David opens a bank account with an initial balance of 1000 dollars. Let b(t) be the balance in the account at time t. Thus b(0)-1000. The bank is paying interest at a continuous rate of 6% per year. David makes deposits into the account at a continuous rate of s(t) dollars per year. Suppose that s (0) 500 and that s(t) is increasing at a continuous rate of 4% per year (David can save more as his income goes up over time)

(a) Set up a linear system of the form

db/dt = m₁₁b + m₁28,
ds/dt = m21b + m228

m11 = 0.06
m12 = 1
m21 = 0
m22 = 0.04

(b) Find b(t) and s(t)
b(t) = _______
s(t) = ________

Answers

Answer 1

b(t) = (500s/0.06) + C₂e^(-0.06t) and s(t) = 500e^(0.04t) represent the balance in the account and the rate of deposits, respectively.

a) The given linear system can be set up as:

db/dt = m₁₁ * b + m₁₂ * s

ds/dt = m₂₁ * b + m₂₂ * s

Substituting the given values, we have:

db/dt = 0.06 * b + 1 * s

ds/dt = 0 * b + 0.04 * s

b(t) represents the balance in the account at time t, and s(t) represents the rate at which David makes deposits into the account.

b) To solve the linear system, we can start by solving the second equation ds/dt = 0.04s, which is a separable differential equation. Separating variables and integrating, we get:

∫ (1/s) ds = ∫ 0.04 dt

ln|s| = 0.04t + C₁

Taking the exponential of both sides, we have:

|s| = e^(0.04t + C₁)

Since s(t) represents the rate of deposits, it cannot be negative. Therefore, we can simplify the equation to:

s(t) = Ce^(0.04t)

Next, we substitute this expression for s(t) into the first equation:

db/dt = 0.06b + Cs *

This is a linear first-order ordinary differential equation. We can solve it using an integrating factor. The integrating factor is given by e^(∫ 0.06 dt) = e^(0.06t) = IF.

Multiplying the entire equation by the integrating factor, we get:

e^(0.06t) * db/dt - 0.06e^(0.06t) * b = Cse^(0.06t)

Applying the product rule, we can rewrite the left-hand side as:

(d/dt)(e^(0.06t) * b) = Cse^(0.06t)

Integrating both sides with respect to t:

∫ (d/dt)(e^(0.06t) * b) dt = ∫ Cse^(0.06t) dt

e^(0.06t) * b = Cs/0.06 * e^(0.06t) + C₂

Simplifying, we have:

b(t) = (Cs/0.06) + C₂e^(-0.06t)

We can find the specific values of C and C₂ using the initial conditions: b(0) = 1000 and s(0) = 500.

b(0) = (C * 500/0.06) + C₂

1000 = 8333.33C + C₂

s(0) = Ce^(0.04 * 0)

500 = Ce^(0)

C = 500

Substituting C = 500 into the equation for b(t):

b(t) = (500s/0.06) + C₂e^(-0.06t)

In summary, b(t) = (500s/0.06) + C₂e^(-0.06t) and s(t) = 500e^(0.04t) represent the balance in the account and the rate of deposits, respectively. The constant C₂ can be determined using the initial condition b(0) = 1000.

Learn more about differential equation here:

https://brainly.com/question/32538700

#SPJ11


Related Questions

Consider the function x(t) = sinc (t/2)
a. Draw the signal by hand in time for -10 < t < 10 sec.
b. Derive X(f) and draw it by hand for -3 C. Generate Matlab figures representing the functions x(t),x(f) within the same ranges of time and frequency. Explore different values of At and N to obtain a good match with your hand drawings.
d. Identify and discuss the discrepancies between your hand drawn signals and their representation in Matlab.

Answers

When comparing the hand-drawn signals with their MATLAB representation, discrepancies may arise due to factors such as inaccuracies in hand-drawn sketches, limitations of the human eye in capturing fine details, and the discretization and numerical approximations introduced during the plotting process in MATLAB.

To complete the task, first, the signal x(t) = sinc(t/2) needs to be hand-drawn in the time domain for -10 < t < 10 seconds. Then, the Fourier transform of x(t), X(f), needs to be derived and hand-drawn in the frequency domain for -3 < f < 3 Hz. MATLAB can be used to generate figures representing x(t) and x(f) within the same ranges of time and frequency. It is important to experiment with different values of At (time scale factor) and N (number of samples) to obtain a good match with the hand-drawn signals. When comparing the hand-drawn signals with their MATLAB representation, discrepancies may arise due to factors such as inaccuracies in hand-drawn sketches, limitations of the human eye in capturing fine details, and the discretization and numerical approximations introduced during the plotting process in MATLAB. Differences in scale, resolution, and precision between hand-drawn and MATLAB-generated plots can also contribute to the observed discrepancies. It is important to carefully analyze and interpret the differences, considering the limitations of both the hand-drawn and MATLAB representations.

learn more about MATLAB here: brainly.com/question/30763780

#SPJ11

Find a confidence interval for op a) pts) A random sample of 17 adults participated in a four-month weight loss program. Their mean weight loss was 13.1 lbs, with a standard deviation of 2.2 lbs. Use this sample data to construct a 98% confidence interval for the population mean weight loss for all adults using this four-month program. You may assume the parent population is normally distributed. Round to one decimal place.

Answers

The formula for calculating the confidence interval of population mean is given as:

\bar{x} \pm Z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}

Where, \bar{x} is the sample mean, σ is the population standard deviation (if known), and n is the sample size.Z-score:

A z-score is the number of standard deviations from the mean of a data set. We can find the Z-score using the formula:

Z=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}

Here, n = 17, sample mean \bar{x}= 13.1, standard deviation = 2.2. We need to calculate the 98% confidence interval, so the confidence level α = 0.98Now, we need to find the z-score corresponding to \frac{\alpha}{2} = \frac{0.98}{2} = 0.49 from the z-table as shown below:

Z tableFinding z-score for 0.49, we can read the value of 2.33. Using the values obtained, we can calculate the confidence interval as follows:

\begin{aligned}\text{Confidence interval}&=\bar{x} \pm Z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}\\&=13.1\pm 2.33\times \frac{2.2}{\sqrt{17}}\\&=(11.2, 15.0)\\&=(11.2, 15.0) \text{ lbs} \end{aligned}

Hence he 98% confidence interval for the population mean weight loss for all adults using this four-month program is (11.2, 15.0) lbs.

To know more about confidence interval visit:

brainly.com/question/32278466

#SPJ11

Show that the equation
x4+4y 4= z2 x # 0, y # 0, z #0
has no solutions. It may be helpful to reduce this to the case that x > 0 y > 0, z > 0, (x,y) = 1, and then by dividing by 4 (if necessary) to further reduce this to where x is odd.

Answers

There are no solutions to the equation x4 + 4y4 = z2 with x > 0, y > 0, z > 0, (x,y) = 1, and x odd since, we have a4 + b4 = z/2, which contradicts the assumption that (x,y,z) is a solution with (x,y) = 1.

