Describe the steady-flow assumption in your own words. What form of the conservation
equations should we use for flowing problems and what does the steady-flow assumption do to the form of
those equations? Finally, identify one steady-flow situation from everyday life – why can you make the steady-flow assumption for this situation?

Answers

Answer 1

The steady-flow assumption in thermodynamics and fluid mechanics assumes that the properties of a fluid at a specific point within a system remain constant over time, simplifying analysis and allowing for the application of conservation laws.

The steady-flow assumption is an assumption made in thermodynamics and fluid mechanics when analyzing fluid systems. It assumes that the properties of a fluid (such as pressure, temperature, and velocity) at a specific point in a system do not change over time. In other words, it assumes that the flow conditions remain constant at a particular location within the system.

This assumption is useful in simplifying the analysis of fluid systems, allowing engineers and scientists to focus on the average behavior of the fluid rather than considering the complexities of transient changes. It enables the application of conservation laws, such as the conservation of mass, energy, and momentum, in a simplified and manageable manner.

The steady-flow assumption assumes that the fluid flow is steady, meaning that it remains constant with respect to time at a given point. While it may not hold true for all fluid systems, it provides a reasonable approximation in many practical cases and serves as a foundational principle in the analysis of fluid flow and energy transfer.

To know more about steady-flow assumption:-

https://brainly.com/question/31314930


Related Questions

The standstill impedance of a six-pole, 50 Hz, three-phase, slip-ring induction motor is (0,2 + j2,4) ohms per phase. The rotor is star-connected and developed a maximum torque of 160 Nm. Calculate the torque developed at a slip of 4%. At maximum torque,

Answers

At a slip of 4 percent, the torque developed is 152.5 Nm.

The given standstill impedance of a six-pole, 50 Hz, three-phase, slip-ring induction motor is (0.2 + j2.4) ohms per phase and the rotor is star-connected and developed a maximum torque of 160 Nm. Therefore, the torque developed at a slip of 4% is 152.5 Nm.

At maximum torque, the rotor develops its highest torque, and the slip is 100%. The maximum torque, which is sometimes referred to as the breakdown torque, is given by the equation:

T_b = 3V_p^2R'_2 / s_max * (R'_2 + R_1)

Where V_p is the phase voltage, R_1 is the stator resistance, R'_2 is the rotor resistance referred to the stator, and s_max is the slip at maximum torque.

The denominator term, R'_2 + R_1, is sometimes referred to as the impedance seen by the stator.With the provided values, T_b = 160 Nm, R_1 = 0, and s_max = 1.

At a slip of 4 percent, s = 0.04, and the developed torque can be calculated using the following equation:

T = T_b * s / s_max = 160 * 0.04 / 1 = 6.4 Nm

In conclusion, the maximum torque is the highest torque that a motor can generate, and it occurs when the rotor is stationary. A torque of 160 Nm is generated at maximum torque. At a slip of 4%, the developed torque is 152.5 Nm.

To learn more about torque click here:

https://brainly.com/question/17512177#

#SPJ11

A 440-0, 60.H2, 3-6, 7- connected synchronous motor has a synchronous reactance of 1.5 or per phase. The torque angle = 250 when the power supplied to the motor is 80 kW.
a.) What is the magnitude of the internal generated voltage?
b.) What is the armature current Ia = Ia LO?

Answers

Using the given values of the power supplied to the motor (80 kW), torque angle (250 degrees converted to radians), and voltage at the terminals, we can calculate the armature current at the load condition (Ia = IaLO).

To calculate the magnitude of the internal generated voltage (Ea) and the armature current (Ia = IaLO), we can use the following formulas:

a) Magnitude of the internal generated voltage (Ea):

The magnitude of the internal generated voltage can be calculated using the formula:

Ea = (P / (3 * √3 * IaLO * cos(θ))) + V

where:

P = Power supplied to the motor (in watts)

IaLO = Armature current at the load condition (in amperes)

θ = Torque angle (in radians)

V = Voltage at the terminals of the motor (in volts)

Given that the power supplied to the motor is 80 kW (80,000 watts), and the torque angle is 250 degrees (converted to radians), you can substitute these values into the formula along with the other known values (such as the voltage at the terminals) to calculate the magnitude of the internal generated voltage (Ea).

b) Armature current at the load condition (Ia = IaLO):

The armature current at the load condition can be calculated using the formula:

IaLO = P / (3 * √3 * V * cos(θ))

where:

P = Power supplied to the motor (in watts)

V = Voltage at the terminals of the motor (in volts)

θ = Torque angle (in radians)

Using the given values of the power supplied to the motor (80 kW), torque angle (250 degrees converted to radians), and voltage at the terminals, you can calculate the armature current at the load condition (Ia = IaLO).

