d) What is the symmetrical breaking current and asymmetrical making current of a circuit breaker with a 200MVA symmetrical breaking capacity and rated voltage of 6.6KV? Given that the maximum offset f

Answers

Answer 1

The symmetrical breaking current and asymmetrical making current of a circuit breaker with a 200MVA symmetrical breaking capacity and rated voltage of 6.6KV are as follows:Symmetrical breaking current (Isc) is the current that the circuit breaker can break without causing any damage.

For a circuit breaker with a symmetrical breaking capacity of 200MVA and a rated voltage of 6.6KV, the maximum symmetrical breaking current can be calculated as follows:Isc = S / (3 × V)where S is the symmetrical breaking capacity and V is the rated voltage.Is[tex]c = 200 × 10^6 / (3 × 6.6 × 10^3)= 5.05 × 10^3 A[/tex]Asymmetrical making current (Im) is the current that flows through the circuit breaker during the making/breaking operation. The asymmetrical making current is determined by the maximum offset factor (f).

The formula for asymmetrical making current can be written as follows:Im = f × Iscwhere Im is the asymmetrical making current and Isc is the symmetrical breaking current.Given that the maximum offset factor f = 1.8, the asymmetrical making current can be calculated as follows:[tex]Im = f × Isc= 1.8 × 5.05 × 10^3= 9.09 × 10^3[/tex] ATherefore, the symmetrical breaking current is 5.05 × 10^3 A, and the asymmetrical making current is 9.09 × 10^3 A for a circuit breaker with a 200MVA symmetrical breaking capacity and a rated voltage of 6.6KV, given that the maximum offset factor f is 1.8.

To know more about symmetrical visit:

https://brainly.com/question/31184447

#SPJ11


Related Questions

Question 22
Not yet answered
Marked out of 1.00 Flag question


A capacitor is connected to an AC voltage with peak voltage at 10 V,
operates at 5kHz. The capacitance was 47μF. Determine the
displacement current in the capacitor when time t=15μs.



a. 13.16 A b. 5.35 A C. −5.35 A d. 14.77 A

Answers

To determine the displacement current in the capacitor at a given time t, we can use the formula for displacement current.

The displacement current in a capacitor is not dependent on the time but rather on the rate of change of electric field with respect to time the given scenario, a capacitor with a capacitance of 47 μF is connected to an AC voltage source with a peak voltage of 10 V. The frequency of the AC voltage is 5 kHz. To determine the displacement voltage at a specific time, we need to know the phase relationship between the AC voltage and the time t.

To know more about displacement visit :

https://brainly.com/question/11934397

#SPJ11




5. If V = Vok, in a slab of dielectric material for which &, -2.3. Find E. X. and P of d the material. (Answer E = (V/m). Xe = 1.3. P=1.38₁(c/m²)) l રો

Answers

In a dielectric material, the relationship between the electric field (E), electric displacement (D), and polarization (P) is given by the equation:
D = εE,
where ε is the permittivity of the material. The permittivity can be expressed as:
ε = ε0εr,
where ε0 is the permittivity of free space (8.854 x 10^-12 F/m) and εr is the relative permittivity (dielectric constant) of the material.

Given that εr = -2.3 and V = V0k, we can relate the electric field and electric displacement in the material. Since the electric field is the negative gradient of the electric potential, we have:
E = -∇V.
For the given potential V = V0k, the electric field can be written as:
E = -dV/dx i - dV/dy j - dV/dz k,
where i, j, and k are the unit vectors in the x, y, and z directions, respectively.
Taking the derivatives with respect to x, y, and z, we find:
dV/dx = 0,
dV/dy = 0,
dV/dz = -V0.
Substituting these values into the expression for E, we get:
E = 0i + 0j - V0k = -V0k.
Finally, using the relationship D = εE, we can determine the electric displacement:
D = εE = (ε0εr)(-V0k) = (-2.3)(8.854 x 10^-12 F/m)(-V0k) = 18.29 x 10^-12 V0k.

To learn more about, Dielectric, click here, https://brainly.com/question/29357753

#SPJ11

Question 1 For a light emitting diode made from a material with a bandgap of 2.040 (eV). Accounting for the peak in the distribution of energies for electrons in the conduction band, what is the spectral linewidth, Dl, for this material at 380 (K)? Give your answer in (nm) to 4 significant digits.

Answers

The spectral linewidth for this material at 380 K is 42.7 nm.

From the given information, the bandgap of a material is given as 2.040 eV and temperature is given as 380 K. Now, we can use the following formula to calculate the spectral linewidth:

∆E ≈ 2.198 kBT where, ∆E = spectral linewidth, k = Boltzmann’s constant = 1.3807 × 10^−23J/K, T = temperature

To find the spectral linewidth in nm, we will use the relation,

∆E = hν = hc/λ where h = Planck’s constant = 6.626 × 10−34J.s, ν = frequency, c = speed of light in vacuum = 2.998 × 10^8m/s, λ = wavelength

Solving the formula, we get the spectral linewidth as 0.0209 eV

Substituting the values in the above relation, we get the spectral linewidth in nm as 42.7 nm.

Learn more about spectral linewidth here:

https://brainly.com/question/33454969

#SPJ11








1. Some \( 15 \mathrm{~kg} \) boxes are stacked on top of each other. If each box can withistand \( 1000 \mathrm{~N} \) of force before crushing, how many boxes can safely be placed in each stack?

Answers

Only 6 boxes can be safely stacked on top of each other before the force exerted exceeds the maximum force that can be withstood by the boxes.

The number of boxes that can be stacked on top of each other depends on the weight and strength of the boxes. In this case, each box has a weight of 15 kg and can withstand a force of 1000 N before crushing.

To determine how many boxes can safely be placed in each stack, we need to use the formula for weight:

W = m x g
Where W is weight, m is mass, and g is acceleration due to gravity.
In this case, the weight of each box is:
W = 15 kg x 9.8 m/s^2
W = 147 N

To determine the number of boxes that can safely be stacked, we need to divide the maximum force that can be withstood by the weight of each box:
n = 1000 N / 147 N
n = 6.80 boxes

Therefore, only 6 boxes can be safely stacked on top of each other before the force exerted exceeds the maximum force that can be withstood by the boxes. It is important to note that this calculation assumes that the boxes are stacked directly on top of each other and that there are no other factors, such as uneven distribution of weight, that could affect the safety of the stack.

To learn more about force exerted:

https://brainly.com/question/30452713

#SPJ11

Final answer:

To determine the maximum number of boxes that can be safely stacked on top of each other, we calculate the force exerted on each box and then divide the maximum force each box can withstand by the force exerted on each box. The rounded-down result gives us the maximum number of boxes that can be safely stacked, which is 6.

Explanation:

To determine how many boxes can safely be placed in each stack, we need to consider the total force exerted on the boxes. Force is equal to mass times acceleration, and in this case, the force is the weight of the boxes. The weight of each box is given as 15 kg (mass) multiplied by the acceleration due to gravity (approximately 9.8 m/s^2). Therefore, the force exerted on each box is 15 kg x 9.8 m/s^2 = 147 N.

Since each box can withstand 1000 N of force, we divide the maximum force each box can withstand (1000 N) by the force exerted on each box (147 N) to determine the maximum number of boxes that can be safely stacked. This calculation gives us approximately 6.8 boxes. However, since we can't have a fraction of a box, we round down to the nearest whole number. Therefore, the maximum number of boxes that can be safely stacked is 6.

Learn more about stacking boxes here:

https://brainly.com/question/32055511

#SPJ2

The measurement of voltage requires to place the voltmeter leads across the component whose voltage you wish to determine True False

Answers

The given statement "The measurement of voltage requires to place the voltmeter leads across the component whose voltage you wish to determine" is true.

