. will form martensite at a slower cooling rate than a steel with low hardenability (option E) both b) and d).

High hardenability of steel is the capacity of steel to transform into martensite with less severe cooling rates. This attribute helps produce uniform and predictable mechanical characteristics when hardening big or complex-shaped parts. Martensite is one of the crystalline structures formed by steel during the heat-treatment process when quenched. The properties of steel are greatly influenced by the martensitic structure produced by quenching.

The hardenability of steel can be defined as the extent to which the steel will harden under specific thermal conditions. The high hardenability steel is able to achieve high hardness and strength by martensitic transformation with lower cooling rates, compared to low hardenability steels with a slower cooling rate.

For instance, high carbon steels have higher hardenability, meaning they form more extensive martensite structures after heat treatment. The thickness of the section will also impact the depth of the martensitic layer formed. A greater depth of martensite will form with high hardenability steel in a thicker part section than a steel with low hardenability. Hence the statement, high hardenability steels will form martensite to a greater depth in thick sections than will a steel with low hardenability, is correct.

Another statement, will form martensite at a slower cooling rate than a steel with low hardenability, is also correct. As the cooling rate slows down, the probability of nucleation and growth of martensite is lesser. Thus, high hardenability steel will need slower cooling rates to form a sufficient amount of martensite. Therefore, the answer is option e) both b) and d).

Learn more about Martensite here: https://brainly.com/question/29459092

#SPJ11

Consider the chemical equation.


CuCl2 + 2NaNO3 Right arrow. Cu(NO3)2 + 2NaCl


What is the percent yield of NaCl if 31.0 g of CuCl2 reacts with excess NaNO3 to produce 21.2 g of NaCl?
Use Percent yield equals StartFraction actual yield over theoretical yield EndFraction times 100..
49.7%
58.4%
63.6%
78.7%

Answers

Percent yield = 78.7% , the correct answer is D) 78.7%, which represents the percent yield of NaCl in the reaction.

To calculate the percent yield of NaCl in the given chemical equation, we need to compare the actual yield of NaCl with the theoretical yield. The theoretical yield is the amount of NaCl that would be produced if the reaction went to completion based on stoichiometry.

First, we need to determine the theoretical yield of NaCl. By examining the balanced equation, we can see that the stoichiometric ratio between CuCl2 and NaCl is 1:2. This means that for every 1 mole of CuCl2, 2 moles of NaCl are produced.

Step 1: Convert the mass of CuCl2 to moles using its molar mass.

Molar mass of CuCl2 = 63.55 g/mol (atomic mass of Cu) + 2 × 35.45 g/mol (atomic mass of Cl)

Molar mass of CuCl2 = 134.45 g/mol

Moles of CuCl2 = 31.0 g / 134.45 g/mol ≈ 0.231 mol

Step 2: Use the stoichiometry to calculate the theoretical yield of NaCl.

Since the stoichiometric ratio between CuCl2 and NaCl is 1:2, the moles of NaCl produced will be twice the moles of CuCl2.

Moles of NaCl (theoretical) = 2 × 0.231 mol = 0.462 mol

Step 3: Convert the moles of NaCl to grams using its molar mass.

Molar mass of NaCl = 22.99 g/mol (atomic mass of Na) + 35.45 g/mol (atomic mass of Cl)

Molar mass of NaCl = 58.44 g/mol

Theoretical yield of NaCl = 0.462 mol × 58.44 g/mol ≈ 26.96 g

Now, we can calculate the percent yield using the formula:

Percent yield = (Actual yield / Theoretical yield) × 100

Percent yield = (21.2 g / 26.96 g) × 100 ≈ 78.7%

Option D

For more such questions on Percent yield visit:

https://brainly.com/question/14714924

#SPJ8

To prepare 750 mL of 0.25 M NaCl, how many grams of NaCl need to be measured out and dissolved in water to bring the total volume to 750 mL?

Answers

Approximately 10.94 grams of NaCl need to be measured out and dissolved in water to prepare a 0.25 M NaCl solution with a total volume of 750 mL.

To prepare a 0.25 M NaCl solution with a total volume of 750 mL, we need to calculate the amount of NaCl in grams that needs to be dissolved in water.

