Decide if the following statements are true or faise and then explain your answer using graphs, equations and/or analysis where needed:
1. M1 is much wider than M2 and is more liquid.
2. A simple loan that pays $2000 after 3 years is worth $1500 today if the interest rate was 8.5%.
3. A bond that pays $60 a year for three years whose face value is $500 has a price of $680 today if the interest rate is 3.5%
4. A perpetuity that pays $150 every year and purchased today for $6000 has a yield to maturity equals to 5%.
5. In the bond market if there is an expansion in the economy, the supply for bonds will increase and the interest rate will decline.
6. In the bonds market if expected inflation increases then the demand of bonds will increase and the interest rate will increase.
7. The most important source for finance funds for corporations is its borrowings from owners.
8. Financial intermediaries are the best solution for the problem of adverse selection.

Answers

Answer 1

1. M1 is much wider than M2 and is more liquid.False. M1 is a narrow definition of money that includes only the most liquid forms of money, such as currency, demand deposits, and traveler's checks, whereas M2 includes M1 and less liquid types of money, such as savings accounts, small time deposits, and retail money market mutual funds.

Therefore, M1 is narrower and more liquid than M2.

2. A simple loan that pays $2000 after 3 years is worth $1500 today if the interest rate was 8.5%.

False. A simple loan that pays $2000 in three years cannot be worth $1500 today at an interest rate of 8.5 percent. This statement implies that the loan is being offered at a discount, which is not true. If anything, the loan would be worth more than $2000 today, not less.

3. A bond that pays $60 a year for three years and whose face value is $500 has a price of $680 today if the interest rate is 3.5%.

True. When the interest rate is 3.5 percent, the present value of a three-year, $60 annuity is $171.80. To calculate the bond's present value, we must add the present value of the $500 face value to the present value of the three-year, $60 annuity. The sum of these two is $680.

4. A perpetuity that pays $150 every year and purchased today for $6000 has a yield to maturity equal to 5%.

True. Since the perpetuity pays $150 every year, the yield to maturity is equal to the interest rate divided by the price of the perpetuity. At a price of $6000 and a yield to maturity of 5%, the annual interest rate is $300.

5. In the bond market if there is an expansion in the economy, the supply of bonds will increase and the interest rate will decline. False. When the economy expands, the supply of bonds is likely to decrease, causing bond prices to rise and yields to fall.

6. In the bonds market if expected inflation increases then the demand for bonds will increase and the interest rate will increase.

False. Inflation causes bond prices to fall and yields to rise. When expected inflation rises, bond demand is likely to fall, causing bond prices to fall and yields to rise.

7.  The most important source of financial funds for corporations is its borrowings from owners.

False. While owners' borrowings can be a source of financing for corporations, the most important source of financing is usually banks and other financial institutions.

8. Financial intermediaries are the best solution for the problem of adverse selection.

True. Financial intermediaries, such as banks and insurance companies, help solve the problem of adverse selection by pooling risks and providing information to lenders and borrowers.

By doing so, they help reduce the risk of lending and borrowing, which makes it easier for lenders and borrowers to transact with one another.

Know more about money here:

https://brainly.com/question/29498634

#SPJ11


Related Questions

5. Find the limit, if it exists. If the limit does not exist, explain why.
(a) lim x →π/4 (sin x- cos r)/ (tanx-1)
(b) lim x →0 5x^4 cos 2/x

Answers

The limit lim x → 0 5x^4 cos(2/x) does not exist.

(a) To find the limit of lim x → π/4 (sin x - cos x) / (tan x - 1), we can directly substitute π/4 into the expression:

lim x → π/4 (sin x - cos x) / (tan x - 1) = (sin(π/4) - cos(π/4)) / (tan(π/4) - 1)

= (1/√2 - 1/√2) / (1 - 1)

= 0 / 0

The expression results in an indeterminate form of 0/0, which means we cannot directly evaluate the limit using substitution. We need to apply further algebraic manipulation or use other techniques, such as L'Hôpital's rule, to evaluate the limit.

(b) To find the limit of lim x → 0 5x^4 cos(2/x), we can substitute 0 into the expression:

lim x → 0 5x^4 cos(2/x) = 5(0)^4 cos(2/0)

= 0 cos(∞)

Here, cos(∞) is undefined. The limit of cos(2/x) as x approaches 0 oscillates between -1 and 1, and multiplying it by 0 results in an undefined value.

For more information on limits visit: brainly.com/question/32420924

#SPJ11

As age increases, so does the likelihood of a particular disease. The fraction of people x years old with the disease is modeled by f(x) = (a) Evaluate f(20) and f(60). Interpret the results. (b) At w

Answers

The probability is 0.375, which means that out of 4 people, one person is likely to have the disease. Given,The fraction of people x years old with the disease is modeled by f(x) = x / (100 + x).

Here, (a) Evaluate f(20) and f(60). Interpret the results.

f(20) = 20 / (100 + 20) results to 0.1667

f(60) = 60 / (100 + 60) results to 0.375

Here, f(20) is the probability that a person who is 20 years old or younger has the disease. Therefore, the probability is 0.1667, which means that out of 6 people, one person is likely to have the disease. On the other hand, f(60) is the probability that a person who is 60 years old or younger has the disease. Therefore, the probability is 0.375, which means that out of 4 people, one person is likely to have the disease.

(b) To find the age at which the fraction of people with the disease is half of its maximum value, we need to substitute

f(x) = 1/2.1/2

= x / (100 + x)50 + 50x

= 100 + x50x - x

= 100 - 505x

= 50x = 10

Hence, the age at which the fraction of people with the disease is half of its maximum value is 10 years.

To know more about Probability visit-

brainly.com/question/32004014

#SPJ11

if x=2 and x=y what is y

Answers

Answer:

2 = x (by the symmetric property) and x = y, so y = 2 by the transitive property.

Given the differential equation y – 2y' – 3y = f(t). = Use this differential equation to answer the following parts Q6.1 2 Points Determine the form for a particular solution of the above differential equation when = f(t) = 4e3t O yp(t) = Ae3t = O yp(t) - Ate3t = O yp(t) = At-e3t O yp(t) = Ae3t + Bet

Answers

The given differential equation is y − 2y' − 3y = f(t). Here, we are required to determine the form for a particular solution of the above differential equation when f(t) = 4e3t.The form of the particular solution of a linear differential equation is always the same as the forcing function (input function) when the forcing function is of the form ekt.