The voltage is the difference in electrical potential between two points in a circuit, or it's the amount of electrical potential energy in a circuit. Voltage is measured in volts using a voltmeter, which is a device that measures the potential difference between two points in a circuit. Voltage is generally referred to as electric potential energy per unit charge.

As we know, every electrical circuit has a voltage that is the difference between the circuit's potential energy and the potential energy of the circuit's surroundings. The voltage across a component in a circuit is determined by comparing the potential energy on each side of the component.

A voltmeter is a device used to calculate this voltage. It works by measuring the voltage difference between two points in a circuit.The voltmeter is connected in parallel with the component whose voltage is being measured. The two leads of the voltmeter are connected in parallel with the component.

Know more about voltage here:

https://brainly.com/question/32002804

#SPJ11

QUESTION 10 A force of 60 N has a x-component of 28 N. What is the y-component? OA. 2800 N OB. 53 N OC.57N OD. 66 N OE. 94 N QUESTION 11 Two reindeer-in-training pull on a sleigh. Connie pulls with a force of 200 N at an angle of 20° above the (positive) x-axis, while Randolph pulls with a force of 500 N at an angle of 30° below the (positive) x-axis. What is their resultant force on the sleigh? OA. 620 N B. 180 N C. 650 N D. 590 N E. 21 N 2 points Save Answer 2 points

Answers

The magnitude of the y-component of the force is 53 N. The magnitude of the resultant force on the sleigh is 187.4 N.

Question 10

Given data, force

F = 60 N, x-component of force = 28 N

We need to find the y-component of the force F.

We know that force has two components, the x-component, and the y-component.

Using Pythagoras theorem we have,

F² = x² + y² where F is the magnitude of the force F, x is the magnitude of the x-component of the force F, and y is the magnitude of the y-component of the force F.

By squaring both sides we get, (F² - x²) = y²

Put the given values in the above equation,

y² = (60 N)² - (28 N)²

= 3600 N² - 784 N²y²

= 2816 N²y

= √2816 N²

= 53 N

Therefore, the magnitude of the y-component of the force is 53 N.

Hence, the correct option is OB.

Question 11.

Connie pulls with a force of 200 N at an angle of 20° above the (positive) x-axis, while Randolph pulls with a force of 500 N at an angle of 30° below the (positive) x-axis.

We need to find the resultant force on the sleigh by these two forces.

Let the force on the sleigh by Connie and Randolph are F1 and F2 respectively. Let F be the resultant force and α be the angle that F makes with the positive x-axis.

Resolving the forces in the x and y directions, we get:

Net x-component,

Fcosα = F1 cosθ1 + F2 cosθ2

where θ1 and θ2 are the angles made by F1 and F2 with the positive x-axis.

Net y-component, Fsinα = F1 sinθ1 - F2 sinθ2

Substitute the given values in the above equations.

F1 = 200 N, θ1 = 20°, F2 = 500 N, θ2 = -30°, α =?

Then we have,

Fcosα = F1 cosθ1 + F2 cosθ2

= (200 N) cos20° + (500 N) cos(-30°)

= 187.37 N

Net y-component,

Fsinα = F1 sinθ1 - F2 sinθ2

= (200 N) sin20° - (500 N) sin(-30°)

= - 34.95 N∴ F = √(Fcosα)² + (Fsinα)²

= √(187.37 N)² + (-34.95 N)²= √(35123.75) N²

= 187.4 N

Therefore, the magnitude of the resultant force on the sleigh is 187.4 N. Hence, the correct option is B.

To learn more about force:

https://brainly.com/question/25239010

#SPJ11

A woman stands on a bathrooct scale in a Part A motioniess elevator. When the elevator begins to move; the sceie briefly reads only \( 0.71 \) of har regsilar weight Calculate the magnitude of the doc

Answers

The magnitude of the acceleration of the elevator is 0.71 times the acceleration due to gravity (g), based on the observed decrease in the woman's apparent weight on the bathroom scale.

To calculate the magnitude of the acceleration of the elevator, we can use the equation that relates the apparent weight of the woman to the acceleration.

Apparent weight in the elevator (W_apparent) = 0.71 times her regular weight

Regular weight of the woman (W_regular) = her actual weight

The apparent weight of the woman in the elevator is the force exerted by the scale on her. It is equal to the difference between the force of gravity (W_regular) and the upward force provided by the scale (N), which is the normal force.

Mathematically, we have:

W_apparent = N = W_regular - mg,

where m is the mass of the woman and g is the acceleration due to gravity.

Since the elevator is initially motionless, the net force on the woman is zero. Thus, the force of gravity is balanced by the upward force provided by the scale.

When the elevator starts to move, the net force on the woman is no longer zero. The normal force from the scale is reduced, resulting in a decrease in the apparent weight.

We can write the equation for the apparent weight in terms of acceleration (a) as follows:

W_apparent = N = W_regular - mg = ma,

where a is the acceleration of the elevator.

Given that W_apparent is 0.71 times W_regular, we can rewrite the equation as:

0.71W_regular = ma.

Dividing both sides by the regular weight (W_regular), we have:

0.71 = a/g.

Solving for the acceleration (a), we get:

a = 0.71g.

Therefore, the magnitude of the acceleration of the elevator is 0.71 times the acceleration due to gravity (g).

To know more about acceleration refer here

brainly.com/question/30660316

#SPJ11

Complete Question :A woman stands on a bathroom scale in a motionless elevator. When the elevator begins to move, the scale briefly reads only 0.71of her regular weight. Calculate the magnitude of the acceleration of the elevator.

Can someone explain why the voltage drop is going to be the
same? and What would be the difference if the bulbs are connected
in series instead? A 120-V, 60-W incandescent light bulb; a 120-V, 120-W incandescent light bulb; and a 120-V, 240-W incandescent light bulb are connected in parallel as shown. The voltage between points a and b is 120 V. Through which bulb is there the greatest voltage drop? A. the 120-V, 60-W light bulb B. the 120-V, 120-W light bulb C. the 120-V, 240-W light bulb D. The voltage drop across all three light bulbs is the same. a 120 V 60 W 120 V 120 W 120 V 240 W b

Answers

Given, three light bulbs are connected in parallel as shown below where the voltage between points a and b is 120V.120V, 60W120V, 120W120V, 240WThe power of each bulb can be given by P = V²/R, where R is the resistance of the bulb. For this problem, resistance of each bulb is not given.

So, we can find the current flowing through each bulb using P = VI. We can use I = P/V to calculate the current through each bulb.I₁ = 60/120 = 0.5 AI₂ = 120/120 = 1 AI₃ = 240/120 = 2 A So, the bulb with the greatest voltage drop is the one with the highest current flowing through it. In this case, the 240-W bulb has the greatest current flowing through it and so, it will have the greatest voltage drop.

However, we can say that the total voltage drop across all three bulbs would be equal to the voltage between points a and b, which is 120V. This is because the sum of the voltage drops across each element in a series circuit is equal to the total voltage of the circuit.In conclusion, the voltage drop is going to be the same for the given circuit and if the bulbs are connected in series, the total voltage drop across all three bulbs would be the same.

To know more about voltage visit:

https://brainly.com/question/32002804

#SPJ11


Please solve the problem showing clear steps
not just the answer. Thank you.
The observed orbital synodic periods of Venus and Mars are 583.9 days and 779.9 days respectively. Calculate their sidereal periods.

Answers

For a monoatomic gas, the formula to calculate the average square speed (v^2) is v^2 = (3 * k * T) / m, where k is the Boltzmann constant, T is the temperature in Kelvin, and m is the molar mass of the gas. For a diatomic gas, the formula is v^2 = (5 * k * T) / (3 * m).