First, we need to understand the concept of molarity (M). Molarity represents the number of moles of solute (NaCl) per liter of solution. We can use the formula:

Molarity (M) = Moles of solute / Volume of solution (in liters)

We have the desired molarity (0.25 M) and the desired volume (750 mL = 0.75 L) of the solution. We can rearrange the formula to solve for the moles of solute:

Moles of solute = Molarity x Volume of solution

Moles of solute = 0.25 M x 0.75 L = 0.1875 moles

Now, we need to convert the moles of NaCl to grams. We can use the molar mass of NaCl, which is approximately 58.44 g/mol:

Grams of NaCl = Moles of NaCl x Molar mass of NaCl

Grams of NaCl = 0.1875 moles x 58.44 g/mol ≈ 10.94 grams

For more such questions on dissolved visit:

https://brainly.com/question/6319922

#SPJ8

you are going to build a battery composed of several electrochemical cells, due to the available space you can only have a maximum of 4 cells in each battery. Choose the material for the anode and cathode of each of the cells so that you get a minimum voltage of 12 V. How would you connect your 4 cells?

Answers

The cells should be linked in series to produce the necessary voltage of 4 cells

In order to build a battery that produces a minimum voltage of 12 V with a maximum of 4 cells, certain steps must be taken.

The anode and cathode materials must be chosen with care.

The anode is the negative electrode, while the cathode is the positive electrode. For this battery to work effectively, the anode material must have a high electron potential, while the cathode material must have a low electron potential.

A higher voltage is produced when the difference in potential is greater.

The cells should be linked in series to produce the necessary voltage.

When linked in series, the positive side of one cell is connected to the negative side of the next cell.

The positive and negative poles of the battery are then linked to the corresponding poles of the circuit, and the battery is ready to power the device.

Learn more about voltage from the given link

https://brainly.com/question/30764403

#SPJ11  

19. A method that uses low temperature heat-treating that imparts toughness without reduction in hardness is called: A) annealing B) quenching) tempering D) soaking 20. What is the purpose of tempering after quench hardening? 21. A heating treating process that consist of heating a steel to a specific temperatue & then cooling at a slow rate in a controlled environment to prevent the formation of a har den structure is called? a 22. Brass containing what % of Zinc is resistance to dezincification? 23. Which one of the attributes listed below do not apply to Aluminum. A) Easily cast & machined B) High strength to weight ratio C) low cost D) high reflectivity E) none 1 24. Which non-ferrous material can be made stronger than steel? 25. The difference between Brass & Bronze is that Brassis made of copper with Zinc and Bronze is made of copper with Tin Tor F 26. Aluminum is not attacked by A) Saltwater B) Alkaline Solutions C) Water Containing heavy metals D) Gasoline 27. Which one of the following is NOT a characteristic of martensitic stainless steel? A) has a high C than Ferrite B] has no nickel C] can contain Carbide Dj Can have a BCC structure E] Contain signa phase F] is ferromagnetic 28. Stainless steels must contain which elements? (Select all that apply) A] Fe B] Ni C] N D] CuE] Cr F]A1

Answers

Stainless steels must contain the following elements: Fe, Cr, Ni, and A1.

19. The method that uses low-temperature heat-treating that imparts toughness without a reduction in hardness is called tempering.

20. The purpose of tempering after quench hardening is to reduce the brittleness of the material.

21. A heating treating process that consists of heating a steel to a specific temperature and then cooling at a slow rate in a controlled environment to prevent the formation of a harden structure is called annealing.

22. Brass containing 15-20% of zinc is resistant to dezincification.

23. The attribute listed below that does not apply to aluminum is: C) low cost.

24. Titanium is the non-ferrous material that can be made stronger than steel.

25. False, Brass is made of copper with zinc and Bronze is made of copper with Tin.

26. Aluminum is not attacked by saltwater.

27. The characteristic of martensitic stainless steel that is NOT true is B) has no nickel.

28. Stainless steels must contain the following elements: Fe, Cr, Ni, and A1.

Learn more about stainless steel with the given link,

https://brainly.com/question/30342148

#SPJ11

Two cylinders each contain 0.30 mol of a diatomic gas at 280 K and a pressure of 3.0 atm. Cylinder A expands isothermally and cylinder B expands adiabatically until the pressure of each is 1.0 atm.
Part C
What is the final volume of the gas in the cylinder A?
Part D
What is the final volume of the gas in the cylinder B?