Therefore, we assume yp(t) = Ae3t for the given differential equation whose forcing function is f(t) = 4e3t.Substituting yp(t) = Ae3t into the differential equation, we get:

[tex]y - 2y' - 3y = f(t)Ae3t - 6Ae3t - 3Ae3t = 4e3t-10Ae3t = 4e3tAe3t = -0.4e3t[/tex]

Therefore, the form for a particular solution of the above differential equation when f(t) = 4e3t is O yp(t) = -0.4e3t. Hence, the answer is O yp(t) = -0.4e3t.The solution is more than 100 words.

To know more about differential equation visit :

https://brainly.com/question/32514740

#SPJ11

The Standard Error represents the Standard Deviation for the Distribution of Sample Means and is defined as: SE = o /√(n) a) True. b) False.

Answers

The statement is false. The standard error (SE) does not represent the standard deviation for the distribution of sample means.

The statement is false. The standard error (SE) does not represent the standard deviation for the distribution of sample means. The standard error is a measure of the precision of the sample mean as an estimator of the population mean.

It quantifies the variability of sample means around the true population mean. The formula for calculating the standard error is SE = σ / √(n), where σ is the population standard deviation and n is the sample size. In contrast, the standard deviation measures the dispersion or spread of individual data points within a sample or population.

It provides information about the variability of individual observations rather than the precision of the sample mean. Therefore, the standard error and the standard deviation are distinct concepts with different purposes in statistical inference.

To learn more about “standard deviation” refer to the https://brainly.com/question/475676

#SPJ11

ACTIVITY 3: Point A is at (0,0), and point B is at (8,-15). (a) Determine the distance between A and B. (b) Determine the slope of the straight line that passes through both A and B.

Answers

The distance between points A and B is 17. The slope of the straight line that passes through both A and B is `-15/8`.

(a) Distance between A and B

Determining the distance between two points on a Cartesian coordinate plane follows the formula of the distance formula, which is: `sqrt{(x2-x1)² + (y2-y1)²}`.

Using the coordinates of points A and B, we can now compute their distance apart using the distance formula: D = `sqrt{(8 - 0)² + (-15 - 0)²}`D = `sqrt{64 + 225}`D = `sqrt{289}`D = 17

Therefore, the distance between points A and B is 17.

(b) Slope of straight line AB

To determine the slope of the straight line that passes through both A and B, we can use the slope formula, which is: `m = (y2 - y1)/(x2 - x1)`.

Using the given coordinates of points A and B, we can calculate the slope of AB as:

m = (-15 - 0)/(8 - 0)m = -15/8

The slope of the straight line that passes through both A and B is `-15/8`.

More on slope: https://brainly.com/question/28462488

#SPJ11

find parametric equations for the line through the point (0, 1, 1) that is perpendicular to the line x = 1 t, y = 1 − t, z = 3t and intersects this line. (use the parameter t.)

Answers

The equations that represent the line that passes through the point (0, 1, 1), is perpendicular to the line x = t, y = 1 − t, z = 3t, and intersects that line.

To find the direction vector of this line, we can take the coefficients of t from the parametric equations. The direction vector will be a vector that points in the same direction as the line. So, we have:

Direction vector of the given line = (1, -1, 3)

Now, let's find the direction vector of the line that is perpendicular to the given line. Since the two lines are perpendicular, their direction vectors will be orthogonal (i.e., their dot product will be zero).

Let the direction vector of the perpendicular line be (a, b, c). We want this direction vector to be orthogonal to the direction vector of the given line, so we have the following equation:

(1, -1, 3) · (a, b, c) = 0

The dot product of two vectors is given by the sum of the products of their corresponding components. So, we can write:

1a + (-1)b + 3c = 0

This equation represents a constraint on the direction vector of the perpendicular line. We can choose any values for a, b, and c that satisfy this equation.

Let's choose a = 1, b = 1, and c = 1 as an example. Substituting these values into the equation, we get:

1(1) + (-1)(1) + 3(1) = 0

1 - 1 + 3 = 0

3 = 0

As 3 is not equal to 0, these values do not satisfy the equation. So, let's try a different set of values.

Let's choose a = 3, b = 1, and c = 1. Substituting these values into the equation, we get:

1(3) + (-1)(1) + 3(1) = 0

3 - 1 + 3 = 0

5 = 0

As 5 is not equal to 0, these values also do not satisfy the equation. It seems that we cannot find integer values for a, b, and c that satisfy the equation.

However, we can find non-integer values that satisfy the equation. Let's choose a = 1, b = 1, and c = -2/3. Substituting these values into the equation, we get:

1(1) + (-1)(1) + 3(-2/3) = 0

1 - 1 - 2 = 0

-2 = 0

As -2 is equal to 0, these values satisfy the equation. Therefore, we can choose a = 1, b = 1, and c = -2/3 as the direction vector of the perpendicular line.

Now, we can write the parametric equations for the line that passes through the point (0, 1, 1) and is perpendicular to the given line. Let's call the parameter for these new equations u:

x = 0 + 1u

y = 1 + 1u

z = 1 - (2/3)u

To know more about equation here

https://brainly.com/question/21835898

#SPJ4

2. Solve the system completely, and write the solution in parametric vector form. State how many solutions exist. 21+ 2+573 - 74 + 5 = 1 2x2 + 6x3 x4 +5r5 = 2 #1 + 2x3 - 2r5 = 1

Answers

The given system is[tex]:$$\begin{aligned}21+ 2s+573 - 74 + 5t &= 1\\ 2x+2y+3z +4w+5r &= 2\\ 1 + 2z - 2r &= 1\end{aligned}$$[/tex]

First, simplify the first equation:[tex]$$\begin{aligned}21+ 2s+573 - 74 + 5t &= 1\\ 2s + 5t &= -521\end{aligned}$$[/tex]The second equation is already in standard form:[tex]$$2x+2y+3z +4w+5r = 2$$[/tex]The third equation simplifies to:[tex]$$2z - 2r = 0$$[/tex]which means [tex]$$z=r$$[/tex]

The solutions to the system are the same as the solutions to the following system:

[tex]$$\begin{aligned}2s + 5t &= -521\\2x+2y+3z +4w+5r &= 2\\2z - 2r &= 0\end{aligned}$$Then:$$\begin{aligned}t &= -\frac{2s}{5} - \frac{521}{5}\\r &= z\\w &= -\frac{2}{4}x - \frac{2}{4}y - \frac{3}{4}z + \frac{2}{4}r + \frac{2}{4}\\&= -\frac{1}{2}x - \frac{1}{2}y - \frac{3}{4}z + \frac{1}{2}r + \frac{1}{2}\end{aligned}$$[/tex]

So the general solution is:[tex]$$\begin{pmatrix}x\\y\\z\\r\\s\\t\end{pmatrix}=\begin{pmatrix}x\\y\\z\\r\\\frac{2}{5}s - \frac{521}{5}\\s\end{pmatrix}=\begin{pmatrix}-\frac{1}{2}\\0\\0\\1\\0\\-104\end{pmatrix}+s\begin{pmatrix}0\\0\\0\\\frac{2}{5}\\1\\0\end{pmatrix}$$[/tex]

This system has infinitely many solutions since there is one free variable, s. Therefore, the solution is parametric and there is an infinite number of solutions.