In a monoatomic gas, each molecule has three degrees of freedom, while in a diatomic gas, each molecule has five degrees of freedom. The formula to calculate v^2 for a monoatomic gas takes into account the average kinetic energy per degree of freedom, which is (1/2) * k * T, multiplied by the number of degrees of freedom (3 in this case). For a diatomic gas, there are additional degrees of freedom due to molecular rotation, resulting in a different formula for v^2.

The molar mass (m) of the gas is also considered in both formulas. These formulas provide the average square speed of the gas molecules.

For more questions like this Monoatomic gas click the link below:

https://brainly.com/question/29746488

#SPJ11

B2. a) State the two main rules as applied to an ideal Op-Amp and state the conditions, under which these rules are applicable. [5 marks] b) What kind of an amplifier does the circuit in Figure B2 rep

Answers

Ideal Operational Amplifiers

An ideal operational amplifier (Op-Amp) is a high gain differential amplifier with infinite input resistance and zero output resistance. These two rules are applied to ideal Op-Amps:

Rule 1: Infinite Input Resistance

The input resistance of an ideal Op-Amp is infinite, which means that the input current is zero. The voltage at both the inverting (-) and non-inverting (+) inputs of an ideal Op-Amp is the same. This is because the infinite input resistance of the Op-Amp prevents any current from flowing into or out of the inputs. This rule is applicable when the input impedance of the circuit is very high, as in the case of buffer amplifiers.

Rule 2: Zero Output Resistance

The output resistance of an ideal Op-Amp is zero. This means that the output voltage of an ideal Op-Amp is constant, regardless of the load connected to it. The output voltage is limited only by the voltage supply to the Op-Amp. This rule is applicable when the output impedance of the circuit is very low, as in the case of unity gain amplifiers.

Inverting Amplifier

The output voltage of this amplifier is proportional to the negative of the input voltage. This amplifier has a high input impedance and a low output impedance, which means it amplifies signals that are small in magnitude. The negative feedback applied to the Op-Amp ensures that the amplifier has stable gain and low distortion. The gain of this amplifier is equal to the ratio of the feedback resistance to the input resistance.

Gain = -Rf/Rin

where:

Rf is the feedback resistance

Rin is the input resistance

To know more about Operational Amplifiers visit:

https://brainly.com/question/33454627

#SPJ11

3. A sky wave is incident on the ionosphere at an angle of 60°. The electron density of this ionosphere layer is
N = 24.536 x 10^11electrons/m^3

a. For the point of reflection, determine the refractive index of the ionospheric layer. (3 Marks)
b. Identify the critical frequency for the communication link. (2 Marks)
c. Determine the maximum usable frequency (2 Marks)
d. Give reasons why the transmissions would fail the following frequencies if the frequencies were 10 MHz and 30 MHz respectively. (4 Marks)

Answers

if the MUF is lower than the transmission frequencies of 10 MHz and 30 MHz, the transmissions would fail.The refractive index (n) of a medium can be calculated using the formula:n = √(1 - (f_p/f)^2). where f_p is the plasma frequency and f is the frequency of the incident wave. Given that the incident angle is 60°, the point of reflection corresponds to the vertical incidence where the wave travels straight up and down.

For vertical incidence, the critical frequency (f_c) is related to the plasma frequency by: f_c = f_p / 2π.Using the relationship between critical frequency and plasma frequency, we can calculate the refractive index for the ionospheric layer. b. The critical frequency (f_c) for the communication link can be calculated by rearranging the equation mentioned above: f_c = f_p / 2π.Substituting the given electron density value (N), we can calculate the critical frequency.c. The maximum usable frequency (MUF) corresponds to the highest frequency that can be refracted and returned to Earth by the ionosphere. It is given by:MUF = f_c / sin(θ). where θ is the incident angle. By substituting the critical frequency (f_c) and incident angle (θ), we can determine the MUF.d. The transmissions would fail at frequencies of 10 MHz and 30 MHz if they exceed the maximum usable frequency (MUF) determined in part c. If the frequencies are higher than the MUF, the ionosphere will not be able to refract and return the waves to Earth, resulting in a loss of communication. Therefore, if the MUF is lower than the transmission frequencies of 10 MHz and 30 MHz, the transmissions would fail.

To learn more about incident angle:

https://brainly.com/question/14221826

#SPJ11

A coil with a resistance of 100 Q and an inductance of 2 mH is placed in series with a capacitance of 20 nF. The circuit has an A.C. supply of 60 volts at 10 kHz connected to it. Determine the following, expressing all answers to 3 places after decimal point.
i) The inductive reactance, XL.
ii) The capacitive reactance, Xc.
iii) The impedance of the circuit, Z.
v) The resonant frequency, fr
A coil with a resistance of 100 Q and an inductance of 2 mH is placed in series with a capacitance of 20 nF. The circuit has an A.C. supply of 60 volts at 10 kHz connected to it. Determine the following, expressing all answers to 3 places after decimal point.
i) The inductive reactance, XL.
ii) The capacitive reactance, Xc.
iii) The impedance of the circuit, Z.
v) The resonant frequency, fr

Answers

Therefore, the values are:

i) Inductive reactance (XL) ≈ 125.663 Ω

ii) Capacitive reactance (Xc) ≈ 795.775 Ω

iii) Impedance (Z) ≈ 795.897 Ω

v) Resonant frequency (fr) ≈ 79577.768 Hz

i) Inductive reactance (XL) can be calculated using the formula:

XL = 2πfL

ii) Capacitive reactance (Xc) can be calculated using the formula:

Xc = 1 / (2πfC)

iii) Impedance (Z) can be calculated using the formula:

Z = √((R^2) + ((XL - Xc)^2))

v) Resonant frequency (fr) can be calculated using the formula:

fr = 1 / (2π√(LC))

Given values:

Resistance (R) = 100 Ω

Inductance (L) = 2 mH = 0.002 H

Capacitance (C) = 20 nF = 20 * 10^-9 F

AC supply voltage (V) = 60 V

Frequency (f) = 10 kHz = 10 * 10^3 Hz

Let's calculate the values one by one:

i) Inductive reactance (XL):

XL = 2πfL

    = 2 * π * 10^4 * 0.002  

    ≈ 125.663 Ω

ii) Capacitive reactance (Xc):

Xc = 1 / (2πfC)

= 1 / (2 * π * 10^4 * 20 * 10^-9)

≈ 795.775 Ω

iii) Impedance (Z):

Z = √((R^2) + ((XL - Xc)^2))

= √((100^2) + ((125.663 - 795.775)^2))

≈ 795.897 Ω

v) Resonant frequency (fr):

  fr = 1 / (2π√(LC))

 = 1 / (2 * π * √(0.002 * 20 * 10^-9))

 ≈ 79577.768 Hz

Therefore, the values are:

i) Inductive reactance (XL) ≈ 125.663 Ω

ii) Capacitive reactance (Xc) ≈ 795.775 Ω

iii) Impedance (Z) ≈ 795.897 Ω

v) Resonant frequency (fr) ≈ 79577.768 Hz

Learn more about Inductive reactance from:

https://brainly.com/question/4425414

#SPJ11

D Question 8 4 pts In 1996, NASA performed an experiment called the Tetbered Satellite experiment. In this experiment a 344 x 10mlength of wire was let out by the space shuttle Atlantis to generate a motional emf. The shuttle had an orbital speed of 7.05 x 10 m/s, and the magnitude of the earth's magnetic field at the location of the wire was 4,04 x 10$T. If the wire had moved perpendicular to the earth's magnetic field, what would have been the motional em generated between the ends of the wire? 9800 V O 2200V 3500V 7280 V

Answers

the motional emf generated between the ends of the wire is approximately 9810 V.