Answers

The final volume of the gas in cylinder A = 19.542 L

The final volume of the gas in cylinder B = 12.948 L

In an isothermal expansion, the temperature of the gas remains constant. Using the ideal gas law, we can calculate the initial volume of the gas in each cylinder.

Calculate the initial volume of the gas in each cylinder.

Since each cylinder contains 0.30 mol of gas and the ideal gas law is given by PV = nRT, we can rearrange the equation to solve for the initial volume V. Substituting the given values, we have:

V = (nRT) / P

  = (0.30 mol * 0.0821 L*atm/mol*K * 280 K) / 3.0 atm

  = 6.514 L

Calculate the final volume of the gas in cylinder A.

Since cylinder A expands isothermally, we can use Boyle's Law, which states that for an isothermal process, the product of pressure and volume is constant. Thus, we have:

P1 * V1 = P2 * V2

3.0 atm * 6.514 L = 1.0 atm * V2

V2 = (3.0 atm * 6.514 L) / 1.0 atm

   = 19.542 L

Calculate the final volume of the gas in cylinder B.

Since cylinder B expands adiabatically, the process occurs without the exchange of heat with the surroundings. For an adiabatic expansion, we can use the relationship:

P1 * V1^γ = P2 * V2^γ

Where γ is the heat capacity ratio of the gas (specific heat at constant pressure divided by specific heat at constant volume). Since the gas is diatomic, γ = 1.4. Substituting the given values, we have:

3.0 atm * (6.514 L)^1.4 = 1.0 atm *[tex]V2^1^.^4[/tex]

V2^1.4 = (3.0 atm * [tex](6.514 L)^1^.^4[/tex]) / 1.0 atm

V2 = [(3.0 atm * [tex](6.514 L)^1^.^4[/tex]) / [tex]1.0 atm]^(^1^/^1^.^4^)[/tex]

   = 12.948 L

Learn more about final volume

brainly.com/question/22012954

#SPJ11




A device used in radiation therapy for cancer contains 0.92 g of cobalt-60 (59.933 819 u). The half-life of this isotope is 5.27 yr. Determine the activity (in Bq) of the radioactive material. Number

Answers

The activity of the radioactive material in a device used in radiation therapy for cancer is 3.15 x 10¹⁵ Bq.

Number of moles of cobalt-60 = n = Mass / Molar mass = 0.92 x 10³ / 59.933 819 = 0.015 349 mol

Now, Half-life of cobalt-60 = 5.27 yr

Let's find decay constant(k) using the half-life equation:

Half-life period(T₁/₂) = 5.27 yr = 5.27 x 365 x 24 x 60 x 60 s = 1.666 x 10⁹ s

k = 0.693 / T₁/₂ = 0.693 / 1.666 x 10⁹ = 4.16 x 10⁻¹⁰ /s

Now, let's calculate the activity of radioactive material.

Activity(A) = k x n x N(Avogadro's number)

A = 4.16 x 10⁻¹⁰ x 0.015 349 x 6.022 x 10²³ = 3.15 x 10¹⁵ Bq

Therefore, the activity of radioactive material is 3.15 x 10¹⁵ Bq.

Learn more about activity here: https://brainly.com/question/28570637

#SPJ11

what percent of total calories should come from linoleic acid?

Answers

The American Heart Association recommends that linoleic acid should make up 5-10% of total daily calories.

linoleic acid is an essential omega-6 fatty acid that the body cannot produce on its own and must be obtained through the diet. It plays a crucial role in maintaining overall health, particularly in relation to heart health.

The American Heart Association (AHA) recommends that linoleic acid should make up 5-10% of total daily calories. This recommendation is based on the beneficial effects of linoleic acid on heart health. Studies have shown that consuming an adequate amount of linoleic acid can help lower the risk of cardiovascular diseases.

Linoleic acid is found in various plant-based oils, such as soybean oil, sunflower oil, and corn oil. These oils can be used in cooking or as dressings for salads and other dishes.

It is important to note that while linoleic acid is beneficial, the overall balance of fatty acids in the diet is also crucial for optimal health. It is recommended to consume a variety of healthy fats, including omega-3 fatty acids, in addition to linoleic acid.