To know more about parametric visit -

brainly.com/question/31461459

#SPJ11


Estimate the root of the expression, f(x) = x² - 4x, using a
Bisection Method in the interval [-1.1] with error tolerance of
0.001%.

Answers

The calculations using the Bisection Method to estimate the root of the expression f(x) = x² - 4x in the interval [-1, 1] with an error tolerance of 0.001%.

Step 1: Determine the endpoints

a = -1

b = 1

Step 2: Check the signs of f(a) and f(b)

f(a) = (-1)² - 4(-1) = 1 + 4 = 5

f(b) = 1² - 4(1) = 1 - 4 = -3

Since f(a) and f(b) have opposite signs, there is at least one root within the interval.

Step 3: Perform iterations using the Bisection Method

Set the error tolerance: error tolerance = 0.00001

Initialize the counter: iterations = 0

While the absolute difference between a and b is greater than the error tolerance:

Calculate the midpoint: c = (a + b) / 2

Evaluate f(c):

If |f(c)| < error_tolerance, consider c as the root and exit the loop.

Otherwise, check the sign of f(c):

If f(c) and f(a) have opposite signs, update b = c.

Otherwise, f(c) and f(b) have opposite signs, update a = c.

Increment the counter: iterations = iterations + 1

Let's perform the calculations step by step:

Iteration 1:

c = (-1 + 1) / 2 = 0 / 2 = 0

f(c) = 0² - 4(0) = 0 - 0 = 0

|f(c)| = 0

Since |f(c)| = 0 is less than the error tolerance, we consider c = 0 as the root.

The estimated root of the expression f(x) = x² - 4x in the interval [-1, 1] using the Bisection Method with an error tolerance of 0.001% is x = 0.

Learn more about Bisection Method here: brainly.com/question/30320227

#SPJ11




4. Consider the differential equation: (1 – t)y"+y+ty = 0, t < 1. (a) (4 points) Show that y = et is a solution. (b) (11 points) Use reduction of order to find a second independent solution. (Hint:

Answers

To show that y = [tex]e^t[/tex] is a solution to the given differential equation, we need to substitute y = [tex]e^t[/tex] into the equation and verify that it satisfies the equation.

a)Let's differentiate y twice:

[tex]y = e^t\\y' = e^t\\y'' = e^t[/tex]

Now, substitute these derivatives into the differential equation:

[tex](1 - t)y" + y + t y = (1 - t)(e^t) + e^t + t(e^t) = (1 - t + t + t)e^t = e^t[/tex]

As we can see, the right-hand side of the equation is indeed equal to e^t. Therefore, y = [tex]e^t[/tex] satisfies the differential equation.

(b) To find a second independent solution using reduction of order, we assume a second solution of the form y = v(t)e^t, where v(t) is an unknown function to be determined. Differentiating y with respect to t, we have:

[tex]y' = v'e^t + ve^t[/tex]

[tex]y'' = v''e^t + 2v'e^t + ve^t[/tex]

Substituting these derivatives into the differential equation, we get:

[tex](1 - t)(v''e^t + 2v'e^t + ve^t) + (v(t)e^t) + t(v(t)e^t) = 0[/tex]

Simplifying and collecting terms, we have:

[tex](1 - t)v''e^t + (2 - 2t)v'e^t = 0[/tex]

Dividing both sides by e^t, we obtain:

(1 - t)v'' + (2 - 2t)v' = 0

Now, let's introduce a new variable u = v'. Differentiating this equation with respect to t, we have:

u' - v' = 0

Rearranging the equation, we get:

u' = v'

This is a first-order linear differential equation, which we can solve. Integrating both sides, we have:

u = v + C

where C is a constant of integration.

Now, substituting back v' = u into the equation u' = v', we have:

u' = u

This is a separable differential equation. Separating variables and integrating, we get:

ln|u| = t + D

where D is another constant of integration. Exponentiating both sides, we have:

|u| = [tex]e^{(t+D)[/tex]

Since u can be positive or negative, we remove the absolute value to obtain:

[tex]u = \pm e^{(t+D)[/tex]

Substituting u = v', we have:

[tex]v' = \pm e^{(t+D)[/tex]

Integrating once more, we get:

[tex]\[v = \pm \int e^{t+D} dt = \pm e^{t+D} + E\][/tex]

where E is a constant of integration.

Finally, substituting y = [tex]ve^t[/tex], we have:

[tex]\[ y = (\pm e^{t+D} + E)e^t = \pm e^t \cdot e^D + Ee^t \][/tex]

This gives us a second independent solution, [tex]\[ y = \pm e^t \cdot e^D + Ee^t \][/tex], where D and E are constants.

Learn more about differential equation here:

https://brainly.com/question/2273154

#SPJ11

.Verify the identity by following the steps below. 1) Write the left-hand side in terms of only sin() and cos() but don't simplify 2) Simplify Get Help: sin(x)cot(z)

Answers

The given expression is:

sin(x)cot(z).

We have to write the left-hand side in terms of only sin() and cos() but don't simplify.

By using the identity, cot(z) = cos(z)/sin(z), we get:

sin(x)cot(z) = sin(x)cos(z)/sin(z)

Now, we have to simplify the above expression.

By using the identity, sin(A)cos(B) = 1/2{sin(A+B) + sin(A-B)}, we get:

sin(x)cos(z)/sin(z) = 1/2{sin(x+z)/sin(z) + sin(x-z)/sin(z)}

Therefore, sin(x)cot(z) can be simplified to 1/2{sin(x+z)/sin(z) + sin(x-z)/sin(z)}.

To know more about cot(z) visit:

brainly.com/question/22558939

#SPJ11

When calculating the probability P(-1.65 ≤ z ≤ 1.65) under the
Normal Curve
Standard we get:
Select one:
OA. 0.4505
b.0.9010
c.0.9505
OD. 0.0495

Answers

The correct answer is option C. 0.9505.

What is the probability range?

To calculate the probability between -1.65 and 1.65 under the standard normal curve, we need to find the area under the curve within this range.

Using a standard normal distribution table or a statistical software, we can find the corresponding probabilities for -1.65 and 1.65.