First, we need to show that if there is a solution to the equation above, then there must exist a solution with x > 0, y > 0, z > 0, (x,y) = 1. To see why this is true, suppose there is a solution (x,y,z) to the equation such that x ≤ 0, y ≤ 0, or z ≤ 0. Then, we can negate any negative variable to get a solution with all positive variables. If (x,y) ≠ 1, we can divide out the gcd of x and y to obtain a solution (x',y',z) with (x',y') = 1.

We can repeat this process until we obtain a solution with x > 0, y > 0, z > 0, (x,y) = 1.Next, we need to show that if there is a solution to the equation above with x > 0, y > 0, z > 0, (x,y) = 1, then there must exist a solution with x odd. To see why this is true, suppose there is a solution (x,y,z) to the equation such that x is even. Then, we can divide both sides of the equation by 4 to obtain the equation (x/2)4 + y4 = (z/2)2, which contradicts the assumption that (x,y,z) is a solution with (x,y) = 1. Thus, if there is a solution with (x,y,z) as described above, then x must be odd. Now, we will use Fermat's method of infinite descent to show that there are no solutions with x odd.

Suppose there is a solution (x,y,z) to the equation x4 + 4y4 = z2 with x odd. Then, we can write the equation as z2 - x4 = 4y4, or equivalently,(z - x2)(z + x2) = 4y4.Since (z - x2) and (z + x2) are both even (since x is odd), we can write them as 2u and 2v for some u and v. Then, we have uv = y4 and u + v = z/2. Since (x,y,z) is a solution with (x,y) = 1, we must have (u,v) = 1. Thus, both u and v must be perfect fourth powers, say u = a4 and v = b4. Then, we have a4 + b4 = z/2, which contradicts the assumption that (x,y,z) is a solution with (x,y) = 1. Therefore, there are no solutions to the equation x4 + 4y4 = z2 with x > 0, y > 0, z > 0, (x,y) = 1, and x odd.

More on equations: https://brainly.com/question/29657983

#SPJ11

3. (Hammack §14.3 #9, adapted) (a) Suppose A and B are finite sets with |A| = |B|. Prove that any injective function ƒ : A → B must also be surjective. (b) Show, by example, that there are infinite sets A and B and an injective function ƒ : A → B that is not surjective. That is, part (a) is not true if A and B are infinite.

Answers

Part (a) states that for finite sets A and B with the same cardinality, any injective function from A to B must also be surjective. However, in part (b), we can find examples of infinite sets A and B along with an injective function from A to B that is not surjective.

In part (a), we consider finite sets A and B with the same cardinality. Since the function ƒ is injective, it means that each element in A is mapped to a unique element in B. Since both A and B have the same number of elements, and each element in A is assigned to a distinct element in B, there cannot be any elements in B left unassigned. Therefore, every element in B has a corresponding element in A, and the function ƒ is surjective.

However, in part (b), we can find examples of infinite sets A and B where an injective function from A to B is not surjective. For instance, let A be the set of natural numbers (1, 2, 3, ...) and B be the set of even natural numbers (2, 4, 6, ...). We can define a function ƒ from A to B such that ƒ(n) = 2n. This function is injective since each natural number n is mapped to a unique even number 2n. However, since B consists only of even numbers, there are elements in B that do not have a preimage in A. Therefore, the function ƒ is not surjective.

In conclusion, part (a) holds true for finite sets, where an injective function from A to B must also be surjective. However, part (b) demonstrates that this statement does not hold for infinite sets, as there can exist injective functions from A to B that are not surjective.

Learn more about finite sets here: brainly.com/question/29262394

#SPJ11

.In Week 3, Anna sold 72 chocolate fudge bars Anna claims that because 75% of the frozen t chocolate fudge bars, the chocolate fudge bar profit. Is Anna correct? Justify your response with all explanations necessary to support your answe

Answers

Anna sold 72 chocolate fudge bars, 75% of which were frozen, resulting in a profit of 72. To determine the number of frozen bars, we need to subtract the number of bars that were not frozen.

To do that, we can multiply 72 by 0.75, which gives us 54. So, Anna sold 54 frozen chocolate fudge bars. The question now is whether or not the chocolate fudge bar profit is linked to the frozen chocolate fudge bars. Anna’s claim may be correct or incorrect depending on the percentage of profit on each type of chocolate fudge bar. If the profit on each type is the same, then the percentage of profit would be the same for all types. Therefore, Anna would be incorrect. If the profit on the frozen chocolate fudge bars is higher than the profit on the other types, then Anna may be correct. Anna's claim that the chocolate fudge bar profit is due to 75% of the frozen chocolate fudge bars is not entirely accurate. To determine if Anna is correct, we need to know the percentage of profit on each type of chocolate fudge bar. If the profit on each type is the same, then Anna is incorrect. If the profit on the frozen chocolate fudge bars is higher than the profit on the other types, then Anna may be correct.

Learn more about percentage of profit visit:

brainly.com/question/30938251

#SPJ11




Find the volume generated when the area bounded by y=√√x and y=-x is rotated around the x-axis 2

Answers

The volume generated when the area bounded by y = √√x and y = -x is rotated around the x-axis is -7π/5.

To find the volume generated when the area bounded by the curves y = √√x and y = -x is rotated around the x-axis, we can use the method of cylindrical shells.

First, let's find the points of intersection between the curves:

√√x = -x

Squaring both sides:

√x = x²

x = x⁴

x⁴ - x = 0

x(x³ - 1) = 0

x = 0 (extraneous solution) or x = 1

So the curves intersect at x = 1.

To set up the integral for the volume, we need to express the curves in terms of y.

For y = √√x, squaring both sides twice:

y² = √x

y⁴ = x

So, for the region bounded by the curves, the limits of integration for y are -1 to 0 (from y = -x to y = √√x).

The radius of the cylindrical shell at height y is given by the difference between the x-values of the curves at that height:

r = √√x - (-x) = √√x + x

The height of the cylindrical shell is given by dy.

Therefore, the volume element of each cylindrical shell is dV = 2πrh dy = 2π(√√x + x)dy.

To find the total volume, we integrate this expression from y = -1 to 0:

V = ∫[from -1 to 0] 2π(√√x + x)dy

Since we expressed the curves in terms of y, we need to convert the limits of integration from y to x:

x = y⁴

So the integral becomes:

V = ∫[from 1 to 0] 2π(√√(y⁴) + y⁴) dy

V = 2π ∫[from 1 to 0] (√y² + y⁴) dy

V = 2π ∫[from 1 to 0] (y + y⁴) dy

V = 2π [ (1/2)y² + (1/5)y⁵ ] [from 1 to 0]

V = 2π [ (1/2)(0)² + (1/5)(0)⁵ - (1/2)(1)² - (1/5)(1)⁵ ]

V = 2π [ -(1/2) - (1/5) ]

V = -π(7/5)

Therefore, the volume generated when the area bounded by y = √√x and y = -x is rotated around the x-axis is -7π/5.

Visit here to learn more about volume brainly.com/question/28058531
#SPJ11

True or False Given the integral
∫ (2x)(x²)² dx
if using the substitution rule
u = (x²)²
O True O False

Answers

The correct statement is: False. The integral ∫ (2x)(x²)² dx, using the substitution u = (x²)²

How to find  if the given statement is true or false

To determine if the given statement is true or false, we need to apply the substitution rule correctly.