Learn more:

About linoleic acid here:

https://brainly.com/question/30690127

#SPJ11

Write the balanced COMPLETE ionic equation for the reaction when Li₂CO₃ and Co(C₂H₃O₂)₂ are mixed in aqueous solution. If no reaction occurs, simply write only NR. Be sure to include the proper phases for all species within the reaction.

Answers

Answer:

Na2CO3(aq) + 2AgNO3(aq) ==> 2NaNO3(aq) + Ag2CO3(s) ... balanced molecular equation

YOU NEED TO INCLUDE PHASES !

To get the complete ionic equation, ionize/dissociate any aqueous species leaving any liquid, solids or gases as they are.

2Na+(aq) + CO32-(aq) + 2Ag+(aq) + 2NO3-(aq) ==> 2Na+(aq) + 2NO3-(aq) + Ag2CO3(s)

Which of the following statements correctly describe the transition state of a reaction? select all that apply.

Answers

A) The transition state is a high-energy species.

B) The transition state is a short-lived species.

D) The transition state represents the highest energy point along the reaction pathway.

A) The transition state is a high-energy species because it is an intermediate state between the reactants and the products. It possesses an energy greater than that of both the reactants and the products.

B) The transition state is a short-lived species. It exists only momentarily during the reaction, as it quickly proceeds to form either the products or revert back to the reactants.

D) The transition state represents the highest energy point along the reaction pathway. It is the peak of the reaction's energy diagram, separating the reactants' energy level from the products' energy level.

The transition state is crucial in determining the reaction rate and is associated with the activation energy required for the reaction to occur. It is a dynamic arrangement of atoms or molecules where bonds are in the process of forming or breaking. Due to its fleeting nature and high energy, it is difficult to directly observe or isolate the transition state in experimental settings. However, its existence and characteristics can be inferred through various techniques such as computational modeling and kinetic studies.

learn more about reaction pathway here:

https://brainly.com/question/32909254

#SPJ11

What mass of iron should be produced if 11. 0g of aluminum react with 30. 0g of iron (III) oxide?

Answers

The mass of iron should be produced if 11. 0g of aluminum reacts with 30. 0g of iron (III) oxide is 10.50 g.

To determine the mass of iron produced, we need to use stoichiometry and the balanced chemical equation for the reaction between aluminum and iron(III) oxide.

The balanced chemical equation is:

2 Al + [tex]Fe_{2} O_{3}[/tex] →  + 2 Fe

From the equation, we can see that 2 moles of aluminum react with 1 mole of iron(III) oxide to produce 1 mole of iron.

First, we need to determine the limiting reactant by comparing the number of moles of aluminum and iron(III) oxide.

Moles of aluminum = mass of aluminum / molar mass of aluminum

= 11.0 g / 26.98 g/mol (molar mass of aluminum)

= 0.407 mol

Moles of iron(III) oxide = mass of iron(III) oxide / molar mass of iron(III) oxide

= 30.0 g / 159.69 g/mol (molar mass of iron(III) oxide)

= 0.188 mol

Since the stoichiometric ratio of aluminum to iron(III) oxide is 2:1, we can see that 0.188 mol of iron(III) oxide requires 0.376 mol of aluminum. However, we have only 0.407 mol of aluminum, which is in excess.

Therefore, the limiting reactant is iron(III) oxide. The amount of iron produced is determined by the moles of iron(III) oxide used. Moles of iron = 0.188 mol (same as moles of iron(III) oxide)

Now we can calculate the mass of iron produced using its molar mass (55.85 g/mol):

Mass of iron = Moles of iron × Molar mass of iron

= 0.188 mol × 55.85 g/mol

= 10.50 g

Therefore, the mass of iron produced is approximately 10.50 grams.

Know more about the Balanced chemical equation here:

https://brainly.com/question/13451900

#SPJ8




If the element with atomic number 60 and atomic mass 160 decays by beta plus emission. What is the atomic number of the decay product?

Answers

The atomic number of the decay product of the element with atomic number 60 and atomic mass 160 decays by beta plus emission is 59.

To determine the atomic number of the decay product, we must that when beta-plus (β+) decay occurs, the nucleus emits a positron, which has the same mass as an electron but carries a positive charge and converts one of its protons into a neutron, increasing the neutron-to-proton ratio.