To determine the motional emf generated between the ends of the wire, we can use the formula:

[tex]emf = B * L * v[/tex]

where:

B is the magnitude of the Earth's magnetic field (4.04 x 10^(-5) T),

L is the length of the wire (344 x 10^(-2) m), and

v is the velocity of the wire perpendicular to the magnetic field (7.05 x 10^3 m/s).

Plugging in the given values, we have:

[tex]emf = (4.04 x 10^(-5) T) * (344 x 10^(-2) m) * (7.05 x 10^3 m/s)[/tex]

Calculating this expression, we find:

emf ≈ 9810 V

Therefore, the motional emf generated between the ends of the wire is approximately 9810 V.

to know more about emf visit:

brainly.com/question/14263861

#SPJ11

The open circuit and short circuit test data of a 6kVA, 200/400volt and 50Hz single phase transformer are

⦁ O.C test …….. Primary voltage = 200 volts, No load current = 0.75A, W = 75w

⦁ S.C test ……… Primary voltage = 18 volts, Secondary current = 12.5A, W=60w.

Find the parameters of the equivalent circuit.

Answers

the parameters of the equivalent circuit of the given transformer are;

R_1 = 533.33 Ω, R_0 = 93.33 Ω, R_2 = 1.44 Ω, X_1 = 226.67 Ω, X_0 = 40 Ω, X_2 = 16.2 Ω.

Transformer rating, kVA = 6 Voltage ratio, V1 / V2 = 200 / 400

Primary voltage, V1 = 200V

Frequency, f = 50Hz

For Open Circuit test:

Primary voltage, V1 = 200V

No-load current, Io = 0.75A

Power, W = 75W

For Short Circuit test:

Primary voltage, V1 = 18V

Secondary current, I2 = 12.5A

Power, W = 60W

As the voltage ratio is 2:1, the turns ratio (

a) is 1:√2. Number of turns in the primary, N1 = kV1/√2

Number of turns in the secondary, N2 = kV2/√2

                                                               =6 × 400/√2

                                                               =1697.1 turns

Equivalent circuit parameters can be found as follows:

Calculation of R_1,R_0,R_2,X_1,X_0 and X_2 is as follows;

Calculation of R_1:I_1 =(W_0/V_1)

                                  = 75/200

                                  = 0.375AR_1

                                  = (V_1/I_1)

                                  = (200/0.375) Ω

                                  = 533.33 Ω

Calculation of R_0:

R_0 = ((V_1/I_0)-R_1)

       = ((200/0.75) - 533.33) Ω

       = 93.33 Ω

Calculation of R_2:

R_2 = (V_2/I_sc)

      = (18/12.5) Ω

      = 1.44 Ω

Calculation of X_1:

X_1 = [(V_1/I_m) - R_1]

      = [(200/0.667) - 533.33] Ω

      = 226.67 Ω

Calculation of X_0:

X_0 = [(V_1/I_0) - R_0]

       = [(200/0.75) - 93.33] Ω

       = 40 Ω

Calculation of X_2:

X_2 = [(V_2/I_m) - R_2]

      = [(18/0.888) - 1.44] Ω

      = 16.2 Ω

Let us write the equivalent circuit diagram:

Total resistance on the primary side of transformer:

Total resistance on the secondary side of transformer

To learn more on resistance:

https://brainly.com/question/28135236

#SPJ11

Consider the famous Koch snowflake drawn below to five stages. This fractal is generated by iterating each side of an equilateral triangle as a Koch curve (see also Figure \( 7.24 \) in the book). If

Answers

The Koch Snowflake is a fractal that is generated by iterating each side of an equilateral triangle as a Koch curve. The five stages of this fractal are shown below.  [Figure from https://www.math.ucla.edu/~pejman/KochSnowflake.html]In the first stage, we start with an equilateral triangle.

The next four stages are obtained by iterating the following process on each side of the triangle:1. Divide the line segment into three equal parts2. Replace the middle third with two line segments that form an equilateral triangle with height equal to the middle third3. Repeat the previous step for each new line segment, except for the ones that form the equilateral triangleThe resulting curve has an infinite length, but a finite area. In fact, the area of the Koch Snowflake is equal to

[tex]$\frac{8}{5}$[/tex]

The Koch Snowflake is an example of a fractal, which is a geometric object that has the property of self-similarity at different scales. Fractals are found in many natural and man-made objects, such as clouds, trees, coastlines, and computer-generated graphics.

To know more about geometric visit:

https://brainly.com/question/29199001

#SPJ11

Use the method of joints to answer the questions that follow. Given: P
1

=320lb and P
2

=640lb. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the forces in each member of the truss shown. State whether each member is in tension or compression.
The force in member AD is
The force in member AE is
The force in member DE is
The force in member AC is
The force in member AB is
The force in member BC is
The force in member CD is


lb.
lb
Ib
lb.
lb
lb

Answers

Forces in each member :Member AD: 960 lb,Member AE: 960 lb,Member DE: 960 lb , Member AC: 0 lb ,Member AB: 0 lb , Member BC: 0 lb and Member CD: 0 lb

To determine the forces in each member of the truss, we'll use the method of joints. Let's analyze each joint one by one.

Joint A:

Considering the forces in equilibrium at joint A, we have:

Vertical forces: P₁ + P₂ - FAD = 0

Horizontal forces: FAE - FAC = 0

Substituting the given values:

P₁ + P₂ - FAD = 0

FAE - FAC = 0

Solving these equations, we find:

FAD = P₁ + P₂ = 320 + 640 = 960 lb (tension)

FAE = FAC = 0 lb (zero force)

Joint B:

Considering the forces in equilibrium at joint B, we have:

Vertical forces: FAB - FBC = 0

Horizontal forces: FBE - FBD = 0

From Joint A, we know FAB = 0 lb (zero force).

Solving the equations, we find:

FBC = 0 lb (zero force)

FBE = FBD = 0 lb (zero force)

Joint C:

Considering the forces in equilibrium at joint C, we have:

Vertical forces: FBC - FCD - FAC = 0

Horizontal forces: FCE - FCB = 0

From Joint B, we know FBC = 0 lb (zero force).

Solving the equations, we find:

FCD = FAC = 0 lb (zero force)

FCE = FCB = 0 lb (zero force)

Joint D:

Considering the forces in equilibrium at joint D, we have:

Vertical forces: FCD - FDE = 0

Horizontal forces: FAD - FDB = 0

From Joint A, we know FAD = 960 lb (tension).

Solving the equations, we find:

FDE = 960 lb (compression)

FDB = 0 lb (zero force)

Joint E:

Considering the forces in equilibrium at joint E, we have:

Vertical forces: FDE - FAE = 0

Horizontal forces: FBE - FCE = 0

From Joint D, we know FDE = 960 lb (compression).

Solving the equations, we find:

FAE = 960 lb (compression)

FBE = FCE = 0 lb (zero force)

To learn more about Forces

https://brainly.com/question/12785175

#SPJ11

Diedre rides her sled down an icy, frictionless hill. When she reaches level ground at the bottom, she is traveling at v i

=4.0 m/s and has a glancing collision with her sledding buddy Brynn, who is initially at rest. Both sledders have the same mass, and they are using identical sleds. The collision causes Diedre's velocity vector to deflect by an angle of θ=21 ∘
, and the velocity vectors of both sledders are perpendicular to each other after the collision. What is Brynn's speed v 2

after the collision? For the limits check, investigate what happens to Brynn's speed v 2

as Diedre's initial speed v i

→0.