If we use the substitution u = (x²)²,

then we can differentiate u with respect to x to obtain

du/dx = 2x(x²),

which matches the integrand in the given integral.

hence, we can substitute u = (x²)² and rewrite the integral in terms of u.

Learn more about substitution rule at

https://brainly.com/question/30130371

#SPJ4

Evaluate: (√2 (cos 20+ i sin 2020. Express in standard form.

Answers

Given that we need to evaluate the given expression `√2(cos20+isin2020)` and express the result in standard form, we get `e2i20°`.

We can solve the above problem in the following manner; First, we can simplify the given expression by using the identity cosθ+i sinθ=eiθ

Thus, `√2(cos20+isin2020)=√2ei(20°)`

Now, we can convert the given expression in standard form. We can do that by multiplying the numerator and the denominator by the conjugate of the denominator, which is

√2ei(-20°).`(√2ei(20°) )/( √2ei(-20°) ) = (√2ei(20°) * √2ei(20°)) / ( √2 * √2ei(-20°))= 2 * e2i20°/2= e2i20°

The final answer is `e2i20°` which is in standard form since it is in the form of `a+bi` where a and b are real numbers.

More on standard form: https://brainly.com/question/17264364

#SPJ11

a. high nikitov swings a stone in a 5-meter long sling at a rate of 2 revolutions per second. find the angular and linear velocities of the stone.

Answers

The angular velocity of the stone is 12.56 rad/s and the linear velocity of the stone is 31.4 m/s.

Given,The length of the sling = 5m.

Number of revolutions per second = 2 rev/s

The angular velocity formula is given as:

Angular velocity,

w = 2πf

where

f = frequency of rotation,

π = 3.14

The frequency of rotation is given as 2 rev/s.

So, the angular velocity is calculated as:

w = 2πf= 2 × 3.14 × 2= 12.56 rad/s.

The formula for linear velocity is given as:

Linear velocity,

v = rw,

Where

r = radius and w = angular velocity.

The radius of the sling,

r = 5/2= 2.5 m.

Substitute the values in the formula,We get,

v = rw= 2.5 × 12.56= 31.4 m/s.

Therefore, the angular velocity of the stone is 12.56 rad/s and the linear velocity of the stone is 31.4 m/s.

To know more about angular velocity visit:

https://brainly.com/question/32217742

#SPJ11




Given that 12 f(x) = x¹²h(x) h( − 1) = 5 h'( − 1) = 8 Calculate f'( − 1).

Answers

The value of f'(-1) is -13/3. To calculate f'(-1), we need to find the derivative of the function f(x) and then substitute x = -1 into the derivative.

The given information states that 12f(x) = x^12 * h(x), where h(x) is another function. Taking the derivative of both sides of the equation with respect to x, we have: 12f'(x) = 12x^11 * h(x) + x^12 * h'(x). Now, let's substitute x = -1 into the equation to find f'(-1): 12f'(-1) = 12(-1)^11 * h(-1) + (-1)^12 * h'(-1). Since h(-1) is given as 5 and h'(-1) is given as 8, we can substitute these values: 12f'(-1) = 12(-1)^11 * 5 + (-1)^12 * 8.

Simplifying further: 12f'(-1) = -12 * 5 + 1 * 8. 12f'(-1) = -60 + 8. 12f'(-1) = -52. Finally, divide both sides by 12 to solve for f'(-1): f'(-1) = -52/12. Therefore, the value of f'(-1) is -13/3.

To learn more about derivative, click here: brainly.com/question/2159625

#SPJ11

To compare two programs for training industrial workers to perform la skilled job, 10 workers are included in an experiment. All 10 workers were trained by both programs; 5 were trained by method 1 first and then method 2, the other 5 were trained by method 2 first and then method 1. After completion of each training, all the workers are subjected to a time-and-motion test that records the speed of performance of a skilled job. The following data are obtained. Can you conclude from the data that the mean job time is significantly less after training with method 1 than after training with method 2?

Answers

The data suggests that training with method 1 leads to a significantly lower mean job time compared to training with method 2.

Is there a significant difference in mean job time between training with method 1 and method 2?

The data suggests that training with method 1 leads to a significantly lower mean job time compared to training with method 2.

Based on the data obtained from the experiment, where 10 workers were trained using both programs, it is possible to draw conclusions about the effectiveness of the training methods. The experiment employed a crossover design, where 5 workers were trained with method 1 first and then method 2, while the other 5 workers were trained with method 2 first and then method 1. After each training, the workers underwent a time-and-motion test to measure the speed of their performance in a skilled job.

The analysis of the data indicates that the mean job time is significantly lower after training with method 1 compared to method 2. This conclusion can be drawn by conducting appropriate statistical tests, such as a paired t-test or a repeated measures analysis of variance (ANOVA), to assess the significance of the observed differences in mean job time between the two training methods.

To further validate the findings and ensure the reliability of the conclusion, it is important to consider factors such as the specific nature of the skilled job being performed, the qualifications and prior experience of the workers, and the potential limitations of the experiment. These factors could influence the generalizability of the results to other contexts or populations.

Furthermore, it is crucial to evaluate the training methods themselves, including their content, delivery format, and duration, to identify potential reasons for the observed differences in mean job time. Understanding the specific aspects of method 1 that contribute to its effectiveness can provide valuable insights for optimizing industrial worker training programs and improving overall productivity.

In summary, the data from the experiment suggest that training with method 1 leads to a significantly lower mean job time compared to training with method 2. However, further research and analysis are necessary to confirm these findings, consider relevant factors, and gain a comprehensive understanding of the underlying mechanisms driving the observed results.

Learn more about training

brainly.com/question/30247890

#SPJ11

Evaluate the area of the closed and bounded region enclosed by the following three curves :
y = √x ;y = √2x-1 and y = 0.

Answers

The area enclosed by the curves to be 2/3 square units.

Setting the first two curves equal to each other, we have:

√x = √(2x-1)

Squaring both sides and simplifying, we get:

x = 2x - 1

Solving for x, we find:

x = 1

Substituting x = 1 into the curves, we get the points of intersection as (1, 1) and (1, 0).

To find the area, we integrate the difference between the upper curve and the lower curve with respect to x over the interval [0, 1]:

Area = ∫[0, 1] (√x - √(2x-1)) dx

Evaluating this integral gives the area as the difference between the antiderivatives at the limits of integration:

Area = [2/3x^(3/2) - (2/3(2x-1)^(3/2))] [0, 1]

For more information on area under curve visit: brainly.com/question/25311104

#SPJ11

What is the annihilator of y=10-x+4sin 3x?

Answers

The annihilator of the function y = 10 - x + 4sin(3x) is a differential operator that when applied to the function yields zero. In other words, it is a derivative operator that eliminates the given function when applied.

To find the annihilator, we can start by identifying the highest order derivative in the function. In this case, the highest order derivative is the second derivative, which is d²y/dx².

Since the annihilator eliminates the function, applying the second derivative operator to the function should yield zero. Differentiating the given function twice with respect to x, we get:

d²y/dx² = d²(10 - x + 4sin(3x))/dx²

Taking the derivatives, we obtain:

d²y/dx² = -6cos(3x)

Now, setting -6cos(3x) equal to zero, we find the values of x for which the annihilator of the function is satisfied. Solving -6cos(3x) = 0, we get:

cos(3x) = 0

The solutions for this equation occur when 3x is equal to odd multiples of pi/2. Therefore, x can take the values of pi/6, pi/2, 5pi/6, and so on. These are the values that make the annihilator of the function y = 10 - x + 4sin(3x) equal to zero.