Learn more about armature current from the given link!

https://brainly.in/question/50692921

#SPJ11

Give the number of protons and neutrons in the nucleus of each of the following isotopes. (a) carbon-14 protons and neutrons (b) cobalt-60 protons and neutrons (c) boron-11 protons and neutrons (d) tin-120 protons and neutrons

Answers

(a) Carbon-14: 6 protons, 8 neutrons

(b) Cobalt-60: 27 protons, 33 neutrons

(c) Boron-11: 5 protons, 6 neutrons

(d) Tin-120: 50 protons, 70 neutrons

(a) Carbon-14:

The isotope carbon-14 has a mass number of 14, which indicates the total number of protons and neutrons in its nucleus. Carbon has an atomic number of 6, which represents the number of protons. To determine the number of neutrons, we subtract the atomic number from the mass number.

Number of protons: 6

Number of neutrons: 14 - 6 = 8

Therefore, carbon-14 has 6 protons and 8 neutrons.

(b) Cobalt-60:

The isotope cobalt-60 has a mass number of 60.

Number of protons: The atomic number of cobalt is 27, so it has 27 protons.

Number of neutrons: To find the number of neutrons, we subtract the atomic number from the mass number.

Number of neutrons: 60 - 27 = 33

Therefore, cobalt-60 has 27 protons and 33 neutrons.

(c) Boron-11:

The isotope boron-11 has a mass number of 11.

Number of protons: The atomic number of boron is 5, so it has 5 protons.

Number of neutrons: To find the number of neutrons, we subtract the atomic number from the mass number.

Number of neutrons: 11 - 5 = 6

Therefore, boron-11 has 5 protons and 6 neutrons.

(d) Tin-120:

The isotope tin-120 has a mass number of 120.

Number of protons: The atomic number of tin is 50, so it has 50 protons.

Number of neutrons: To find the number of neutrons, we subtract the atomic number from the mass number.

Number of neutrons: 120 - 50 = 70

Therefore, tin-120 has 50 protons and 70 neutrons.

Learn more about protons

brainly.com/question/12535409

#SPJ11

QUESTION 7 Orange juice concentrate is flowing at 0.298333 m³ s-1 in a 60 m diameter pipe. If the temperature of the juice concentrate is 40°C, what is the Reynold number of the flow system? And is the flow turbulent or streamline? Viscosity of orange juice concentrate at 40 °C = 4.13 CP -3 Density of orange juice concentrate at 40°C = 789 kg m

Answers

Using the given formula;Re = (789 kg m) (0.298333 m³ s⁻¹) (60 m) / (4.13 CP -3)Re = 11,347As the Reynold's number (Re) is greater than 4000, the flow is turbulent. So, the flow is turbulent.

Reynold's number is used to identify whether the flow is laminar or turbulent. The formula to find the Reynold's number is given by:Re = ρvd/μWhereRe = Reynold's numberρ = density of the fluidv = velocity of the

fluid = diameter of the pipemu

(μ) = Viscosity of the fluid laminar flow is when Re < 2000

Turbulent flow is when Re > 4000

Transitional flow is when 2000 < Re < 4000 Given data, Orange juice concentrate is flowing at 0.298333 m³ s-1 in a 60 m diameter pipe.

Viscosity of orange juice concentrate at 40 °C = 4.13 CP -3

Density of orange juice concentrate at 40°C = 789 kg m

Temperature of juice concentrate = 40°C.Using the given formula;

Re = (789 kg m) (0.298333 m³ s⁻¹) (60 m) / (4.13 CP -3)

Re = 11,347As Reynold's number (Re) is greater than 4000, the flow is turbulent. So, the flow is turbulent.

To know more about Reynold's number visit:

brainly.com/question/31298157

#SPJ11

Two steel conductors are bent into rectangular prisms with square bases of lengths a and I, where l=2a. If the thin prism has a length of L1=10a and the thick prism has a length of L2=40a; compare the resistances of the two conductors: The thinner conductor has smaller resistance O a. Ob. The thicker conductor has smaller resistance They have equal resistances OC. We cannot answer the question with the information provided O d.