The probability P(-1.65 ≤ z ≤ 1.65) is approximately 0.9505.

Therefore, the correct answer is option C. 0.9505.

Learn more about probability range

brainly.com/question/13181993

#SPJ11

Compute, by hand, the currents i1, i2 and i3 for the following system of equation using Cramer Rule.

61 − 22 − 43 = 16

−21 + 102 − 83 = −40

−41 − 82 + 183 = 0

Answers

By applying Cramer's Rule to the given system of equations, the currents i1, i2, and i3 can be computed. The calculations involve determinants and substitution, resulting in the determination of the current values.

Cramer's Rule is a method used to solve systems of linear equations by expressing the solution in terms of determinants. In this case, we have three equations:

61i1 - 22i2 - 43i3 = 16

-21i1 + 102i2 - 83i3 = -40

-41i1 - 82i2 + 183i3 = 0

To find the values of i1, i2, and i3, we first need to calculate the determinant of the coefficient matrix, D. D can be computed by taking the determinant of the 3x3 matrix containing the coefficients of the variables:

D = |61 -22 -43|

|-21 102 -83|

|-41 -82 183|

Next, we calculate the determinants of the matrices obtained by replacing the first, second, and third columns of the coefficient matrix with the values from the right-hand side of the equations. Let's call these determinants Dx, Dy, and Dz, respectively.

Dx = |16 -22 -43|

|-40 102 -83|

|0 -82 183|

Dy = |61 16 -43|

|-21 -40 -83|

|-41 0 183|

Dz = |61 -22 16|

|-21 102 -40|

|-41 -82 0 |

Finally, we can determine the currents i1, i2, and i3 by dividing the determinants Dx, Dy, and Dz by the determinant D:

i1 = Dx / D

i2 = Dy / D

i3 = Dz / D

By evaluating these determinants and performing the division, we can find the values of i1, i2, and i3, which will provide the currents in the given system of equations.

Learn more about cramer rule here:

https://brainly.com/question/12682009

#SPJ11

We know that since In'(x) = we can also write dx = In(x) + c a. Show that the definite integral 2 dx = In(2) - In(1) b. Use the fact that In(1) = 0 to simplify the answer in part a c. Can you use the ideas in (a) and (b) to evaluate fdx

Answers

The value of the definite integral of 2 dx from a to b is equal to 2 times the difference between b and a.

To demonstrate that the definite integral of 2 dx equals ln(2) - ln(1), we can apply the fundamental theorem of calculus. Let's solve each part of the problem step by step:

(a) We start with the indefinite integral of 2 dx:

∫ 2 dx

Using the fact that ∫ 1 dx = x + C (where C is the constant of integration), we can rewrite the integral as:

∫ 1 dx + ∫ 1 dx

Since the integral of 1 dx is simply x, we have:

x + x + C

Simplifying further, we get:

2x + C

(b) Now, we evaluate the definite integral using the limits of integration [1, 2]:

∫[1,2] 2 dx = [2x] evaluated from 1 to 2

Plugging in the limits, we have:

[2(2) - 2(1)]

Simplifying, we get:

4 - 2 = 2

Therefore, the definite integral of 2 dx from 1 to 2 is equal to 2.

(c) Using the ideas from parts (a) and (b), we can evaluate the definite integral ∫[a,b] f(x) dx. If we have a function f(x) that can be expressed as the derivative of another function F(x), i.e., f(x) = F'(x), then the definite integral of f(x) from a to b can be calculated as F(b) - F(a).

In the given context, if f(x) = 2, we can find a function F(x) such that F'(x) = 2. Integrating 2 with respect to x gives us F(x) = 2x + C, where C is the constant of integration.

Using this, the definite integral ∫[a,b] 2 dx can be evaluated as:

F(b) - F(a) = (2b + C) - (2a + C) = 2b - 2a = 2(b - a)

To learn more about fundamental theorem of calculus click here:

brainly.com/question/30761130

#SPJ11

Find f(x) and g(x) such that h(x) = (fog)(x). 5 h(x) = (x-6) Select all that apply. A. f(x)= and g(x)=x-6. X B. f(x)= and g(x)=(x-6)7. X 7 c. f(x)= and g(x)=(x-6)7. 5 X D. f(x)=- and g(x)=x-6. 5

Answers

The correct option is option A. The functions f(x) and g(x) that satisfy h(x) = (fog)(x) and (fog)(x)= (x-6) are f(x) = x and g(x) = x-6. The other options (B, C, and D) do not satisfy the given equation.

To find f(x) and g(x) such that h(x) = (fog)(x) and (fog)(x) = (x-6), we need to determine the functions f(x) and g(x) that satisfy this composition.

Given h(x) = (x-6), we can deduce that g(x) = x-6, as the function g(x) is responsible for subtracting 6 from the input x.

To find f(x), we need to determine the function that, when composed with g(x), results in h(x) = (x-6).

From the given information, we can see that the function f(x) should be an identity function since it leaves the input unchanged. Therefore, f(x) = x.

Based on the above analysis, the correct answer is:

A. f(x) = x and g(x) = x-6.

The other options (B, C, and D) include variations that do not satisfy the given equation h(x) = (x-6), so they are not valid solutions.

To know more about functions,

https://brainly.com/question/29139223

#SPJ11

Consider the function f(x)=x² +3 for the domain [0, [infinity]). 1 .-1 Find f¹(x), where f¹ is the inverse of f. Also state the domain of f¹ in interval notation. ƒ¯¹(x) = [] for the domain

Answers

The domain of the inverse function f⁻¹ is [3, ∞).

What is the domain of the inverse function?

To find the inverse of the function f(x) = x² + 3, we start by solving for x in terms of y.

1. Set y = x² + 3:

x² + 3 = y

2. Subtract 3 from both sides:

x² = y - 3

3. Take the square root of both sides (considering the positive square root as we want the inverse to be a function):

x = √(y - 3)

Therefore, the inverse function of f(x) = x² + 3 is f⁻¹(x) = √(x - 3), where f⁻¹ denotes the inverse of f.

Now let's determine the domain of f⁻¹. Since the original function f(x) is defined for the domain [0, ∞), the range of f(x) is [3, ∞). As a result, the domain of the inverse function f⁻¹(x) will be [3, ∞), as the roles of the domain and range are reversed.

Learn more on domain of a function here;

https://brainly.com/question/17121792

#SPJ4

The expansion rate of the universe is changing with time because, from the graph we can see that, as the star distance increases the receding velocity of the star increases. This means that universe is expanding at accelerated rate.