Learn more about derivative here: https://brainly.com/question/29144258

#SPJ11

Determine whether the statement is true or false. True False
If f'(x) > 0 for 4 < x < 8, then fis increasing on (4, 8).
O True
O False

Answers

The statement is true.We need to identify that the f(x) is increasing for a certain intrerval.

If the derivative of a function f(x) is positive for a certain interval, it means that the function is increasing on that interval. In this case, if f'(x) > 0 for 4 < x < 8, it indicates that the derivative of the function is positive within the interval (4, 8). Since the derivative represents the rate of change of the function, a positive derivative implies that the function is increasing. Therefore, based on the given condition, we can conclude that the f(x) is increasing on the interval (4, 8).

To learn more about intrerval click here : brainly.com/question/29148409

#SPJ11

Determine all solutions for the equation 4 sin 2x = sin x where 0≤x≤ 2n Include all parts of a complete solution using the methods taught in class (diagrams etc.)

Answers

The solutions for the equation 4 sin(2x) = sin(x) are x ≈ 0.4596π, π and 1.539π

How to determine all solutions for the equation

From the question, we have the following parameters that can be used in our computation:

4 sin(2x) = sin(x)

Expand sin(2x)

So, we have

4 * 2sin(x)cos(x) = sin(x)

Evaluate the products

8sin(x)cos(x) = sin(x)

Divide both sides by sin(x)

This gives

8cos(x) = 1 and sin(x) = 0

Divide both sides by 8

cos(x) = 1/8 and sin(x) = 0

Take the arc cos & arc sin of both sides

x = cos⁻¹(1/8) and x = sin⁻¹(0)

Using the interval 0 < x < 2π, we have

x ≈ 0.4596 π, π and 1.539 π

Hence, the solutions for the equation are x ≈ 0.4596π, π and 1.539π

The graph is attached

Read more about trigonometry ratio at

https://brainly.com/question/17155803

#SPJ4

After Doreen puts $80,000 in the Bank and makes no other deposits
or withdrawals, if the bank promises 5.4% interest, how much is in
the account (to the nearest cent) after 24 years?

Answers

The answer based on the compound interest is the amount in the account after 24 years, to the nearest cent is $251,449.95.

The formula for compound interest is [tex]A = P(1 + \frac{r}{n} )^{nt}[/tex],

where: A = the final amount, P = the principal, r = the annual interest rate (as a decimal),n = the number of times the interest is compounded per year, t = the number of years.

For the given problem, the principal (P) is $80,000, the annual interest rate (r) is 5.4% or 0.054 in decimal form, the number of times the interest is compounded per year (n) is 1 (annually), and the number of years (t) is 24.

Substituting these values into the formula,

A = 80000[tex](1 + 0.054/1)^{(1*24)}[/tex] = 80,000(1.054)²⁴ = $251,449.95 (rounded to the nearest cent).

Therefore, the amount in the account after 24 years, to the nearest cent is $251,449.95.

To know more about Compound interest visit:

https://brainly.com/question/29639856

#SPJ11

The accompanying table lists overhead widths​ (cm) of seals measured from photographs and the weights​ (kg) of the seals. Find the​ (a) explained​ variation, (b) unexplained​ variation, and​ (c) prediction interval for an overhead width of 9.2 cm using a ​99% confidence level. There is sufficient evidence to support a claim of a linear​ correlation, so it is reasonable to use the regression equation when making predictions.
Overhead Width: 7.3, 7.5, 9.9, 9.4, 8.8, 8.4
Weight: 113, 154, 240, 205, 202, 192

Answers

The prediction interval is (140.50, 293.68) at a 99% confidence level for an overhead width of 9.2 cm.

The accompanying table lists the overhead widths (cm) of seals measured from photographs and the weights (kg) of the seals.

Find the (a) explained variation, (b) unexplained variation, and (c) prediction interval for an overhead width of 9.2 cm using a 99% confidence level.

There is sufficient evidence to support a claim of a linear correlation, so it is reasonable to use the regression equation when making predictions

Overhead Width: 7.3, 7.5, 9.9, 9.4, 8.8, 8.4

Weight: 113, 154, 240, 205, 202, 192Solution:

(a) Explained variation: [tex]R^2 = \frac{SSR}{SST}[/tex]

Where, SSR is the explained variation, and SST is the total variation, SST [tex]= \sum\limits_{i=1}^n(y_i - \bar{y})^2= (113-193.67)^2 + (154-193.67)^2 + (240-193.67)^2 + (205-193.67)^2 + (202-193.67)^2 + (192-193.67)^2= 12048.1[/tex]

Now, we will find the value of SSR.

For that, first, we need to find the regression equation and fit the line:

y = a + bx

where, y = Weight, x = Overhead Width.

[tex]b = \frac{n\sum\limits_{i=1}^n(x_iy_i) - \sum\limits_{i=1}^n x_i \sum\limits_{i=1}^n y_i}{n\sum\limits_{i=1}^n x_i^2 - \left(\sum\limits_{i=1}^n x_i\right)^2}[/tex]

[tex]= \frac{6(7.3 \cdot 113 + 7.5 \cdot 154 + 9.9 \cdot 240 + 9.4 \cdot 205 + 8.8 \cdot 202 + 8.4 \cdot 192) - (7.3 + 7.5 + 9.9 + 9.4 + 8.8 + 8.4)(113 + 154 + 240 + 205 + 202 + 192)}{6(7.3^2 + 7.5^2 + 9.9^2 + 9.4^2 + 8.8^2 + 8.4^2) - (7.3 + 7.5 + 9.9 + 9.4 + 8.8 + 8.4)^2}[/tex]

[tex]= 17.496and, a = \bar{y} - b \bar{x}[/tex]

[tex]= 193.67 - 17.496(8.066666666666666)= 53.62[/tex]

Hence, the regression equation is:

\boxed{y = 53.62 + 17.496x}

We will calculate SSR using the regression equation:

[tex]SSR = \sum\limits_{i=1}^n(\hat{y_i} - \bar{y})^2= \sum\limits_{i=1}^n(a+bx_i - \bar{y})^2= \sum\limits_{i=1}^n(53.62+17.496x_i - 193.67)^2= 11050.21[/tex]

Therefore,

[tex]R^2 = \frac{SSR}{SST}= \frac{11050.21}{12048.1}= 0.915[/tex]

Hence, the explained variation is 0.915.(b) Unexplained variation:[tex]SSE = SST - SSR$$$$= 12048.1 - 11050.21 = 997.89[/tex]

Therefore, the unexplained variation is 997.89.

(c) Prediction Interval:

\text{Prediction Interval} = \text{point estimate} \pm t^* \times s_e

where, point estimate = \hat{y} = 53.62 + 17.496(9.2) = 217.09, t* = t-distribution value with (n-2) degrees of freedom and a 99% confidence level.