Answers

Brynn's speed (v₂) after the collision is approximately 0.2412 m/s, and as Diedre's initial speed (vi) approaches 0, Brynn's speed also approaches 0.

To find Brynn's speed (v₂) after the collision, we can use the principle of conservation of momentum.

The momentum before the collision is equal to the momentum after the collision since there are no external forces acting on the system. The momentum is a vector quantity and its magnitude is given by the product of mass and velocity.

Let's denote Diedre's mass and Brynn's mass as m (since they have the same mass).

Before the collision:

Diedre's momentum (p₁) = m * v₁ (where v₁ is Diedre's initial velocity, vi = 4.0 m/s)

Brynn's momentum (p₂) = m * 0 (since Brynn is initially at rest)

After the collision:

Diedre's momentum (p₁') = m * v₁' (where v₁' is Diedre's velocity after the collision)

Brynn's momentum (p₂') = m * v₂ (where v₂ is Brynn's velocity after the collision)

Applying the conservation of momentum:

p₁ + p₂ = p₁' + p₂'

m * v₁ + m * 0 = m * v₁' + m * v₂

Since the masses cancel out, we have:

v₁ = v₁' + v₂

To find v₂, we need to determine v₁', which can be found using trigonometry. We know that the velocity vector deflects by an angle θ = 21°.

Using the law of sines, we have:

v₁' / sin(90° - θ) = v₁ / sin(90°)

v₁' / sin(69°) = v₁ / 1

v₁' = v₁ * sin(69°)

Substituting the values:

v₁' = 4.0 m/s * sin(69°)

Now, we can substitute v₁' back into the equation for conservation of momentum:

4.0 m/s = v₁' + v₂

Simplifying the equation:

v₂ = 4.0 m/s - v₁'

Now, we can evaluate v₂ by substituting the value of v₁':

v₂ = 4.0 m/s - (4.0 m/s * sin(69°))

Calculating v₂:

v₂ ≈ 4.0 m/s - (4.0 m/s * 0.9397)

v₂ ≈ 4.0 m/s - 3.7588 m/s

v₂ ≈ 0.2412 m/s

Therefore, Brynn's speed after the collision (v₂) is approximately 0.2412 m/s.

Regarding the limit as Diedre's initial speed (vi) approaches 0, we can see that as vi approaches 0, the angle θ also approaches 0 (since the vectors become more aligned). In that case, v₁' would become equal to vi, and the equation for v₂ simplifies to:

v₂ = vi - v₁'

Since vi and v₁' are equal in this case, v₂ would be 0.

So, as Diedre's initial speed (vi) approaches 0, Brynn's speed after the collision (v₂) also approaches 0.

To know more about conservation of momentum, refer to the link below:

https://brainly.com/question/30483812#

#SPJ11

the operating speed of a fluid power system is adjusted by the ____.

Answers

The operating speed of a fluid power system is adjusted by the flow control valve. Flow control valves are used in fluid power systems to adjust the speed of actuator operations. They function by limiting the flow of fluid in the system.

They also act as a pressure regulator, ensuring that the actuator receives only the fluid it requires to execute its task. The fluid flow in a hydraulic system can be adjusted or regulated using a flow control valve. The flow control valve, or metering valve, is a device that regulates the speed of fluid flow to the actuator. It is used in a variety of hydraulic systems, from braking systems to production line machinery.

The flow control valve is a critical component in a hydraulic system. It is a simple device that regulates fluid flow. It regulates the speed of fluid flow through the system to maintain the desired speed of actuator movement. This guarantees that the actuator does not move too quickly or too slowly and that the system is efficient and reliable.

To know more about fluid power system, refer

https://brainly.com/question/14967131

#SPJ11

A=4i+ 3j and B = -3i+7j find the resultant vector R =A+B? 2) If vector B is added vector A, The result is (6i+j),lf B is subtracted from A, The result is (-4i+7j),What is the magnitude of vector B? 3)If A=2i-3j and B-i-j, What is the angle between the vector (2A-3B) and the positivex-axis?

Answers

The angle between vector (2A-3B) and the positive x-axis is 71.57°.

1) vector A = 4i + 3j and vector B = -3i + 7j

The resultant vector, R = A + B= (4i + 3j) + (-3i + 7j) = (4-3)i + (3+7)j = i + 10j

R = I + 10j

2) if vector B is added to vector A, The result is (6i+j),lf B is subtracted from A, The result is (-4i+7j)

vector A = a + b and vector B = c + dIf vector B is added to vector A

(a + b) + (c + d) = 6i + j ⇒ (a + c) + (b + d) = 6i + j ------(1)

If vector B is subtracted from vector A

(a + b) - (c + d) = -4i + 7j ⇒ (a - c) + (b - d) = -4i + 7j ------(2)

From equations (1) and (2), we get2a = 2i ⇒ a = and I 2b = j ⇒ b = j/2

vector A = I + (j/2)Substituting in equation (1)

(i + c) + (j/2 + d) = 6i + j⇒ c + 5i + d = j/2 ------(3)

Substituting in equation (2), we get(i - c) + (j/2 - d) = -4i + 7j⇒ -c + 3i + d = 3j/2 ------(4)

Multiplying equation (3) by 2 and adding it to equation (4)

-3c + 13i = 8j ⇒ c = (13/3)i - (8/3)j

vector B = (13/3)i - (8/3)

the magnitude of vector B is given by|B| = √(13² + (-8)²)/3²= (13/3) √2 units .

3) A = 2i - 3j and B = i - Let C = 2A - 3B= 2(2i - 3j) - 3(i - j) = (4-3) I + (-6+3)j = i - 3jThe angle between vector C and the positive x-axis is given byθ = tan⁻¹(y/x) where x and y are the x-component and y-component of vector C respectively.Substituting x = 1 and y = -3 in the above equation, we getθ = tan⁻¹(-3) = -71.57°.

To know more about vector please refer to:

https://brainly.com/question/29740341

#SPJ11

wo charged particles create an electric potential, and everywhere in the xy-plane this potential is described by the following function. V=
(x+1.58 m)
2
+y
2



29.0 V


x
2
+(y−2.76 m)
2



40.0 V

first term q
1

=nc x=m y=m Give the charge (in nC) and coordinates (in m) for the position of the particle responsible for the second term. q
2

=nC x=m y=m

Answers

The charge and coordinates for the position of the particle responsible for the second term are; q2 = 0.079 nC, x = 0 m, and y = 2.76 m.

To determine the charge and coordinates for the position of the particle responsible for the second term in the given potential V= (x+1.58 m)^2+y^2/29.0 V − x^2+(y−2.76 m)^2/40.0 V, we need to understand the terms of electric potential.

Electric potential: The electric potential, which is also called voltage, is the measure of the electric potential energy per unit charge. It is used in electrical engineering to describe electric potential in circuits or electric fields due to charges. If we move a positive test charge from infinity to a point in the electric field, the electric potential difference will be the work done per unit charge, and the unit is Volt (V). The electric potential difference between two points in an electric field is the difference in the electric potential energy per unit charge between them. It is expressed in volts (V) and is also referred to as voltage.

Electric potential due to point charges: Point charges generate an electric field, which creates an electric potential difference. When a positive test charge is moved from infinity to a point near a point charge, the electric potential increases by a factor of kq/r, where k is the Coulomb constant, q is the charge of the point charge, and r is the distance from the point charge to the point where the potential is being calculated. An increase in the electric potential causes an increase in the electric potential energy of the test charge.

Let's calculate the electric potential due to each point charge.

First term q1 We know that the first term q1=nc and coordinates x=m and y=m.

Thus, we have; q1 = nc = 3.73 nC x = m y = m

Second term q2 Now we have to calculate the charge and coordinates for the position of the particle responsible for the second term.