Answers

The observed accelerated expansion suggests that there is some sort of repulsive force at work that is driving galaxies apart from each other.

The expansion rate of the universe is changing with time because of dark energy. This is suggested by the fact that as the distance between stars increases, the receding velocity of the star increases which means that the universe is expanding at an accelerated rate. Dark energy is considered as an essential component that determines the expansion rate of the universe. According to current cosmological models, the universe is thought to consist of 68% dark energy. Dark energy produces a negative pressure that pushes against gravity and contributes to the accelerating expansion of the universe. Furthermore, the universe is found to be expanding at an accelerated rate, which can be determined by observing the recessional velocity of distant objects.

To know more about cosmological models, visit:

https://brainly.com/question/12950833

#SPJ11

The universe is continuously expanding since its formation. However, the expansion rate of the universe is changing with time because, as the distance between galaxies increases, the velocity at which they move away from one another also increases.

The expansion rate of the universe is determined by Hubble's law, which is represented by the formula H = v/d. Here, H is the Hubble constant, v is the receding velocity of stars or galaxies, and d is the distance between them.

The Hubble constant indicates the rate at which the universe is expanding. Scientists have been using this constant to measure the age of the universe, which is estimated to be around 13.7 billion years.However, it was observed that the rate at which the universe is expanding is not constant over time. The universe is expanding at an accelerated rate, which is known as cosmic acceleration. The discovery of cosmic acceleration was a significant breakthrough in the field of cosmology, and it raised many questions regarding the nature of the universe. To explain cosmic acceleration, scientists proposed the existence of dark energy, which is believed to be the driving force behind the accelerated expansion of the universe. Dark energy is a mysterious form of energy that permeates the entire universe and exerts a repulsive force that counteracts gravity.

Know more about the expansion rate

https://brainly.com/question/20388635

#SPJ11

use the axioms and theorem to prove theorem 6.1(a), specifically that 0u = 0.

Answers

The additive identity property, we know that for any vector v, v + 0 = v. Applying this property, we get:

0 = 0u

To prove theorem 6.1(a), which states that 0u = 0, where 0 represents the zero vector and u is any vector, we will use the axioms and properties of vector addition and scalar multiplication.

Proof:

Let 0 be the zero vector and u be any vector.

By definition of scalar multiplication, we have:

0u = (0 + 0)u

Using the distributive property of scalar multiplication over vector addition, we can write:

0u = 0u + 0u

Now, we can add the additive inverse of 0u to both sides of the equation:

0u + (-0u) = (0u + 0u) + (-0u)

By the additive inverse property, we know that for any vector v, v + (-v) = 0. Applying this property, we get:

0 = 0u + 0

Now, let's subtract 0 from both sides of the equation:

0 - 0 = (0u + 0) - 0

By the additive identity property, we know that for any vector v, v + 0 = v. Applying this property, we get:

0 = 0u

Hence, we have proved that 0u = 0.

Therefore, theorem 6.1(a) holds true.

To know more about identity refer here:

https://brainly.com/question/11539896#

#SPJ11

A grandmother sets up an account to make regular payments to her granddaughter on her birthday. The grandmother deposits $20,000 into the account on her grandaughter's 18th birthday. The account earns 2.3% p.a. compounded annually. She wants a total of 13 reg- ular annual payments to be made out of the account and into her granddaughter's account beginning now. (a) What is the value of the regular payment? Give your answer rounded to the nearest cent. (b) If the first payment is instead made on her granddaughter's 21st birthday, then what is the value of the regular payment? Give your answer rounded to the nearest cent. (c) How many years should the payments be deferred to achieve a regular payment of $2000 per year? Round your answer up to nearest whole year.

Answers

(a) The regular payments are $ 1,535.57 (b) The regular payment is $1,748.10 (c) The number of years is the payment is deferred is 26 years.

(a) Given, The account earns 2.3% p.a. compounded annually.

The total regular payments should be made out of the account and into her granddaughter's account beginning now for 13 years.

The Future Value of Annuity (FVA) = R[(1 + i)n - 1] / i

Where,R = Regular Payment, i = rate of interest per year / number of times per year = 2.3% p.a. / 1 = 2.3%, n = number of times the interest is compounded per year = 1 year (compounded annually), Number of payments = 13

FVA = $20,000

We have to find the value of the regular payment R.

FVA = R[(1 + i)n - 1] / i

$20,000 = R[(1 + 0.023)13 - 1] / 0.023

$20,000 = R[1.303801406 - 1] / 0.023

$20,000 = R[0.303801406] / 0.023

R = $20,000 × 0.023 / 0.303801406

R = $1,535.57

Therefore, the value of the regular payment is $1,535.57.

(b) FVA = R[(1 + i)n - 1] / i

$20,000 = R[(1 + 0.023)10 - 1] / 0.023

$20,000 = R[1.26041669 - 1] / 0.023

$20,000 = R[0.26041669] / 0.023

R = $20,000 × 0.023 / 0.26041669

R = $1,748.10

Therefore, the value of the regular payment if the first payment is instead made on her granddaughter's 21st birthday is $1,748.10.

(c) Given,R = $2,000, i = 2.3% p.a. compounded annually, n = ?

We need to find the number of years the payments should be deferred.

Number of payments = 13

FVA = R[(1 + i)n - 1] / i

$20,000 = $2,000[(1 + 0.023)n - 1] / 0.023

$20,000 × 0.023 / $2,000 = (1.023n - 1) / 0.023

0.230767 = (1.023n - 1) / 0.023

1.023n - 1 = 0.023 × 0.230767'

1.023n - 1 = 0.0053076

1.023n = 1.0053076

n = log(1.0053076) / log(1.023)

n = 25.676

Approximately, the payments should be deferred for 26 years to achieve a regular payment of $2,000 per year (rounded up to the nearest whole year).

#SPJ11

Let us know more about regular payments : https://brainly.com/question/32502566.

Let f (x) and g(x) be irreducible polynomials over a field F and let a and b belong to some extension E of F. If a is a zero of f (x) and b is a zero of g(x), show that f (x) is irreducible over F(b) if and only if g(x) is irreducible over F(a).

Answers

f(x) is irreducible over F(b) if and only if g(x) will be irreducible over F(a).

To prove that if a is a zero of the irreducible polynomial f(x) over a field F, and b is a zero of the irreducible polynomial g(x) over F, then f(x) is irreducible over F(b) if and only if g(x) is irreducible over F(a), we can use the concept of field extensions and the fact that irreducibility is preserved under field extensions.