We have n = 6, so n-2 = 4, t* = 4.60409 (Using a t-distribution table), and $$s_e = \sqrt{\frac{SSE}{n-2}}= \sqrt{\frac{997.89}{4}}= 15.78

Therefore, the prediction interval is:

\boxed{217.09 \pm 4.60409(15.78)\boxed{\implies (140.50, 293.68)}

Hence, the prediction interval is (140.50, 293.68) at a 99% confidence level for an overhead width of 9.2 cm.

Know more about 99% confidence level here:

https://brainly.com/question/17097944

#SPJ11

the length of a rectangle is 2 cm greater than the width. the area is 80 cm^2. find the length and width

Answers

The width is 8 cm and the length is 10 cm. Given that the length of a rectangle is 2 cm greater than the width and the area is 80 cm². We are to find the length and width.

The area of a rectangle is given as: A = l × w and the length is 2 cm greater than the width. l = w + 2 cm.

We are given that the area is 80 cm².

A = l × w₈₀

= (w + 2) × w₈₀

= w² + 2w.

Rearrange the terms to form a quadratic equation

w² + 2w - 80 = 0

We need to solve this quadratic equation using the formula as shown below: x = (-b ± sqrt(b² - 4ac))/(2a), Where a = 1, b = 2 and c = -80.

Substituting these values in the formula above:

x = (-2 ± √(2² - 4(1)(-80)))/2(1)x

= (-2 ± √(4 + 320))/2x

= (-2 ± √(324))/2.

We can simplify this expression by taking the square root of 324 which gives us:

x = (-2 ± 18)/2x₁

= (-2 + 18)/2

= 8 cm (Width)x₂

= (-2 - 18)/2

= -10 cm (Not possible as width cannot be negative).

Therefore, the length is:

l = w + 2 = 8 + 2

= 10 cm.

Therefore, the width is 8 cm and the length is 10 cm.

To know more about rectangle, refer

https://brainly.com/question/2607596

#SPJ11







Find the general solutions to the following difference and differential equations. (3.1) Un+1 = Un +7 (3.2) Un+1 = un-8, u = 2 (3.3) d = 3tP5 - p5 dP dt (3.4) d=3-P+ 3t - Pt dt

Answers

Given difference equations are:Un+1 = Un +7 …… (3.1)

Un+1 = un-8, u = 2 ….. (3.2)

The given differential equations are:d/dt (3tP5 - p5 dP/dt) ….. (3.3)

d/dt (3-P+ 3t - Pt) ….. (3.4)

Solution to difference equation Un+1 = Un +7 …… (3.1)

The given difference equation is a linear homogeneous difference equation.

Therefore, its general solution is of the form:

Un = A(1)n + B

Where, A and B are constants and can be determined from the initial values.

Solution to difference equation Un+1 = un-8, u = 2 ….. (3.2)

The given difference equation is a linear non-homogeneous difference equation with constant coefficients.

Therefore, its general solution is of the form:

Un = An + Bn + C

Where, A, B, and C are constants and can be determined from the initial values.

Solution to differential equation d/dt (3tP5 - p5 dP/dt) ….. (3.3)

The given differential equation is a first-order linear differential equation.

Its solution can be obtained by integrating both sides as follows:

d/dt (3tP5 - p5 dP/dt) = 3tP5 - p5 dP/dt = 0

Integrating both sides w.r.t. t, we get:

∫(3tP5 - p5 dP/dt) dt = ∫0 dt3/2 (t2P5) - p5P = t3/2/ (3/2) - t + C

Again integrating both sides, we get:

P = (2/5) t5/2 - (2/3) t3/2 + Ct + K

Where C and K are constants of integration.

Solution to differential equation d/dt (3-P+ 3t - Pt) ….. (3.4)

The given differential equation is a first-order linear differential equation.

Its solution can be obtained by integrating both sides as follows:

d/dt (3-P+ 3t - Pt) = 3 - P - P + 3

Integrating both sides w.r.t. t, we get:

∫(3-P+ 3t - Pt) dt = ∫3 dt - ∫P dt - ∫P dt + ∫3t dt

= 3t - (1/2) P2 - (1/2) P2 + (3/2) t2 + C1

Again integrating both sides, we get:

P = -t2 + 3t - 2C1/2 + K

Where C1 and K are constants of integration.

To learn more please click on the link below

https://brainly.com/question/29073472

#SPJ11

Write a function in R. that generates a sample of size n from a continuous distribution with a given cumulative distribution function (cdf) Fx (x; 0) where 0 = (μ, o, k) or 0 = (w, k) is a vector of parameters with k > 0, σ > 0,µ € R and 0 < w < 1. Use this function to generate a sample of size n = 100 with given parameter values. Draw a histogram for the generated data. Write a function that finds the maximum likelihood estimates of the distribution parameters for the generated data ₁,...,100. Provide estimates of (u, o, k) or (w, k) in your report.

Answers

This will give you the MLE estimates for the distribution parameters based on the generated sample. The estimated parameters  are stored in weibull_params, while estimated parameters for the Pareto distribution are stored in pareto_params.

Here's an example of a function in R that generates a sample of size n from a continuous distribution with a given cumulative distribution function (cdf):

# Function to generate a sample from a given cumulative distribution function (cdf)

generate_sample <- function(n, parameters) {

 u <- parameters$u

 o <- parameters$o

 k <- parameters$k

 w <- parameters$w

 # Generate random numbers from a uniform distribution

 u_samples <- runif(n)

 if (!is.null(u) && !is.null(o) && !is.null(k)) {

   # Generate sample using the parameters (μ, σ, k)

   x <- qweibull(u_samples, shape = k, scale = o) + u

   # Generate sample using the parameters (w, k)

   x <- qpareto(u_samples, shape = k, scale = 1/w)

 } else {

   stop("Invalid parameter values.")

 }

# Generate a sample of size n = 100 with the given parameter values

parameters <- list(u = 1, o = 2, k = 3)  # Example parameter values (μ, σ, k)

sample <- generate_sample(n = 100, parameters)

# Draw a histogram of the generated data

hist(sample, breaks = "FD", main = "Histogram of Generated Data")

# Function to find the maximum likelihood estimates of the distribution parameters

find_mle <- function(data) {

 # Define the log-likelihood function

 log_likelihood <- function(parameters) {

   u <- parameters$u

   o <- parameters$o

   k <- parameters$k

   w <- parameters$w

     # Calculate the log-likelihood for the parameters (μ, σ, k)

     log_likelihood <- sum(dweibull(data - u, shape = k, scale = o, log = TRUE))

     # Calculate the log-likelihood for the parameters (w, k)

     log_likelihood <- sum(dpareto(data, shape = k, scale = 1/w, log = TRUE))

   } else {

     stop("Invalid parameter values.")

   }

   return(-log_likelihood)  # Return negative log-likelihood for maximization

 }

 # Find the maximum likelihood estimates using optimization

 mle <- optim(parameters, log_likelihood)

 return(mle$par)

}

# Find the maximum likelihood estimates of the distribution parameters

mle <- find_mle(sample)

Make sure to replace the example parameter values (μ, σ, k) with your actual parameter values or (w, k) if you're using the Pareto distribution. You can adjust the number of samples n as per your requirement.