The second term in the given potential is; V = -x^2 + (y - 2.76m)^2/40.0 V

The potential due to a point charge q at a point with coordinates (x, y) in the xy-plane is given by; V = kq / sqrt((x - a)^2 + (y - b)^2)

Here, a and b are the coordinates of the point charge.

Therefore, we have; a = 0, b = 2.76 m, and k = 9 x 10^9 Nm^2/C^2

If we compare the equation of the second term with the equation of potential due to a point charge, we can calculate the coordinates and charge of the particle responsible for the second term of the potential.

Thus, we have; V = kq / sqrt(x^2 + (y - 2.76 m)^2)40.0 V = 9 x 10^9 Nm^2/C^2 q / sqrt(x^2 + (y - 2.76 m)^2)

Therefore; q2 = 0.079 nC x = 0 m y = 2.76 m

Thus, the charge and coordinates for the position of the particle responsible for the second term are; q2 = 0.079 nC, x = 0 m, and y = 2.76 m.

To know more about coordinates refer to:

https://brainly.com/question/11832103

#SPJ11

A receiver can handle a maximum signal level of 97 mV without overloading. If the AGC range (dynamic range) in decibel is 100 dB, the sensitivity of the receiver is μV. No need for a solution. Just write your numeric answer only (without the unit) in the space provided.

Answers

The sensitivity of the receiver is 0.97 μV. Rounding off to the nearest integer, the answer is 10 μV.

The sensitivity of the receiver is 10 μV.

This can be calculated as follows:

The dynamic range or AGC range is calculated by the following formula:

Dynamic range (in dB) = 20 log10 (Vmax/Vmin)

Here, Vmax = maximum signal level

= 97 mV

Thus, in volts,

Vmax = 97 × 10^-3 = 0.097 V

Now, since the AGC range is 100 dB, we can calculate the minimum signal level by using the formula for decibel magnitude:

Magnitude in

dB = 20 log10 (V1/V2)

Here,

V1 = maximum signal level = 0.097 V,

and we want to find V2 as the minimum signal level.

Substituting these values:

100 dB = 20 log10 (0.097/V2)

V2 = 0.097/10^(100/20)

V2 = 0.97 nV

Therefore, the sensitivity of the receiver in μV is equal to the minimum signal level in nV, converted to μV.

Thus, the sensitivity of the receiver is 0.97 μV. Rounding off to the nearest integer, the answer is 10 μV.

To know more about sensitivity visit:

https://brainly.com/question/32974654

#SPJ11

(Maccoby) Narcissistic leaders: The incredible pros, the inevitable cons

Answers

narcissistic leaders possess qualities such as confidence and charisma that can be advantageous in leadership roles. However, their excessive focus on their own needs and lack of empathy can lead to negative consequences, including a toxic work environment and poor collaboration.

pros and cons of narcissistic leaders

Narcissistic leaders are individuals who exhibit excessive self-importance, a sense of entitlement, and a lack of empathy towards others. While they may possess certain qualities that can be advantageous in leadership roles, such as confidence and charisma, their narcissistic tendencies can also lead to negative consequences.

Pros of Narcissistic LeadersInspiration and Motivation: Narcissistic leaders have the ability to inspire and motivate others. Their self-assured nature and grandiose vision can attract followers and create a sense of excitement and ambition within a team or organization.Confidence and Assertiveness: Their confidence and assertiveness can help them make tough decisions and take risks that others may shy away from. This can lead to innovation and progress.Cons of Narcissistic LeadersLack of Empathy: Narcissistic leaders often lack empathy towards others, leading to a toxic work environment. Employees may feel undervalued and unheard, which can negatively impact morale and productivity.Poor collaboration and Teamwork: Narcissistic leaders prioritize their own success over the collective goals of the group, making collaboration and teamwork challenging. This can hinder the overall effectiveness of the team or organization.

It is important to note that not all leaders with narcissistic traits are inherently bad or ineffective. Some individuals may be able to balance their narcissistic tendencies with empathy and a genuine concern for others. However, it is crucial to be aware of the potential negative consequences that can arise from narcissistic leadership and to foster a healthy and inclusive work environment.

Learn more:

About Narcissistic leaders here:

https://brainly.com/question/30052478

#SPJ11

Determine the maximum normal stress (in MPa, using 2 decimal places) for a beam with the following data: 1. Beam is 5 m in length (simply supported) 2. Has an applied uniform distributed load of 22 kN/m 3. Rectangular cross section rectangular with a base of 166 mm and a height of 552 mm

Answers

the maximum normal stress of the beam is 1.43 MPa (approx.).

The formula to calculate the moment of inertia of a rectangular cross-section of a beam is:I = (b × h³)/12

where,b = baseh = height

Substituting the given values in the above formula:

I = (166 × 552³)/12I = 13236681536 mm⁴

Maximum bending moment of the beam:

The formula to calculate the maximum bending moment of the beam is:

M = (wL²)/8

where,w = load per unit area

w = (22 × 10⁶)/1000

w = 22 kN/mL = Length of the beam = 5 mM

= (22 × 5²)/8M = 68.75 kN.m

Converting kN.m into N.mM = 68.75 × 10⁶ N.mm

Maximum normal stress of the beam:

The formula to calculate the distance from the neutral axis to the outermost fiber of the beam is

c = h/2c = 552/2c = 276 mm

Substituting the given values in the formula:

σ = (Mc)/Iσ = (68.75 × 10⁶ × 276)/13236681536σ = 1.43 MPa

Hence, the maximum normal stress of the beam is 1.43 MPa (approx).

learn more about inertia here

https://brainly.com/question/14460640

#SPJ11


Explain the quantum nanostructures with schematic diagram?

Answers

Quantum nanostructures are materials or devices that exhibit quantum mechanical properties at the nanoscale level.

Quantum nanostructures are structures that are engineered at the nanoscale to take advantage of quantum mechanical effects. These effects arise due to the wave-particle duality of particles at the atomic and subatomic levels. Quantum nanostructures can be categorized into various types, including quantum dots, quantum wells, and quantum wires.

Quantum Dots: Quantum dots are tiny semiconductor particles with dimensions on the order of nanometers. They confine electrons in all three dimensions, resulting in discrete energy levels. The size of the quantum dot determines the energy levels and properties of the confined electrons.Quantum Wells: Quantum wells are thin layers of a semiconductor material sandwiched between two different materials. They confine electrons in one dimension, forming quantized energy levels. The width of the well determines the energy levels and characteristics of the confined electrons.Quantum Wires: Quantum wires are elongated nanostructures that confine electrons in two dimensions. They are typically created by growing semiconductor materials in specific directions, resulting in a thin wire-like structure. Quantum wires exhibit quantized energy levels and unique electrical properties.

Learn more about Quantum nanostructures: https://brainly.com/question/28823573

#SPJ11

In a 3 phase transformer connected in wye-delta with rating 200V:2200V
For the wye side, is the 220V voltage the phase or line voltage?

Example 3 phase 20KVA transformer 220V:2200V with impedence 4+5i reffered to low voltage side supplies a load of 12KVA at PF of 8 lagging. The feeder has 1+1i impedence. Find the sending end voltage.
WYE-delta

Answers

In a wye-delta connection, the 220V refers to the line voltage on the wye side. The sending end voltage is approximately 277.2V + 57.2V * i.

In a wye-delta connection of a three-phase transformer, the 220V voltage refers to the line voltage on the wye side. In this configuration, the line voltage is higher than the phase voltage by a factor of [tex]\sqrt{3}[/tex](approximately 1.732). The phase voltage is obtained by dividing the line voltage by [tex]\sqrt{3}[/tex].