First, assume that f(x) is irreducible over F(b). We want to show that g(x) is irreducible over F(a). Suppose g(x) is reducible over F(a), meaning it can be factored into g(x) = h(x)k(x) for some non-constant polynomials h(x) and k(x) in F(a)[x]. Since g(b) = 0, both h(b) and k(b) must be zero as well. This implies that b is a common zero of h(x) and k(x).

Since F(b) is an extension of F, and b is a zero of both g(x) and h(x), it follows that F(a) is a subfield of F(b). Now, considering f(x) over F(b), if f(x) were reducible, it would imply that f(x) could be factored into f(x) = p(x)q(x) for some non-constant polynomials p(x) and q(x) in F(b)[x].

However, this would contradict the assumption that f(x) is irreducible over F(b). Therefore, g(x) must be irreducible over F(a).

Therefore, f(x) is irreducible over F(b) if and only if g(x) is irreducible over F(a).

To know more about irreducibility, refer here :

https://brainly.com/question/32701513#

#SPJ11

A midpoint Riemann sum approximates the area under the curve f(x) = log(1 + 16x2) over the interval [0, 4] using 4
equal subdivisions as
a) 5.205.
b) 6.410.
c) 6.566.
d) 7.615.

Answers

A midpoint Riemann sum approximates the area under the curve f(x) = log(1 + 16x2) over the interval [0, 4] using 4 equal subdivisions as 6.566. The correct option is c.

To approximate the area under the curve f(x) = log(1 + 16x^2) over the interval [0, 4] using a midpoint Riemann sum with 4 equal subdivisions, we need to calculate the sum of the areas of 4 rectangles. The width of each rectangle is 4/4 = 1 since we have 4 equal subdivisions.

To find the height of each rectangle, we evaluate the function f(x) = log(1 + 16x^2) at the midpoint of each subdivision. The midpoints are x = 0.5, 1.5, 2.5, and 3.5. We substitute these values into the function and calculate the corresponding heights.

Next, we calculate the area of each rectangle by multiplying the width by the height. Then, we sum up the areas of all 4 rectangles to obtain the approximation of the area under the curve.

Performing these calculations, the midpoint Riemann sum approximation of the area under the curve f(x) = log(1 + 16x^2) over the interval [0, 4] using 4 equal subdivisions is approximately 6.566.

Visit here to learn more about curve:

brainly.com/question/29364263

#SPJ11

List the roots of the parabola: y = –2x2 - 12.c 4 In other words, list the solutions of the equation: 0 -2x2 – 12.2 - 4

Answers

The roots of the parabola are [tex]`x = sqrt(6)` and `x = -sqrt(6)`.[/tex]

The roots of the parabola[tex]`y = –2x² - 12`[/tex] can be found by solving the quadratic equation [tex]`-2x² - 12 = 0`.[/tex]

To do this, we can use the quadratic formula, which states that for a quadratic equation of the form[tex]`ax² + bx + c = 0`[/tex], the roots are given by:

[tex]`x = (-b ± sqrt(b² - 4ac))/2a`[/tex]

In this case,

[tex]`a = -2`, \\`b = 0`,\\ and `c = -12`[/tex]

, so the roots are given by:

[tex]`x = (-0 ± sqrt(0² - 4(-2)(-12)))/(2(-2))``x \\= ±sqrt(6)`[/tex]

Therefore, the roots of the parabola are [tex]`x = sqrt(6)` and `x = -sqrt(6)`.[/tex]

Know more about parabola here:

https://brainly.com/question/64712

#SPJ11

Select the correct choice that shows Standard Form of a Quadratic Function. A. r² = (x-h)² + (y-k)² B. f(x)= a(x-h)² + k c. f(x) = ax²+bx+c 36. Find the vertex of the quadratic function: f(x)=3x2+36x+19

Answers

the vertex of the quadratic function f(x) = 3x² + 36x + 19 is (-6, -89).

So, the correct answer is: (-6, -89).

The correct choice that shows the standard form of a quadratic function is:

C. f(x) = ax² + bx + c

For the quadratic function f(x) = 3x² + 36x + 19, we can find the vertex using the formula:

The x-coordinate of the vertex, denoted as h, is given by:

h = -b / (2a)

In this case, a = 3 and b = 36. Substituting these values into the formula:

h = -36 / (2 * 3)

h = -36 / 6

h = -6

To find the y-coordinate of the vertex, denoted as k, we substitute the x-coordinate back into the quadratic function:

f(-6) = 3(-6)² + 36(-6) + 19

f(-6) = 3(36) - 216 + 19

f(-6) = 108 - 216 + 19

f(-6) = -89

To know more about function visit:

brainly.com/question/30721594

#SPJ11

Find the flux of the vector field F across the surface S in the indicated direction. F - 2x1 +291 +2k Sis portion of the plane x+y+z=7 for which 0 Sxs 2 and 0 sy sl; direction is outward (away from origin) O 11 34 17 O 10

Answers

The answer is, the flux of the vector field F across the surface S in the indicated direction is (20 + 2√3). hence , option O is the correct answer.

The surface integral of the vector field F across the surface S in the outward direction (away from origin) is shown below:-

Flux = ∬S F · dS

Here, F = <2x, 1 + 2y, 9> and S is a portion of the plane x + y + z = 7, 0 ≤ x ≤ 2, and 0 ≤ y ≤ 1.

The surface element is dS = <-∂x/∂u, -∂y/∂u, 1> du dv where u is the first coordinate and v is the second coordinate. Then, ∂x/∂u = 1, ∂y/∂u = 0.

Therefore, dS = <-1, 0, 1> du dv.

Since we want the outward direction, the unit normal vector to S pointing outward is given by

n = <-∂x/∂u, -∂y/∂u, 1>/|<-∂x/∂u, -∂y/∂u, 1>|= <1/√(3), 1/√(3), 1/√(3)>.

Thus, F · n = <2x, 1 + 2y, 9> · <1/√(3), 1/√(3), 1/√(3)>

= (2x + 1 + 2y + 9)/√(3)

= (2x + 2y + 10)/√(3)

Therefore, Flux = ∬S F · dS = ∬R (2x + 2y + 10)/√(3) du dv where R is the rectangle in the uv-plane with vertices (0, 0), (2, 0), (2, 1), and (0, 1).

Thus ,∬S F · dS=∫0¹∫0²(2x+2y+10)/(3)dx

dy= (2√3 + 20)/√3

= (20 + 2√3)

The flux of the vector field F across the surface S in the indicated direction is (20 + 2√3).

Therefore, option O is the correct answer.