This code generates a sample from the specified distribution using the given parameters. It then plots a histogram of the generated data and finds the maximum likelihood estimates of the distribution parameters using the generated sample. Finally, it prints the estimated parameters (μ, σ, k) or (w, k) in the output.

Learn more about pareto distribution here:

https://brainly.com/question/30906388

#SPJ11

Find the maximum value of the objective function z= 11x + 3y, subject to the following constraints. (See Example 2.)
5x + y ≤ 35
3x + y ≤ 27
x > 0, y > 0

The maximum value is z = ____ at (x, y) =

Answers

Subject to the constraints

5x + y ≤ 353x + y ≤ 27x > 0, y > 0

The maximum value of the objective function is z = 143 at (x, y) = (3, 26)

The given problem can be solved by graphing the feasible region (the region satisfying the given constraints) and then finding the maximum value of the objective function within that region.

We follow the below steps to solve the problem:

1: Rewrite the given constraints as inequalities in slope-intercept form: 5x + y ≤ 35 => y ≤ -5x + 35 3x + y ≤ 27 => y ≤ -3x + 27S

2: Graph the lines y = -5x + 35 and y = -3x + 27 to find the feasible region. Shade the region that satisfies all the constraints as shown below.

3: Now we need to find the coordinates of the vertices of the feasible region. The vertices are the points where the feasible region meets. From Figure 1, we see that the vertices are (0, 27), (3, 26), and (7, 0).

We evaluate the objective function at each vertex. Vertex (0, 27):

z = 11x + 3y = 11(0) + 3(27) = 81

Vertex (3, 26): z = 11x + 3y = 11(3) + 3(26) = 143

Vertex (7, 0): z = 11x + 3y = 11(7) + 3(0) = 77 S

4: Finally, we conclude that the maximum value of the objective function is z = 143 at (x, y) = (3, 26).

Learn more about the objective function at:

https://brainly.com/question/32621457

#SPJ11

if d/dx(f(x))=g(x) and d/dx(g(x))=f(x^2) then dy^2/dx^2(f(x^3))

Answers

The second derivative of f(x³) with respect to x is 3xf''(x³) + 6x²f'(x³).

What is the expression for the second derivative of f(x^3) with respect to x?

To find the second derivative of f(x³) with respect to x, we can apply the chain rule twice. Let's denote y = f(x³). Using the chain rule, we have:

dy/dx = d(f(x³))/d(x³) * d(x³)/dx

The first term on the right side is simply f'(x³), and the second term is 3x^2. Now, let's differentiate dy/dx with respect to x:

d²y/dx² = d(dy/dx)/dx = d(f'(x³) * 3x²)/dx

Applying the product rule and simplifying, we get:

d²y/dx² = f''(x³) * (3x²) + f'(x³) * (6x)

Substituting y = f(x^3) back in, we obtain:

d²y/dx² = 3xf''(x³) + 6x²f'(x³)

This is the expression for the second derivative of f(x^3) with respect to x.

Learn more about second derivative

brainly.com/question/29005833

#SPJ11

Answer: d^2/dx^2 = 6x g(x^3) + 6x^4 f(x^3)

Step-by-step explanation:


First find the first derivative using chain rule:

d/dx (f(x^3))= g(x^3) * 3x^2

Next find the second derivative using the chain rule and product rule based on the first derivative :

d/dx (g(x^3)*3x^2) = 6x g(x^3) + (g’(x^3)*2x^2)*3x^2


which simplifies to


6x g(x^3) + 6x^4 f(x^6)


: In a recent year, 8.920,623 male students and 1,925,243 female students were enrolled as undergraduates. Receiving and were 62.8% of the male students and 66.8% of the femate students. Of those receiving ald, 44.9% of the mates get federal aid and 51.6% of the females got federal aid. Choose 1 student at random. (Hint: Make a tree diagram.) Pind the probability of selecting a student from the following. Carry your intermediate computations to at least 4 decimal places. Round the final answers to 3 decimal places. Part: 0/3 Part 1 of 3 A female student without ad Plemale without sid) -

Answers

The probability of selecting a female student without aid is obtained by subtracting the probability of selecting a female student with aid from 1.

To find the probability of selecting a female student without aid, we can use the following information:

Total male students: 8,920,623

Total female students: 1,925,243

Percentage of male students receiving aid: 62.8%

Percentage of female students receiving aid: 66.8%

Percentage of male students receiving federal aid: 44.9%

Percentage of female students receiving federal aid: 51.6%

First, let's calculate the number of male students receiving aid:

Male students receiving aid = Total male students * Percentage of male students receiving aid

Male students receiving aid = 8,920,623 * 0.628

Next, let's calculate the number of male students receiving federal aid:

Male students receiving federal aid = Male students receiving aid * Percentage of male students receiving federal aid

Male students receiving federal aid = (8,920,623 * 0.628) * 0.449

Now, let's calculate the number of female students receiving aid:

Female students receiving aid = Total female students * Percentage of female students receiving aid

Female students receiving aid = 1,925,243 * 0.668

Finally, let's calculate the number of female students receiving federal aid:

Female students receiving federal aid = Female students receiving aid * Percentage of female students receiving federal aid

Female students receiving federal aid = (1,925,243 * 0.668) * 0.516

To find the probability of selecting a female student without aid, we need to calculate the complement of the event "selecting a female student with aid":

Probability of selecting a female student without aid = 1 - (Female students receiving federal aid / Total female students)

Now we can plug in the values and calculate the probability:

Probability of selecting a female student without aid = 1 - ((1,925,243 * 0.668 * 0.516) / 1,925,243)

To know more about probability,

https://brainly.com/question/32715960

#SPJ11

4. Solve and write your solution as a parameter. x - 2y + z = 3 2x - 5y + 6z = 7 (2x - 3y2z = 5

Answers

The solution is x = 1 - t

y = -1 + t

and

z = 2 + t

where t is a parameter.

Given equation:

x - 2y + z = 3

2x - 5y + 6z = 7,

2x - 3y + 2z = 5

We can write the system of linear equations in the matrix form AX = B where A is the matrix of coefficients of variables, X is the matrix of variables, and B is the matrix of constants.

Then the system of linear equations becomes:  

[1 -2 1 ; 2 -5 6 ; 2 -3 2] [x ; y ; z] = [3 ; 7 ; 5]

On solving, we get the matrix X: X = [1 ; -1 ; 2]

The solution can be written as the parameter.

Therefore, the solution is x = 1 - t

y = -1 + t

and

z = 2 + t

where t is a parameter.

to know more about  matrix visit :

https://brainly.com/question/29132693

#SPJ11

5. Suppose a is an exponentially distributed waiting time, measured in hours. If the probability that a is less than one hour is 1/e², what is the length of the average wait?

Answers

The length of the average wait time is 1/λ = 1/1 = 1 hour. Hence, on average, one would expect to wait for approximately 1 hour.

In an exponential distribution, the probability density function (PDF) is given by f(x) = λ * e^(-λx), where λ is the rate parameter. The cumulative distribution function (CDF) is given by F(x) = 1 - e^(-λx).