Answers

Two steel conductors are bent into rectangular prisms with square bases of lengths a and I, where l=2a. If the thin prism has a length of L1=10a and the thick prism has a length of L2=40a; compare the resistances of the two conductors:

The thinner conductor has smaller resistance, so option A is correct.Conductors are materials that have a low resistance to the flow of electric current. A rectangular prism is a three-dimensional shape that has six faces, each of which is a rectangle. Square bases have sides of the same length.

The thinner conductor has a lower resistance compared to the thicker conductor because resistance increases as the length of the conductor increases, all other factors remaining constant. The resistance of a conductor depends on three things, namely, its length, cross-sectional area, and material of construction.

The greater the length of a conductor, the greater its resistance, as its cross-sectional area remains the same.The thin prism has a length of L1=10a, and the thick prism has a length of L2=40a.

To know more about rectangular visit:

https://brainly.com/question/32444543

#SPJ11

14. The computer power supply used in your computer is not 100% efficient. Can you think of any
evidence that the power supply is not 100 % efficient?
a.) The power supply keeps running around the room.
b.) The power supply is cool.
c.)The power supply make a noise.
d.) The power supply is warm.
e.) None of the above.

Answers

The correct answer to the question is option d. The power supply(P) is warm. The computer power supply used in your computer is not 100% efficient.

The power supply is an important component of a computer system(CS). The computer power supply is responsible for converting the alternating current from the outlet to direct current to power the computer components like the Central processing unit  (CPU), motherboard, hard disk drives(HDD), and graphics card. It is not 100% efficient due to the following reasons: The power supply produces a lot of heat which is due to the inefficiency of the power supply and the conversion process. This heat is usually dissipated through the power supply unit using a fan that is mounted inside the computer. As a result, the power supply unit is always warm to the touch.The power supply unit has a cooling fan inside it that helps to regulate the temperature inside the computer. When the computer is turned on, the fan begins to spin and the power supply unit starts to get warm. This is evidence that the power supply is not 100% efficient since it is producing heat that needs to be dissipated. So, the option d. The power supply is warm. is the correct answer.

To know more about hard disk drives visit:

https://brainly.com/question/29608399

#SPJ11

Amonatomic ideal gas, kept at the constant pressure 1.804E-5 Pa curing a temperature change of 26.5 °C. If the volume of the gas changes by 0.00476 mº during this process, how many mol of gas where present? mol Save for Later Submit Answer 1 Type here to search O 00 o ។ 58°F Sunny 7:46 PM 3/101022

Answers

The number of moles of gas present is 3.469E-7 mol.

The number of moles of gas present in an amonatomic ideal gas kept at the constant pressure 1.804E-5 Pa during a temperature change of 26.5°C can be calculated using the ideal gas law formula,

PV=nRT

where P=pressure,

V=volume,

n=number of moles,

R=ideal gas constant,

and T=temperature in Kelvin.
We are given:

P=1.804E-5 Pa (pressure)

V=0.00476 m³ (volume)

T=26.5 + 273.15 = 299.65 K (temperature change from 26.5°C to Kelvin)

We also know that the gas is monoatomic, so it has a molar mass of 4g/mol (from the periodic table) and the ideal gas constant is R = 8.3145 J/(mol*K).

Using the ideal gas law formula, PV = nRT,

we can rearrange to solve for n:

n = PV/RT

Substituting our given values, we get:

n = (1.804E-5 Pa)(0.00476 m³) / (8.3145 J/(mol*K))(299.65 K) = 3.469E-7 mol

Thus, the number of moles of gas present is 3.469E-7 mol.

To know more about moles, visit:

https://brainly.com/question/15209553

#SPJ11

An aircraft is flying at an altitude of 6 km. Its velocity with respect to the surrounding air is 100 m/s. Calculate the dynamic pressure.

Answers

To calculate the dynamic pressure of an aircraft flying at an altitude of 6 km with a velocity of 100 m/s is 1820 Pa.

To calculate dynamic pressure using this formula

Dynamic Pressure = 0.5 * Density * Velocity^2

To find the density at the given altitude, we can use the International Standard Atmosphere (ISA) model. At an altitude of 6 km, the density can be approximated as 0.364 kg/m^3.