To answer the given question, we need to know what the decay product is. For β+ decay, the atomic number decreases by one because a proton is converted into a neutron. In this case, the atomic number of the parent is 60, and it decays by β+ decay. As a result, the atomic number of the decay product would be

60 - 1 = 59

Thus, the atomic number of the decay product would be 59.

Learn more about atomic number: https://brainly.com/question/8834373

#SPJ11

find the molar mass of a gas if 19.08g occupy 12.620L at 92.5kPa and 42.6C

Answers

The molar mass of the gas can be calculated using the ideal gas law. Given that the gas occupies a volume of 12.620L at a pressure of 92.5kPa and a temperature of 42.6°C, and knowing the mass of the gas is 19.08g, the molar mass can be determined.

To calculate the molar mass, we need to convert the temperature from Celsius to Kelvin by adding 273.15. So, the temperature becomes 42.6°C + 273.15 = 315.75K. We can then rearrange the ideal gas law equation PV = nRT to solve for the molar mass (M):

M = (mRT) / (PV)

where:

m = mass of the gas (19.08g)

R = ideal gas constant (8.314 J/(mol·K))

T = temperature in Kelvin (315.75K)

P = pressure (92.5kPa)

V = volume (12.620L)

Substituting the values into the equation:

M = (19.08g * 8.314 J/(mol·K) * 315.75K) / (92.5kPa * 12.620L)

After performing the calculations, the molar mass of the gas is found to be approximately 31.43 g/mol.

In summary, the molar mass of the gas is calculated using the ideal gas law equation by plugging in the known values for pressure, volume, temperature, and mass of the gas. By rearranging the equation and performing the necessary calculations, we find that the molar mass of the gas is approximately 31.43 g/mol.

for such more questions on temperature

https://brainly.com/question/4735135

#SPJ8

how do i store chemical indicators and disinfectant cartridge?

Answers

Store chemical indicators and disinfectant cartridges in cool, dry, and well-ventilated areas away from direct sunlight and heat sources.

To ensure the proper storage of chemical indicators and disinfectant cartridges, it is essential to follow a few guidelines. Firstly, store them in a cool environment to prevent degradation or chemical reactions caused by excessive heat. High temperatures can alter the composition and effectiveness of these products. Additionally, a dry storage area is crucial to prevent moisture absorption, which can lead to product spoilage or decreased efficacy.

Furthermore, it is important to keep chemical indicators and disinfectant cartridges away from direct sunlight. Exposure to UV rays can accelerate the degradation process, rendering them less reliable or ineffective. Therefore, consider using opaque storage containers or cabinets to shield them from light sources.

Ventilation is another crucial aspect of proper storage. Ensure that the storage area is well-ventilated to prevent the buildup of potentially harmful fumes or gases that may be released by the chemicals. Adequate airflow will help maintain a stable environment and minimize the risk of chemical reactions or contamination.

Learn more about Chemical indicators

brainly.com/question/13748767

#SPJ11

A gas expands from a volume of 3.0 dm3 to 5.0 dm3 against a constant pressure of 3.0 atm. The work done during expansion is used to heat 10.0 mole of water of temperature 290.0K. Calculate the final temperature of water (specific heat of water =4.184 J K−1g−1)

Answers

the final temperature of water comes out to be 290.877 K. The quantity of work completed during the expansion must be determined in order to calculate the energy supplied to the water and the water's final temperature.

Following the gas expansion, we can apply the following equation to determine the water's final temperature:

q = mcΔT

Where: q = the heat the water absorbs

m = the water's mass

c is the water's specific heat capacity.

T stands for temperature change.

Let's start by calculating the heat that the water absorbed during the gas expansion:

q = the work that the gas does

The equation: can be used to determine how much work the gas is doing.

w = -PΔV

Where: w = job completed

Pressure is P.

V stands for volume change

We can determine the work done if we know that the pressure (P) is 3.0 atm and the change in volume (V) is 5.0 dm3 - 3.0 dm3 = 2.0 dm3.

w = 3.0 atm x 2.0 dm3, which is -6.0 atm dm3.

The heat absorbed by the water will be positive since the work completed, which represents work on the system, is negative:

Q=-w=6.0 atm dm3

Next, we must convert the work done's units to joules:

1 atm dm3 equals 101.375 J

At STP, 1 mol of gas takes up 22.4 dm3.