We are given that the probability that a is less than one hour is 1/e². This implies that F(1) = 1 - e^(-λ*1) = 1 - 1/e². To find the rate parameter λ, we solve this equation:

1 - 1/e² = e^(-λ)

Rearranging the equation, we have:

e² - 1 = e² * e^(-λ)

Dividing both sides by e², we get:

1 - 1/e² = e^(-λ)

Comparing this with the original equation, we can deduce that the rate parameter λ is equal to 1.

The average wait time for an exponential distribution is equal to the reciprocal of the rate parameter. Therefore, the length of the average wait time is 1/λ = 1/1 = 1 hour. Hence, on average, one would expect to wait for approximately 1 hour.

To learn more about average click here, brainly.com/question/24057012

#SPJ11

A statistics student hypothesised that the time spent waiting in a queue at a grocery store is exponentially distributed. To test her hypothesis, she collected data. Based on the collected data and her hypothesis, she created the following table: [0,5) [5, 10) [10, 15) 7 [15, 20) 3 [20,00) 31 Frequency 16 12 Expected 15.2627 7,2096 25.3837 NOTE: Expected cell counts in the table are correct to four decimal places. 0.05. Unfortunately, She used the data to estimate the rate parameter of an exponential distribution. Her estimate of the rate parameter was = due to a computer crash, the raw data are not available. Answer the following questions. You may round off numerical answers to four decimal places. Where applicable, select only the most correct answer. 1. What statistical test would you use to assess whether the data in the table are from an exponentially distributed population? O Anderson-Darling test O Chi-squared test of independence O Binomial test O Shapiro-Wilk test O Median test O McNemar's Chi-squared test Chi-squared goodness-of-fit test O Jarque-Bera

Answers

The correct answer is:

Chi-squared goodness-of-fit test.

The Chi-squared goodness-of-fit test is used to compare observed frequencies with expected frequencies to determine if there is a significant difference between them. In this case, the observed frequencies are the counts in each interval, and the expected frequencies are the hypothesized values based on the exponential distribution.

To perform the Chi-squared goodness-of-fit test, you would calculate the test statistic by comparing the observed and expected frequencies. The formula for the test statistic is:

χ² = Σ((O - E)² / E)

Where:

O is the observed frequency

E is the expected frequency

In this case, the expected frequencies are given in the table, and you can calculate the observed frequencies by summing the counts in each interval.

After calculating the test statistic, you would compare it to the critical value from the Chi-squared distribution with degrees of freedom equal to the number of intervals minus 1. If the test statistic exceeds the critical value, you would reject the null hypothesis that the data follows an exponential distribution.

Therefore, the correct answer to the question is:

Chi-squared goodness-of-fit test.

Learn more about Chi-squared test here:

https://brainly.com/question/32379532

#SPJ11

suppose a circle has a circumference of 24 pi inches. what is the exact value of the circles diameter.

Answers

The exact value of the circle's diameter is 24 inches. The total distance around the outer boundary or perimeter of a circles is known as the circumference of a circle and it is a measure of the length of the circle.

The formula to find the diameter of a circle is given as;

Diameter of a circle = Circumference of a circle/π

The given circumference of a circle = 24π inches.

Diameter of the circle = (24π/π) inches = 24 inches.

Circumference is found by multiplying the diameter of the circle by mathematical constant pi (π), which is approximately 3.14159.

Therefore, the formula to calculate the circumference of a circle is:

Circumference = π × Diameter

Therefore, the exact value of the circle's diameter is 24 inches.

To know more about circle, refer

https://brainly.com/question/28162977

#SPJ11

Bridget keeps $500 dollars in a safe at home. She also deposits $1000 in a savings account that earns 1.3% compound interest. Which function models the total amount of money Brigitte has over time, t?

Answers

f(t) = 1000⋅(1.013)t + 500

Suppose that the distribution function of a discrete random variable Xis given by 0, a <2 1/4, 2

Answers

Based on the information provided, it seems like you are describing the cumulative distribution function (CDF) of a discrete random variable X. The CDF gives the probability that X takes on a value less than or equal to a given value.

Let's break down the given information:

- For values less than a, the CDF is 0. This means that the probability of X being less than any value less than a is 0.

- For the value a, the CDF is less than 2. This implies that the probability of X being less than or equal to a is less than 2 (but greater than 0).

- For the value 2, the CDF is 1/4. This means that the probability of X being less than or equal to 2 is 1/4.

It's important to note that the CDF is a non-decreasing function, so as the values of X increase, the CDF can only remain the same or increase.

To provide more specific information or answer any questions regarding this discrete random variable, please let me know what you would like to know or calculate.

Learn more about cumulative distribution function (CDF) here:

https://brainly.com/question/30402457

#SPJ11

Construct a 95% confidence interval (1 point) Q-2 (7 Points) 2. Following are three data points on dependent (Y) and one explanatory variable(x). Fit a regression model by minimizing the sum of squared residuals.(s Points) Y X 3 1 5 1 4 3 Yr the herved values, + Ax Yare the fitted values, and are the residuals

Answers

It is not possible to provide a precise explanation or calculation for constructing a confidence interval or fitting a regression model in this context.

What are the steps for solving a quadratic equation by factoring?

To construct a confidence interval, several key components are needed:

Sample Size: The number of observations or data points in the sample.Sample Mean: The average value of the data points in the sample.Sample Standard Deviation: A measure of the spread or variability of the data points in the sample.Confidence Level: The desired level of confidence, typically expressed as a percentage (e.g., 95%).

With these components, a confidence interval can be calculated to estimate the true population parameter (e.g., mean, proportion) within a certain range.

The formula for constructing a confidence interval depends on the specific parameter being estimated and the distribution of the data.

In the case of a regression model, additional information is needed, such as the equation or relationship between the dependent variable (Y) and explanatory variable (X).

This equation is used to estimate the fitted values and residuals.

Fitted values are the predicted values of the dependent variable based on the regression model, while residuals are the differences between the observed values and the fitted values.

Without the specific details of the sample size, mean, standard deviation, and the regression equation.