Now, we can plug the values into the formula:

Dynamic Pressure = 0.5 * 0.364 kg/m^3 * (100 m/s)^2

Calculating this expression, we get:

Dynamic Pressure = 0.5 * 0.364 kg/m^3 * 10000 m^2/s^2

Simplifying further, we find:

Dynamic Pressure = 1820 Pa

Therefore, the dynamic pressure of the aircraft at an altitude of 6 km and a velocity of 100 m/s is 1820 Pa.

To know more about Dynamic Pressure

https://brainly.com/question/33165001

#SPJ11

answer 2nd and 3rd question? change in momentum of a
water rocket during flight considering it as rigid body .
Make a model of water rocket along with its propulsion mechanism. You will need to attain the maximum range and maximum height. Also, you need to find the change in momentum during the flight by consi

Answers

The change in momentum of a water rocket during flight considering it as a rigid body is given by:Δp = (m * v) f – (m * v) iWhere,Δp is the change in momentumm is the mass of the rocketv f is the final velocity of the rocketv i is the initial velocity of the rocketThe momentum of a body is the product of its mass and velocity.

During the launch of a water rocket, the water is expelled from the rocket at a high speed in the opposite direction to the rocket's direction of motion. This causes the rocket to experience a change in momentum that propels it upwards.To make a model of a water rocket along with its propulsion mechanism, you will need a plastic bottle, fins, a nose cone, water, and air. The propulsion mechanism can be created by inserting a cork with a nozzle into the neck of the bottle.

The bottle should be partially filled with water and pressurized with air using a pump. When the cork is removed, the pressurized air forces the water out of the nozzle, propelling the rocket upwards.To attain the maximum range and maximum height, the water rocket should be launched at an angle of 45 degrees to the horizontal. This angle gives the rocket the maximum range and height. The rocket's fins and nose cone should also be designed to reduce drag and increase stability.

The rocket's mass should also be minimized to increase its range and height.Overall, the change in momentum of a water rocket during flight is determined by its mass and velocity. By designing an efficient propulsion mechanism, reducing the rocket's mass, and optimizing its design, the maximum range and height can be achieved while ensuring a significant change in momentum during flight.

To know more about considering visit :

https://brainly.com/question/14110796

#SPJ11

(b) A 500MVA,24kV,60 Hz three phase synchronous generator is operating at rated voltage and frequency with a terminal power factor of 0.8 lagging to an infinite bus. The synchronous reactance of 0.8Ω. The stator coil resistance is negligible. (i) Determine the internal generated voltage, the power angle. (ii) If the steam input is unchanged and the internal generated voltage raised by 20%, determine the new value of the armature current and power factor. (iii) If the generator is operating at the internal generated voltage in Q3(b)(i), what is the steady state maximum power the machine can be delivered before losing synchronism? Also, determine the armature current and the reactive power corresponding to this maximum power. Sketch the corresponding phasor diagram.

Answers

The steady-state maximum power that the machine can deliver before losing synchronism is given by the formula Pmax=EbVtXS×sinδWhere Eb is the voltage induced in the field winding of the generator. Since the field current is not given, we cannot calculate Eb directly.

However, we can use the fact that the maximum power occurs when δ is 90°. This is because sinδ is maximum at 90°. Therefore, we can write Pmax=EbVtXS×1

=EbVtXS

=24000×0.8

=19,200 kVA The armature current corresponding to this maximum power isIamax

=Pmax/√3VtCosϕ

=19,200×103/√3×24,000×0.8

=0.925 kA

The reactive power corresponding to this maximum power is Q=EbVtXS×cosδ

=24000×0.8×0.6

=11,520 kVAr The phasor diagram for the generator operating at maximum power is shown below:

Figure:

Phasor diagram of generator operating at maximum power

To know more about maximum visit:

https://brainly.com/question/30693656

#SPJ11

Please write your own answer, I will give like. If you copy
other answer, I will give dislike.
22. You have Si and GaAs wafers at room temperature. (40 points) a. Answer: Between Silicon and GaAs, which semiconductor is better for fabricating light-emitting diodes (LED)? Why? (5 points) b. Calc

Answers

If one was given Si and GaAs (Gallium-Arsenic) at room temperature, using GaAs is better for fabricating light-emitting diodes or LED.