6.0 atm dm3 multiplied by 101.325 J/atm dm3 results in 607.95 J.

Now, we can determine the water's temperature change (T):

q = mcΔT

10 mol * 18.015 g/mol * 4.184 J/g K * 10.795 J = 607.95 J ΔT

753.78 g * 4.184 J/g K * T = 607.95 J

T = 753.78 g * 4.184 J/g K / 607.95 J

ΔT ≈ 0.180 K

The ultimate temperature is then determined by adding the temperature change to the 290.0 K starting point:

Final temperature = 290.0 K plus 0.180 K, or 290.180 K.

to know more about specific heat refer to the link below

https://brainly.com/question/27862577

#SPJ4

A student makes the following observations which observation indicates that a chemical change occurred

Answers

The appearance of a color change in the solution during the titration is an observation that could have led the student to conclude that a chemical change took place.

One observation that could have led the student to conclude that a chemical change took place during the titration is the appearance of a color change in the solution.

During a titration, a chemical reaction typically occurs between the analyte (the solution being titrated) and the titrant (the solution being added). The reaction between the two substances may result in a change in the chemical composition, leading to the formation of new products.

In some titrations, an indicator is used to visually signal the endpoint of the reaction. Indicators are substances that undergo a color change in response to a change in the pH or chemical composition of the solution. They can be added to the analyte or the titrant to help detect when the reaction is complete.

If a color change is observed during the titration, it indicates that a chemical change has occurred. For example, if the analyte solution is colorless or has a certain color initially, and it changes to a different color during the addition of the titrant, it suggests that a reaction has taken place, resulting in the formation of new substances with different optical properties.

This color change is a visual indication that a chemical transformation has occurred during the titration process. It can be used to determine the endpoint of the reaction and calculate the concentration or amount of the analyte present in the solution.

For more such questions on titration visit:

https://brainly.com/question/186765

#SPJ8

Note the complete questions is;

The student made observations related to the contents of the Erlenmeyer flask during the titration. Identify an observation that could have led the student to conclude that a chemical change took place during the titration.

Which of the concentration units shown involve dividing the mass of solute by the mass of solution? Select all that apply.
percent by mass
parts per billion (ppb)
parts per million (ppm)

Answers

The concentration units that involve dividing the mass of solute by the mass of solution are percent by mass and parts per million (ppm). Thus, the correct options are:percent by massparts per million (ppm)What is a solution?A solution is a homogeneous mixture of two or more substances, which may be solids, liquids, or gases.

A solution may be a gas, a solid, or a liquid. The solution's concentration is a measure of the amount of solute dissolved in the solvent. The concentration of the solution is determined by the amount of solute present in a certain volume or mass of solvent. Concentration units, such as ppm, percent by mass, and parts per billion, are used to quantify the concentration of a solution.

Read more about concentration here;https://brainly.com/question/17206790

#SPJ11


Describe the sludge generation process and propose safe methods
of disposing it.

Answers

The sludge generation process refers to the production of sewage treatment residue during wastewater treatment. Sludge contains solid and semi-solid materials that must be handled and disposed of properly to protect human health and the environment.

The following are some methods for sewage disposal:

Wastewater Treatment: Initial treatment involves the physical removal of large solids, whereas secondary treatment uses biological processes to break down organic matter and remove dissolved pollutants.

Sludge Treatment: The separated sludge is under further treatment, which may include stabilization, dewatering, and, in some cases, additional processes to reduce contaminants.

Land Application: Treated sludge can be applied to agricultural land as a fertilizer or soil conditioner if it meets regulatory guidelines and has been properly treated.

Landfills: If sludge cannot be reused or recycled, it can be disposed of in a designated landfill that meets regulatory requirements, ensuring proper containment and preventing soil and water contamination.

For more information regarding sludge and sewage disposal:

https://brainly.in/question/8504457?utm_source=android&utm_medium=share&utm_campaign=question

The ionization energy of an unknown element is 12.5 eV. This element has a spectrum for absorption from its ground level with lines at 2.0, 4.0, and 10.0 eV.

If atoms of this element are excited by absorbing photons of energy 10.0 eV, then the subsequently emitted photons form an emission spectrum with all of the following energies

Answers

The emitted photon energies in the emission spectrum of the element after absorbing a 10.0 eV photon are -10.0 eV, -4.0 eV, and -2.0 eV.