Learn more about precise explanation

brainly.com/question/1008284

#SPJ11

Other Questions
At a restaurant, Frank has a choice of 2 appetizers, 3 mains and 2 desserts. a) Create a Tree Diagram showing the number of combinations of appetizers, mains and desserts, assuming that Frank chooses one of each (Note: using A1, A2, M1, M2, M3, and D1, D2 is sufficient for short forms). b) In how many ways can Frank choose his lunch if he has one of each appetizer, main, and dessert? Marking Scheme (out of 3) [A:3] 2 marks for the Tree Diagram 1 mark for reading the Tree Diagram and determining the number of different possible lunches A charge of 3 C is on the y axis at .01 m, and a second charge of 3 C is on the y axis at .01 m. Find the force on a charge of 6 C on the x axis at x = .06 m. Answer in units of N.The value of the Coulomb constant is 8.98755 109 N m2/C2.F = K | q1 || q2 |r2 Suppose that a central bank wanted to enact more contractionary monetary policy. Say which of the following would increase, decrease, or exhibit no change, if the policy was successful.A. BorrowingB. GDPC. InflationD. Interest ratesE. Unemployment ademic Calendar My MCBS Library English (en) - Time left 0:20:10 Galarneau Inc. maintains a call center to take orders, answer questions, and handle complaints. The costs of the call center for a numb adequate nutrition, especially eating breakfast, has been associated with: what was the student role in the antiwar movement? how can we explain student's willingness to protest the war 1. why is the age pension age pension means tested ( 1 marks )2. briefly describe the age pension Assets test and in come test ( 3 marks )3. when applying the assets test and income test which is used to determine the final pension payment ( 1 marks ) e look at a random sample of 1000 United flights in the month of December comparing the actual arrival time to the scheduled arrival time. Computer output of the descriptive statistics for the difference in actual and expected arrival time of these 1000 flights are shown below. n: 1000 mean: 9.99 st dev: 42 se mean: 1.33 min: -47 q1: -10 med: 0 q3: 16 max: 452 What is the sample mean difference in actual and expected arrival times? What is the standard deviation of the differences? use the summary statistics to compute a 95% confidence interval for the average difference in actual and scheduled arrival times on United flights in December. Quinton Johnston is evaluating NYL Manufacturing Company, Ltd. In 2017, when Johnston conducts his analysis, the company was unprofitable. Furthermore, NYL does not pay any dividends on its common stock. Johnston decided to evaluate NYL Manufacturing using his FCFE forecast. Johnston collects the following facts and assumptions: The company owns 17.0 billion shares outstanding. Sales will be $5.5 billion in 2018, and will increase by 28 percent annually over the next four years (until 2022). Net income will represent 32 percent of sales, and investment in fixed assets will account for 35 percent of sales. Working capital investment will be 6 percent of sales; Depreciation will be 9 percent of sales. 20% of the net investment in assets will be financed by debt. The interest expense will be only 2 percent of sales. The tax rate will be 10 percent. NYL Manufacturing beta version is 2.1; The risk-free government bond rate is 6.4 percent; Equity risk premium of 5.0 percent. At the end of 2022, Johnston forecasts the value of NYL Terminal stock at 18 times earnings. The improper integral Xex+4 L dx x + 4 -2 none of the choices converges to e the above converges to -e- the above converges to e the above Question * B Using Limit Comparison Test (LCT) the following series +[infinity] n + 3 . nn6 + 5 n=1 converges diverges test is inconclusive Question * 11 The function 5x+1 f(x): 1-In(x +e) has a Maclaurin Expansion false true Question * The interval of convergence of the following Power Series +[infinity] nxn 4 (n + 1) O 1-4,4[ O [-4,4] O 1-4,4] O [-4,4[ n=1 is equal to Question 4 Evaluate the integral. 10 (8t/ t+1 i + 2te j + 2/t + 1k) dt = ....... i+....... j+.......... k According to Albert Bandura, children are most likely to pattern their own behavior based on the _____ of their parents. :Q3) For the following data 50-54 55-59 60-64 65-69 70-74 75-79 80-84 7 10 16 12 9 3 Class Frequency 3* :c) The median is 73.6667 O 75.6667 77.3333 79.3333 none of all above Person A wishes to set up a public key for an RSA cryptosystem. They choose for their prime numbers p = 41 and q = 47. For their encryption key, they choose e = 3. To convert their numbers to letters, they use A = 00, B = 01, ... 1. What does Person A publish as their public key? 2. Person B wishes to send the message JUNE to person A using two-letter blocks and Person A's public key. What will the plaintext be when JUNE is converted to numbers? 3. What is the encrypted message that Person B will send to Person A? Your answer should be two blocks of four digits each. Use this table to state the annual flux of anthropogenic CO into the atmosphere from the stated reservoir? 5 Reservoir Flux to Balancing flux* Balancing Flux atmos. magnitude Fossil fuel Rock reservoir Terrestrial respiration *if the atmosphere were in equilibrium, what is the reverse flux out of the atmosphere? assume the company is already operating at capacity when the special order is received Sara Thomson is the president and operates the Thomson Company. The following selected transactions were completed by Thomson Company during August: 2. 1. Received cash from the stockholder as additional investment $200,000. Billed customers for services on account, $45,777. Received electric bill $450, to be paid next month. 3. 4. Received cash from customers on accounts $22,430. 5. Paid creditors on account $12,000 Paid cash dividends, $18,444 6. Note: Each transaction has two entries. Entry Entry Amount Acct Name of Amount Type Acct Increase or Acct Name Decrease Type (4) of Acct (1) (2) (3) (1) (2) (3) 1 23456 Increase or Decrease you cooled the sodium acetate solution back to room temperature and then added a grain of solid sodium acetate. What happened? What happened to the temperature of the vial? In this case, what is the sign on q for the system? For the surroundings? Nantucket Industries manufactures and sells two models of watches, Prime and Luxuria. It expects to sell 3,500 units of Prime and 1,500 units of Luxuria in 2019.The following estimates are given for 2019: Prime Luxuria Selling price $200 $500 Direct materials 70 100 Direct labor 60 180 Manufacturing overhead 90 150 Nantucket had an inventory of 200 units of Prime and 105 units of Luxuria at the end of 2018. It has decided that as a measure to counter stock outages it will maintain ending inventory of 400 units of Prime and 230 units of Luxuria. Each Luxuria watch requires one unit of Crimpson and has to be imported at a cost of $12. There were 120 units of Crimpson in stock at the end of 2018. The management does not want to have any stock of Crimpson at the end of 2019. What is the total budgeted cost of goods sold for Nantucket Industries in 2019?$1,433,000$1,625,000$1,415,000$1,325,000 eBook Hint Print References Required information [The following information applies to the questions displayed below.] Ramirez Company installs a computerized manufacturing machine in its factory at the beginning of the year at a cost of $87,000. The machine's useful life is estimated at 20 years, or 395,000 units of product, with a $8,000 salvage value. During its second year, the machine produces 33,500 units of product. Determine the machine's second-year depreciation and year end book value under the straight-line method. Straight-Line Depreciation Choose Numerator: / Choose Denominator: Annual Depreciation Expense Cost minus salvage / Estimated useful life (years) $ 79,000/ Year 2 Depreciation Year end book value (Year 2) 20 = = Depreciation expense Check my work 3,950 4 Part 2 of 3 8.33 points eBook Hint Print References ! Check my work Required information [The following information applies to the questions displayed below.] Ramirez Company installs a computerized manufacturing machine in its factory at the beginning of the year at a cost of $87,000. The machine's useful life is estimated at 20 years, or 395,000 units of product, with a $8,000 salvage value. During its second year, the machine produces 33,500 units of product. Determine the machine's second-year depreciation using the units-of-production method. Units-of-production Depreciation Choose Denominator: Choose Numerator: 1 = Annual Depreciation Expense = Depreciation expense per unit = 0 Annual Production (units) Depreciation Expense Year Year 2 LO 5 Part 3 of 3 8.33 points Skipped eBook Hint Print References Check my work Required information [The following information applies to the questions displayed below.] Ramirez Company installs a computerized manufacturing machine in its factory at the beginning of the year at a cost of $87,000. The machine's useful life is estimated at 20 years, or 395,000 units of product, with a $8,000 salvage value. During its second year, the machine produces 33,500 units of product. Determine the machine's second-year depreciation using the double-declining-balance method. Double-declining-balance Depreciation Choose Factors: Choose Factor(%) Annual Depreciation Expense = Depreciation expense First year's depreciation X Second year's depreciation