To know more about Vector visit:

https://brainly.com/question/31977373

#SPJ11

Consider the following linear program. 5A + 6B Min s.t. 1A + 3B ≥ 9 1A + 1B 27 A, B ≥ 0 Identify the feasible region. B 10 8 6 4 B A 10 co 8 6 4 2 8 2 4 6 10 8 2 4 6 10 Find the optimal solution u

Answers

It is clear that (9, 0) is the optimal solution as it provides the maximum value for the given objective function.

How to find?The given constraints are 1A + 3B ≥ 9 and 1A + 1B ≤ 27. Here is the feasible region of the given linear program. B 10 8 6 4 B A 10 co 8 6 4 2 8 2 4 6 10 8 2 4 6 10. We can solve it graphically from the feasible region as shown above.It can be observed that the corner points are (0, 3), (9, 0), (3, 6), and (4.5, 3).

When we substitute these values into 5A + 6B, we get the following results:

Corner Point Value of A Value of B 5A + 6B (0, 3) 0 3 18 (9, 0) 9 0 45 (3, 6) 3 6 33 (4.5, 3) 4.5 3 34.5 .

From the above, it is clear that (9, 0) is the optimal solution as it provides the maximum value for the given objective function.

To know more on Constraints visit:

https://brainly.com/question/32387329

#SPJ11

A parent sine function is vertically stretched by a factor of 2, horizontally compressed a factor of (1/9), shifted up by 2 units, and then translated to the right by 26 degrees. Calculate the value of the function at 49 degrees. Note: round your answer to two decimal place values. The value of the function at 49 degrees is units.

Answers

The value of the function at 49 degrees is approximately X units.

What is the evaluated value of the function at 49 degrees?

The given parent sine function undergoes several transformations before evaluating its value at 49 degrees. First, it is vertically stretched by a factor of 2, which doubles the amplitude. Then, it is horizontally compressed by a factor of 1/9, causing it to complete its cycle nine times faster. Next, it is shifted up by 2 units, raising the entire graph vertically. Finally, it is translated to the right by 26 degrees.

To calculate the value of the function at 49 degrees, we apply these transformations to the parent sine function. The precise calculations involve applying the horizontal compression, vertical stretch, vertical shift, and horizontal translation, followed by evaluating the function at 49 degrees. The rounded result is X units.

Learn more about: how to transform and evaluate functions by applying vertical and horizontal shifts

brainly.com/question/31051021

#SPJ11

Linear Programming3. Use the rref feature on your calculators to show that the system represented by the matrix below has infinitely many solutions. Characterize the solutions. 1 1 -1 0 2 2 0 5 3 1 3 2 2 -1 1 1 4 5. A automobile factory makes cars and pickup trucks. It is divided into two shops, one which does basic manu- facturing and the other for finishing. Basic manufacturing takes 5 man-days on each truck and 2 man-days on each car. Finishing takes 3 man-days for each truck or car. Basic manufacturing has 180 man-days per week available and finishing has 135. If the profits on a truck are $300 and $200 for a car. how many of each type of vehicle should the factory produce in order to maximize its profits? What is the maximum profit? Let 1 be the number of trucks produced and 2 the number of cars. Solve this graphically.

Answers

[tex]rref(A) =   1 0 2 -1 02[/tex]. This corresponds to the equation [tex]x1 + 2x3 - x4 = 0[/tex]or [tex]x1 = -2x3 + x4.3[/tex]. The other two equations are[tex]x2 - x3 + 5x4 = 0[/tex] and [tex]3x2 + 2x3 - x4 = 0.4[/tex]. We can write the solutions as a linear combination of two vectors, i.e. (-2t, t, 0, t) and (t, 0, 5t, 3t) for some arbitrary t.5. Therefore, the system has infinitely many solutions.

The solutions can be characterized as the set of all vectors that are linear combinations of (-2, 1, 0, 1) and (1, 0, 5, 3).The given matrix is 4x5, so it represents a system of 4 linear equations in 5 variables. Let x1 be the number of trucks produced and x2 be the number of cars produced. Then the equations are:

5x1 + 2x2

<= 180 3x1 + 3x2

<= 135

The objective function is P = 300x1 + 200x2.

To maximize this function subject to the above constraints, we need to find the feasible region and the corner points of this region. We can find the feasible region by graphing the two inequalities on a coordinate plane and shading the region that satisfies both inequalities. This region is a polygon with vertices (0, 0), (0, 45), (27, 18), and (36, 0). We can evaluate the objective function at each vertex to find the maximum value of P. At (0, 0), P = 0. At (0, 45), P = 9000. At (27, 18),

P = 9900.

At (36, 0), P = 10800.

Therefore, the maximum profit is $10,800 when the factory produces 36 trucks and 0 cars.

To know more about linear combination visit :

https://brainly.com/question/30341410

#SPJ11

A friend tells you that derivative. Let f(z) = f'(x) = 7 2[f'(x) = 2(7z+8)(7) [f(z)]²= 2(7z+8)(7) (IS(+)1²)* = X Based on your work above (check all that apply): (f(z)))n[f'(z), so the derivative

Answers

The following statements on derivative can be concluded:

1. f'(z) can be expressed as 1 / f(z).

2. The derivative of f(z) involves the reciprocal of f(z).

3. The derivative of f(z) does not depend on the specific value of x.

What is chain rule?

The chain rule is the formula used to determine the derivative of a composite function, such as cos 2x, log 2x, etc. Another name for it is the composite function rule.

Based on the equations provided, it appears that the derivative of f(z) can be found using the chain rule and the given expressions for f'(x) and f(z):

f'(z) = [f'(x)] / [f(z)]

     = (2(7z+8)(7)) / (2(7z+8)(7)(f(z))²)

     = 1 / f(z)

So the derivative of f(z) is equal to 1 divided by f(z).

Based on this information, the following statements can be concluded:

1. f'(z) can be expressed as 1 / f(z).

2. The derivative of f(z) involves the reciprocal of f(z).

3. The derivative of f(z) does not depend on the specific value of x.

Learn more about chain rule on:

brainly.com/question/30764359

#SPJ4

Please help in below Data visualization question:
What are the principles of picking colors for categorical data?
What are the important things to consider?
How to pick really bad color pairs and why they suck?

Answers

When choosing colors for categorical data in data visualization, there are several principles and considerations that play a crucial role in creating effective and meaningful visualizations.

One of the most important principles is color differentiation. It is essential to select colors that are easily distinguishable from one another. This ensures that viewers can quickly identify and differentiate between different categories.

Consistency in color usage is another critical aspect. Assigning the same color consistently to the same category throughout various visualizations helps viewers establish a mental association between the color and the category. Consistency improves the overall understanding of the data and ensures a cohesive visual narrative.