To determine the energies of the subsequently emitted photons in the emission spectrum of the element, we need to consider the energy levels and transitions within the atom.

Given that the ionization energy of the element is 12.5 eV, this means that the energy required to completely remove an electron from the ground level is 12.5 eV. Therefore, the ground level energy of the element is 0 eV.

When atoms of the element are excited by absorbing photons with an energy of 10.0 eV, the electrons move to higher energy levels. Subsequently, when these excited electrons return to lower energy levels, they emit photons with energies corresponding to the energy differences between the energy levels involved in the transitions.

To determine the emitted photon energies, we need to consider the possible transitions within the element's energy levels.

Given that the absorption spectrum shows lines at 2.0, 4.0, and 10.0 eV, these energies represent the differences between energy levels in the excited state and the ground state.

Possible energy differences and subsequently emitted photon energies can be calculated as follows:

Emitted photon energy = Energy of the ground level (0 eV) - Energy of the excited state (10.0 eV) = -10.0 eV

Emitted photon energy = Energy of the ground level (0 eV) - Energy of the excited state (4.0 eV) = -4.0 eV

Emitted photon energy = Energy of the ground level (0 eV) - Energy of the excited state (2.0 eV) = -2.0 eV

Please note that negative values indicate emitted photons with energies lower than the ground state energy. These emitted photons are typically in the ultraviolet or visible range.

Therefore, the emitted photon energies in the emission spectrum of the element after absorbing a 10.0 eV photon are -10.0 eV, -4.0 eV, and -2.0 eV.

Learn more about absorption spectrum from the given link!

https://brainly.com/question/10252035

#SPJ11

A 3-kg sample of water contains 0.7 milligrams of mercury. What is the concentration of mercury in ppm?
50 ppm
2.1 ppm
4286 ppm
0.233 ppm

Answers

The concentration of mercury in ppm will be 0.233 ppm.

Given: The mass of water = 3 kg

The mass of mercury in water = 0.7 milligrams

We need to calculate the concentration of mercury in parts per million (ppm).

Formula: The concentration of mercury in ppm is given by,concentration in ppm= Mass of mercury in milligrams/Mass of water in kilograms

Or,concentration in ppm = (Mass of mercury/ Mass of water) × 10⁶We know, the mass of mercury is 0.7 milligrams and the mass of water is 3 kg or 3000 grams.

So, the concentration of mercury in ppm will be:

concentration in ppm = (Mass of mercury/ Mass of water) × 10⁶= 0.7/3000 × 10⁶= 0.233 ppm

Therefore, the concentration of mercury in ppm is 0.233 ppm.

We learned that the concentration of mercury in ppm can be calculated using the formula (Mass of mercury/ Mass of water) × 10⁶. In the given problem, the mass of mercury in 3 kg of water is 0.7 milligrams.

Thus, the concentration of mercury in ppm will be 0.233 ppm.

Learn more about concentration from the given link

https://brainly.com/question/28564792

#SPJ11  

when a nucleic acid undergoes hydrolysis the resulting subunits are

Answers

When a nucleic acid undergoes hydrolysis, it breaks down into its individual nucleotide subunits.

When a nucleic acid undergoes hydrolysis, it breaks down into its individual nucleotide subunits. Nucleic acids are macromolecules that are composed of nucleotide subunits. There are two types of nucleic acids: DNA (deoxyribonucleic acid) and RNA (ribonucleic acid).

Hydrolysis is a chemical reaction that involves the breaking of a bond using water. In the case of nucleic acids, the bond that is broken is the phosphodiester bond, which connects the nucleotides in the polymer chain. The phosphodiester bond is formed between the phosphate group of one nucleotide and the sugar group of the adjacent nucleotide.

During hydrolysis, water molecules are added to the nucleic acid molecule, causing the phosphodiester bond to break. As a result, the nucleic acid molecule is broken into nucleotides, which are the monomers or subunits of nucleic acids.