Now, let's calculate the sending end voltage for the given scenario. We have a 3-phase, 20KVA transformer with a rating of 220V:2200V. The impedance of the transformer is given as 4+5i, referred to the low voltage (wye) side. The load connected to the transformer is 12KVA at a power factor (PF) of 8 lagging, and the feeder has an impedance of 1+1i.

To find the sending end voltage, we need to consider the voltage drop across the feeder and the transformer's impedance. The power factor allows us to calculate the real and reactive power components of the load.

1. Calculate the load current:

Load (S) = 12KVA

Power Factor (PF) = 8 lagging

Load (P) = S * PF = 12KVA * 0.8 = 9.6kW

Load (Q) = [tex]\sqrt{(S^2 - P^2) = √(12KVA^2 - 9.6kW^2) }[/tex]= [tex]\sqrt{(144KVA^2 - 9.6kVA^2) }[/tex]= [tex]\sqrt{(136.8kVA^2}[/tex]) = 11.7kVA

Load Current (I) = Load (S) / ([tex]\sqrt{3}[/tex] * Line Voltage) = 11.7kVA / (1.732 * 220V) ≈ 28.6A

2. Calculate the voltage drop across the feeder:

Feeder Impedance (Zf) = 1+1i

Feeder Voltage Drop (Vf) = Load Current (I) * Feeder Impedance (Zf) = 28.6A * (1+1i) ≈ 57.2V * (1+1i)

3. Calculate the voltage at the transformer's primary side:

Primary Voltage (Vp) = Line Voltage + Voltage Drop (Vf) = 220V + 57.2V * (1+1i) = 220V + 57.2V + 57.2V * i ≈ 277.2V + 57.2V * i

Therefore, the sending end voltage is approximately 277.2V + 57.2V * i.

For more such information on: wye-delta connection

https://brainly.com/question/30125962

#SPJ8

Q No.2 Apply Voltage and Current Divider Formulae to find Vo

Answers

In a circuit, the voltage divider rule and current divider rule are frequently used to find the output voltage and current. These laws are extremely helpful in designing circuits, and they may be used in numerous scenarios.


The formula for the voltage divider rule is as follows:

V1 = Vt (R1 / R1 + R2)

V2 = Vt (R2 / R1 + R2)

Where Vt is the total voltage of the circuit.
The formula for the current divider rule is as follows:

I1 = It (R2 / R1 + R2)

I2 = It (R1 / R1 + R2)

Where It is the total current of the circuit.

In this circuit, we want to find the voltage Vo across resistor R3. To do this, we must first calculate the total resistance of the circuit:

RT = R1 + R2 + R3 || R4

RT = (R1 + R2) || (R3 + R4)

RT = (2kΩ + 1kΩ) || (4kΩ + 2kΩ)

RT = 1.33kΩ

Now that we know the total resistance of the circuit, we can use the voltage divider rule to find the voltage across resistor R3:

V3 = Vt (R3 / RT)

V3 = 12V (4kΩ / 1.33kΩ)

V3 = 36V

We can now use the current divider rule to find the current through resistor R3:

I3 = It (R4 / RT)

I3 = 3mA (2kΩ / 1.33kΩ)

I3 = 4.5mA

Finally, we can use Ohm's law to find the voltage Vo across resistor R3:

Vo = R3 I3

Vo = 4kΩ × 4.5mA

Vo = 18V

Therefore, the output voltage Vo across resistor R3 is 18V.

To know more about circuits visit:
https://brainly.com/question/12608516

#SPJ11



Find solutions for your homework

science

physics

physics questions and answers

substitute known quantities and solve for the unknown quantity. (cont.) solving ohm's law for the instantaneous current gives (175 v)sin(55лt) r and substituting known values gives i = ¡ = = av r = av (175 v)sin(55лt) r = r -3 (175 v)sin 55(4.30 × 10 s)] = 0.423 a. 280 ω -3 the unknown quantity to be determined in part (e) is the instantaneous power

This problem has been solved!

You'll get a detailed solution from a subject matter expert that helps you learn core concepts.

See Answer

Question: Substitute Known Quantities And Solve For The Unknown Quantity. (Cont.) Solving Ohm's Law For The Instantaneous Current Gives (175 V)Sin(55лt) R And Substituting Known Values Gives I = ¡ = = Av R = Av (175 V)Sin(55лt) R = R -3 (175 V)Sin 55(4.30 × 10 S)] = 0.423 A. 280 Ω -3 The Unknown Quantity To Be Determined In Part (E) Is The Instantaneous Power



Show transcribed image text

Expert Answer

100% 

Given Current I = 0.4…

View the full answer



Transcribed image text: 

Substitute known quantities and solve for the unknown quantity. (cont.) Solving Ohm's law for the instantaneous current gives (175 V)sin(55лt) R and substituting known values gives i = ¡ = = Av R = Av (175 V)sin(55лt) R = R -3 (175 V)sin 55(4.30 × 10 S)] = 0.423 A. 280 Ω -3 The unknown quantity to be determined in part (e) is the instantaneous power dissipated by the resistor when t = 4.30 x 10 s. The instantaneous power dissipated by the resistor is given by P = i²R. What instantaneous power is dissipated by the resistor at t = 4.30 × 10¯ s? -3 X Incorrect. Substitute the instantaneous current and resistance into the power equation. W Submit Skip (you cannot come back)

Answers

Answer: The instantaneous power dissipated(P) by the resistor when t = 4.30 x 10 s is 0.05 W.

The instantaneous power dissipated by the resistor(r) when t = 4.30 x 10 s is P = i²R. Current(i) Therefore, substituting the given values will give: P = (0.423 A)² × 280 ΩP = 0.05 W.

To know more about resistor visit:

https://brainly.com/question/30611906

#SPJ11

An object is dropped from the top of a cliff 625 meters high. Its height above the ground t seconds after it is dropped is 625−4.9t². Determine its speed 7 seconds after it is dropped.
The speed of the object 7 seconds after it is dropped is ___m/sec.
(Simplify your answer.)

Answers

The speed of the object 7 seconds after it is dropped is -68.6 m/s (negative sign indicates downward direction).

The height of the object above the ground at time t is given by the equation h(t) = 625 - 4.9t².

To find the speed of the object at 7 seconds, we need to calculate the derivative of the height function with respect to time. The derivative gives us the rate of change of the height, which corresponds to the velocity or speed.

Taking the derivative of h(t) with respect to t:

h'(t) = d(h(t))/dt = d(625 - 4.9t²)/dt = -9.8t.

Now we can substitute t = 7 seconds into the derivative to find the speed at that time:

h'(7) = -9.8 * 7 = -68.6 m/s.

To learn more about speed of the object, Click here:

https://brainly.com/question/12615415

#SPJ11

in the circuit below, find all the currents. Before you start writing down equations. study the circuit carefully. You should be able to do the calculation in your head.

Answers

The total current flowing in the circuit is 9 A. The current flowing in R1 is 6 A and the current flowing in R2 is 3 A.

In the given circuit diagram, there are two resistors of 2 ohms and 4 ohms that are connected in parallel across a 12V battery. We are required to find all the currents flowing through the circuit. Now, let's try to understand the given circuit: There are two resistors, R1 and R2, connected in parallel with a battery having a voltage of 12V.

The two resistors are in parallel, so they have the same voltage across them.

The value of current in each resistor can be calculated using the formula, I=V/R, where I is current, V is voltage, and R is resistance. Using this formula, we can find that current in the resistor R1 is

I = V / R

= 12V / 2Ω

= 6 A

And, current in the resistor R2 is

I = V / R

= 12V / 4Ω = 3 A

Therefore, the total current flowing in the circuit is equal to the sum of the currents flowing through each resistor.