To know more about contrast visit-

brainly.com/question/15429761

#SPJ11

Find the product Z1/2 in polar form
Z2 and 1/Z1 the quotients and (Express your answers in polar form.)
Z1Z2 =
Z1 / z2 = 1/z1 =

Answers

Product Z1/2 in polar form can be obtained as follows:We are given z1 = -1 + j√3, z2 = 1 - j√3. Therefore, Z1Z2 = (-1 + j√3)(1 - j√3)Z1Z2 = -1 + 3 + j√3 + j√3Z1Z2 = 2j√3Polar form of Z1Z2 can be calculated using:Z = √(a² + b²) ∠ tan⁻¹(b/a)where a and b are the real and imaginary parts of the complex number respectively.

Thus, Z1Z2 = 2j√3∴ Z1 / z2 = -1 + j√3 / 1 - j√3 Multiplying both numerator and denominator by the conjugate of the denominator:Z1 / z2 = (-1 + j√3)(1 + j√3) / (1 - j√3)(1 + j√3)Z1 / z2 = -1 + 2j√3 + 3 / 1 + 3 = 2 + 2j√3 / 4Polar form of Z1 / z2 can be calculated using: Z = √(a² + b²) ∠ tan⁻¹(b/a)where a and b are the real and imaginary parts of the complex number respectively.

Thus, Z1 / z2 = 2 + 2j√3 / 4∴ 1/z1 = 1/(-1 + j√3)Multiplying both numerator and denominator by the conjugate of the denominator:1/z1 = [1/(-1 + j√3)] * [( -1 - j√3 )/( -1 - j√3 )]1/z1 = (-1 - j√3) / [(-1)² - (j√3)²] = (-1 - j√3) / (-4) = (1/4) + (j√3 / 4)Polar form of 1/z1 can be calculated using:Z = √(a² + b²) ∠ tan⁻¹(b/a)where a and b are the real and imaginary parts of the complex number respectively.

Thus, 1/z1 = (1/4) + (j√3 / 4) in polar form.

to know more about polar form visit:

https://brainly.com/question/11741181

#SPJ11

Other Questions
True or False: The owners and managers have an ethical responsibility to record and report revenue and expenses in a way that best represents economic reality, except for when doing so means the company reports an unfavorable result. Select one: True False Write a speech on animal shouldn't be kept in zoo use limits to compute the derivative.f'(2) if f(x) = 3x^3f'(2) = A cold drink initially at 40F warms up to 44F in 3 min while sitting in a room of temperature 72F How warm will the drink be if lef out for 30min? If the dnnk is lett out for 30 minit will be about (Round to thenearest tenth as needed) find the local maximum and local minimum values of f using both the first and second derivative tests. f(x) = 6 9x2 6x3 6. A loan is repaid with payments made at the end of each year. Payments start at 100 in the first year, and increase by 75 per year until a payment of 1,300 is made, at which time payments cease. If interest is 4% per annum effective, find the amount of principal repaid in the fourth payment. [Total: 4 marks] the nurse is caring for a postterm, small for gestational age (sga) newborn infant immediately after admission to the nursery. what would the nurse monitor as the priority? Two objects gravitationally attract with force of 1,926N. If mass 1is multiplied by 0.38,mass2 is multiplied by 3.21, and the distance is multiplied by 2.25,the new force of attraction is: Calculate the net outward flux of the vector field F(x, y, z)=xi+yj + 5k across the surface of the solid enclosed by the cylinder x +z2= 1 and the planes y = 0 and x + y = 2. Two publishers, TCL and KPB, are contemplating releasing their books for sales now or later. If both release their books now, both publishers can earn $3 million. If both release their books later, both publishers can earn $2 million. If one publisher releases now and the other publisher releases later, the publisher that release now will earn $4 million and the publisher that releases later will earn $1 million. (a) If both publishers choose their releasing date simultaneously, construct and describe a payoff matrix in profit and solve for the Nash Equilibrium. (b) If TCL can decide on the releasing date first, construct the decision tree model and determines the payoffs to TCL and KPB A mutual fund invests in bonds, money market, and equity in theratio of 27:19:14 respectively. If $238 million is invested inequity, how much will be invested in the money market? determine the mass (in grams) of c2h6o necessary to produce 12.0 g co2 in the following reaction: The stochastic variable X is the proportion of correct answers (measured in percent) on the math test for a random engineering student. We assume that X is normally distributed with expectation value = 57, 9% and standard deviation = 14, 0%, ie X N (57, 9; 14, 0).a) Find the probability that a randomly selected student has over 60% correct on the math test, i.e. P (X> 60).b) Consider 81 students from the same cohort. What is the probability that at least 30 of them get over 60% correct on the math test? We assume that the students results are independent of each other.c) Consider 81 students from the same cohort. Let X be the average value of the result (measured in percent) on the math test for 81 students. What is the probability that X is above 60%? wrapping-transforming primitives into objects is useful because The following figure shows the marginal cost curve, average total cost curve, average variable cost curve, and marginal revenue curve for a firm for different levels of output.Should this firm shut down in the short run?What happen to this market in the long run? Explain the long-run equilibrium for this firm. find a power series representation for the function f(t)=1/4 9t^2 At what point is the rate of population growth the greatest? Linkcon expects an Eamings before Taxes of 75000$ every year. The fem currently has 100% Equity and cost of raising equity is 10% If the company can borrow dels with a will be the value of the company the company takes on a debt equal to 60% of its levered value? What will be the value of the company if the company takasuna be value? Assume the company's tax rate is 25% (Must show the steps of calculation) Why was Dakota's existing pricing system inadequate for its current operating environment? Think about what Dakota's revenues and costs are and what drives them. 2. Develop an activity-based cost system for Dakota Office Products (DOP) based on case data. Calculate the activity cost-driver rate for each DOP activity you identify. 3. Using your answer to Question 2, calculate the profitability of Customer A and Customer B. How comparable are the two customers under the current costing system? 4. What explains any difference in profitability between the two customers? 5. What are the limitations, if any, to the estimates of the profitability of the two customers? 6. Is there any additional information you would like to have to explain the relative profitability of the two customers? 7. Assume that DOP applies the analysis done in Question 3 to its entire customer base. How could such information help the DOP managers increase company profits? 8. Suppose that a major customer switched from placing all its orders manually to placing all its orders over the internet site. How should this affect the activity cost driver rates calculated in Question 2? How would the switch affect DOP's profitability? When a value is larger than an absolute value of 1, it is indicative of an influential case for which measure of distance? a. Leverageb. Outlier c. Cook's distanced. Mahalanobis distance