Learn more:

About nucleic acid here:

https://brainly.com/question/11737667

#SPJ11

Other Questions
What is the major problem of " Byte Products, Inc" and what are the main solutions provided to this company in order to improve its competitive advantage? no copy please, this is Strategic Management. any copied answer or handwriting will be reported and refund question. only write your own effort and words. Discovered in the 1990s, the ________ is a vaster, darker version of the more famed asteroid belt between Mars and Jupiter. Wildhorse Corporation earned net income of $272,600 in 2023 and had 94,000 common shares outstanding throughout the year. Also outstanding all year was $800,000 of 10% bonds that are convertible into 30,000 common shares. Wildhorse's tax rate is 30%. Calculate Wildhorse's 2023 diluted earnings per share. For simplicity, ignore the IFRS requirement to record the debt and equity components of the bonds separately. (Round answer to 2 decimal places, e.g. 15.25.) Diluted earnings per share The functionf(x)=4x+2x1has one local minimum and one local maximum. This function has a local maximum atx=with value and a local minimum atx=with value suppose+your+bathroom+scale+reads+your+mass+as+80+kg,+with+a+3%+uncertainty.+what+is+the+uncertainty+in+your+mass+in+kilograms? Answer the question: "Are Macs more secure?" Approach thequestion as one that calls for you to consider the hardware and theoperating system, and to compare Apple devices that use the macOSwith per current forms of ethnographic fieldwork in cultural anthropology are rooted in 198 The isotope 79Au 8 (atomic mass 197.968 u) of gold, which has a half-life of 2.69 days, is used in cancer therapy. What mass (in grams) of this isotope is required to produce an activity of 265 Ci? Number i Units 10:10 | 0.0KB/s . . . Your assistant freight forwarding manager has monthly salary is $6,000, in Canada, CPP is 5.70% and El is 1.58%. Assuming flat federal and provincial tax rate of 30%, For this employee, how much is the total burden on the company? 2 points Add class comment Your answer Due today O $4,200 O $5,658 O $6,000 O $6, 094.80 O $6,342 O $6,436.80 O Calculating required minimum distribution: William attained age 72 in January 2022 . At the end of the prior year he had the following account balances: - Schwab IRA: $360,000 - Schwab Roth IRA: $120,000 - Tesoro industries profit sharing plan: $680,000 What is Williams 2022 required distribution for each of these accounts? What is Williams 2022 required distribution for each of these accounts? Schwab IRA: Schwab Roth IRA: Tesoro industries profit sharing plan: (Round answers to the nearest dollar and include the "\$") (Round answers to the nearest dollar and include the "\$") For x [14,15] the function f is defined by f(x)=x^6(x5)^7On which two intervals is the function increasing?Find the region in which the function is positive:Where does the function achieve its minimum? what led to the decline of motowns hold on the pop charts in the seventies? inferior to the hypochondriac region is the _____ region.a. umbilical regionb. hypogastric regionc. left hypochondriac regiond. left inguinal region Which portion of an FTM tube would show indications of the presence of oxygen?O Facultative anaerobeO incubator shelfO PeroxidaseO The top part of the tube. The signal 10 cos[2 x 108t+0.8 sin (2000nt)] is applied at the input of an ideal band pass filter with unit gain and bandwidth of 1000 Hz centered at 100,002,000 Hz. Sketch the amplitude spectrum at the output of the filter. If you do not do the final air brake check for air leaks and fix them before driving,1. you could lose your brakes while driving2. your fuel usage will increase3. tire pressure will drop Friendlys Quick Loans, Inc., offers you $5.75 today but you must repay $6.75 when you get your paycheck in one week (or else).Requirement 1:What is the effective annual return Friendlys earns on this lending business? (Round your answer as directed, but do not use rounded numbers in intermediate calculations. Enter your answer as a percent rounded to 2 decimal places (e.g., 32.16).)Effective annual return%Requirement 2:If you were brave enough to ask, what APR would Friendlys say you were paying? (Round answer as directed, but do not use rounded numbers in intermediate calculations. Enter your answer as a percent rounded to 2 decimal places (e.g., 32.16).)Annual percentage rate% Moving to another question will save this response. Question 10 If the Laplace transform of is X(s) = 00 01 O Cannot be determined 6 1 s +65 +909 Moving to another question will save this response. the initial value of is An air core solenoid 0.5m long has 200 turns. Themagnetic induction near the center of the solenoid is 0.08 Tesla.What is the current in the solenoid. consider the following statements. struct circledata { double radius; double area; double circumference; }; circledata circle;