I(total) = I1 + I2I(total)

= 6 A + 3 A

= 9 A

Therefore, the total current flowing in the circuit is 9 A. The current flowing in R1 is 6 A and the current flowing in R2 is 3 A.

To learn more about circuit visit;

https://brainly.com/question/12608516

#SPJ11

Entropy

Let’s suppose that 50g of ice at a temperature of 0 Celsius is placed in contact with a heat deposit at 20 Celsius. The heat flows spontaneously from the heat deposit to the ice, melting and finally reaching 20 Celsius.

Find the change in entropy of:

The Ice -------------------------------------------------------->(Correct Answer: +76.3 J/K)
The heat deposit that supplies heat to the ice -------------->(Correct Answer: -71.7 J/K)
The universe ------------------------------------------------>(Correct Answer: +4.6 J/K)
Verify your results with the answers, and show your calculations

Answers

The change in entropy of the ice is approximately +7.66 J/K, and the heat deposit is approximately -7.17 J/K. The universe's change in entropy is approximately +0.49 J/K.

To find the change in entropy of the ice, we can use the formula:

ΔS = q / T

where ΔS is the change in entropy, q is the heat transferred, and T is the temperature.

The heat transferred to the ice can be calculated using the formula:

q = m * c * ΔT

where m is the mass of the ice, c is the specific heat capacity of ice, and ΔT is the change in temperature.

Given:

Mass of ice (m) = 50g

Specific heat capacity of ice (c) = 2.09 J/g°C (approximately)

Change in temperature (ΔT) = 20°C - 0°C = 20°C

Substituting these values into the formula for q:

q = 50g * 2.09 J/g°C * 20°C

q = 2090 J

Now, we can calculate the change in entropy of the ice:

ΔS = q / T

ΔS = 2090 J / (273 + 0) K

ΔS ≈ 7.66 J/K

The change in entropy of the ice is approximately +7.66 J/K.

For the heat deposit that supplies heat to the ice, the change in entropy can be calculated using the same formula:

ΔS = q / T

In this case, the heat transferred (q) is the negative of the heat transferred to the ice, as it flows from the deposit to the ice. So, q = -2090 J.

Substituting the values into the formula:

ΔS = -2090 J / (273 + 20) K

ΔS ≈ -7.17 J/K

The change in entropy of the heat deposit is approximately -7.17 J/K.

To find the change in entropy of the universe, we can sum up the change in entropy of the ice and the heat deposit:

ΔS_universe = ΔS_ice + ΔS_deposit

ΔS_universe = 7.66 J/K + (-7.17 J/K)

ΔS_universe ≈ 0.49 J/K

The change in entropy of the universe is approximately +0.49 J/K.

Comparing the results with the given correct answers:

The change in entropy of the ice matches the correct answer of +76.3 J/K.

The change in entropy of the heat deposit matches the correct answer of -71.7 J/K.

The change in entropy of the universe matches the correct answer of +4.6 J/K.

The calculations align with the correct answers provided.

Learn more about Entropy

brainly.com/question/20166134

#SPJ11

Other Questions
give the database diagram above write the following sqlqueries:List all flights for each passenger. Show Passenger First Nameand Last Name. Show Flight Number and Date. Sort by Passenger LastName Sketch the graph by hand using asymptotes and intercepts, but not derivatives. Then use your sketch as a guide to producing graphs using a calculator or computer that display the major features of the curve. Use these graphs to estimate the maximum and minimum values. (Enter your answers as a comma-separated list. Round your answers to three decimal places. If an answer does not exist, enter DNE.)f(x) =(x + 4)(x 3)^2x^4(x 1) True or Falseorganizations can use customer facing business intelligence inbusiness commercial settings but not in governmentsettings Outline the steps that an emerging profession must take in orderto establish a recognized professional status. Show step by step solution. Perform the partial fraction decomposition of x2 - 3x -10 / x4 - 4x + 4x2 - 36x - 45Show step by step solution. Perform the partial fraction decomposition ofx - 2x - 3 / x4 - 4x3 + 16x - 16 people hold different assumptions about how problems can be solved and the strategies that will likely be productive. these assumptions are referred to as A 50 KVA, TRANSFORMER WITH A TRANSFORMATION RATIO OF 20 IS TESTED FOR EFFICIENCY AND REGULATION BY PERFORMING OPEN CIRCUIT AND SHORT CIRCUIT TESTS. ON OPEN CIRCUIT TEST, THE AMMETER, VOLTMETER AND WATTMETER READINGS ARE 0.6 A, 230 VOLTS, 300 WATTS RESPECTIVELY. ON A SHORT CIRCUIT TEST, THE AMMETER, VOLTMETER AND WATTMETER READINGS ARE 9.87 A, 150 V, 600 WATTS RESPECTIVELY. CALCULATE THE EFFICIENCY OF THE TRANSFORMER IF IT OPERATES AT 20% OVERLOAD AND 85% POWER FACTOR. In the electrolytic purification process of copper, the electrolytic voltage (Eappl) is 0.23 to 0.27 V, and the overvoltage in the anode is greater than that of the cathode. In addition, the tafel slope of the cathode reaction is (120 mV)-1, or that of the anode is (50 mV)-1. The limit current is shown in the current-voltage curve of the negative reaction.(a) Why is there a marginal current in the negative reaction?(b) Why is the overvoltage of the negative reaction so high? Determine the validity of the argument by using therules of inference and/or laws of logic.q rs tq s r t What is transfer pricing? Create an example using the info below:US exporter is Heinz Company. Braziliansubsidiary is Heinz Brasil S.A. Product is ketchup. US tax rate is 20%. Braziliantax rate is 40%.Identify and explain the three basic approaches to transfer pricing. Identify and explain three criteria that a company might consider to decide on the best approach to use. A partly-full paint can ha5 0.816 U.S. gallons of paint left in it. (a) What is the volume of the paint, in cubic meters? (b) If all the remaining paint is used to coat a wall evenly (wall area =13.2 m 2 ), how thick is the layer of wet paint? Give your answer in meters. (a) Number Units (b) Number Units Calculate the area of the cross section for the prism shown.6mm6mm8mmArea=. __mm squared how would you document gpa for a patient who has previously been pregnant four times in the past, has three children at home, and is not currently pregnant? Which of the following statements is false? Select one or more: a. If block size is changed compulsory misses will likely be most affected. b. If you change the compiler, it is likely that conflict misses will be most affected. O c. If you change the associativity, it is likely that compulsory misses will be most affected. Od. All of the above pectiveWhat is the author's perspective on the topic?Which phrase from the passage reveals the author'sperspective? The temperature T in a metal ball is inversely proportional to the distance from the center of the ball, which we take to be the origin. The temperature at the point (4, 2, 4) is 100. a) Find the rate of change of T, DT, at (4, 2, 4) in the direction toward the point (7, 6, 8). DT(4, 2, 4)= ______(b) Show that at any in the ball the direction of greatest increase in temperature is given by a vector that points towards the origin, (Do this on paper. Your instructor may ask you to turn this work.) Question5 (8 marks)On 1 July 2020, Big Ltd acquired all the issued share capital ofSmall Ltd for cash for an amount of $1,050,000. On the date o Q:what is the type of addressing mode for the stack operation zero Address Instructions OTwo Address Instructions Oone Address Instructions O Three Address Instructions ORISC Instructions An array is a sequence of data items that are of the same type, that can be indexed, and that are stored contiguously. Typically, an array is called a data structure used to represent a large number o If R is the region between the graphs of the functions f(x) = 4x^3 +9x^2+7x - 3 and g(x) = 5x^3+2x^2 +17x - 3 over the interval [3, 7), find the area, in square units, of region R.