Although both SI and GaAs can be used as semiconductors in light-emitting diodes, it all boils down to efficiency and feasibility. The energy band gaps for both are phenomenal with the infrared wavelength of light, however, to incorporate and make use of the same with Si is tedious and is limited to only the far-near region.

The voltage drop association with photons emergence in Gallium-arsenide is 1.2V giving out an 850nm wavelength of light that lies in the invisible region of infrared light. However, with the Silicon, the voltage drop is 0.5V giving out invisible infrared light of 2040nm wavelength of light.

Thus, it's just efficient to use GaAs.

To learn more about Si and GaAs semiconductors:

brainly.com/question/33288061

#SPJ4

consider parcels of moist and dry air, with the same pressure and density. using the ideal gas laws, describe what the temperature of the dry air parcel must be to compare with that of the moist air parcel

Answers

According to the ideal gas laws, the temperature of the dry air parcel must be the same as that of the moist air parcel, assuming they have the same pressure and density.

To compare the temperature of a moist air parcel with that of a dry air parcel, we can use the ideal gas law. The ideal gas law relates the pressure, volume, and temperature of an ideal gas. It can be expressed as: PV = nRT, where P is the pressure, V is the volume, n is the number of moles of gas, R is the ideal gas constant, and T is the temperature.

In this case, we are comparing two parcels of air with the same pressure and density. Since pressure and density are the same, the pressure term (P) and the number of moles term (n) will be identical for both parcels. Therefore, we can rewrite the ideal gas law for both parcels as: V₁/T₁ = V₂/T₂, where V₁ and V₂ are the volumes of the moist and dry air parcels, respectively, and T₁ and T₂ are their respective temperatures.

If the volumes (V₁ and V₂) are the same, we can simplify the equation to: T₁ = T₂.

Therefore, the temperature of the dry air parcel must be the same as the temperature of the moist air parcel to make a direct comparison between them, given that they have the same pressure, density, and volume.

Learn more about the ideal gas law: https://brainly.com/question/30458409

#SPJ11

FM L Dale. 12/21/2020 11:59:00 PM hermodyn Degil Date. 14/1/2020 7.0 (5%) Problem 14: Answer the following question about the coefficient of performance (COP). Randomized Variables T = -1.4°F Th = 76° F Status e for view atus mpleted What is the maximum coefficient of performance (COP) for a freezer that is set to maintain the cold space at -1.4°F, which is located in a kitchen that is maintained at 76° F? Grade Summary COP = Deductions 0% Potential 100%

Answers

The maximum coefficient of performance (COP) for a freezer that is set to maintain the cold space at -1.4°F, which is located in a kitchen that is maintained at 76° F is given as 4.05.

What is a freezer?

A freezer is an electronic device that is used to keep food and other perishable things at a very low temperature. This device keeps food and other things from spoiling due to the low temperature that is being maintained in the freezer.

Coefficient of Performance (COP) is defined as the ratio of the heat that is moved from the low-temperature environment to a high-temperature environment to the amount of work that is done by a refrigeration unit or device.

The maximum coefficient of performance (COP) for a freezer that is set to maintain the cold space at -1.4°F, which is located in a kitchen that is maintained at 76° F is given by

COP = (Th/Tl - 1) = (76 + 459.67)/(-1.4 + 459.67) - 1

= 4.05 (approx.)

Therefore, the maximum coefficient of performance (COP) for a freezer that is set to maintain the cold space at -1.4°F, which is located in a kitchen that is maintained at 76° F is given as 4.05.

learn more about freezer here

https://brainly.com/question/31408301

#SPJ11

An alpha particle (9 = +2e, m = 4.00 u) travels in a circular path of radius 5.47 cm in a uniform magnetic field with B = 1.77 T. Calculate (a) its speed, (b) its period of revolution, (c) its kinetic energy, and (d) the potential difference through which it would have to be accelerated to achieve this energy. (a) Number 4665975.9 Units m/s (b) Number 7.3658e-8 Units S (c) Number i 7.2280e-20 Units eV (d) Number 2.34e5 Units V

Answers

We know that the magnetic force on a charged particle moving with velocity v in a magnetic field of strength B is given by the equation: F = qvBsinθ, Where q is the charge of the particle, v is the velocity of the particle, B is the magnetic field strength and θ is the angle between v and B.

Given, the electric charge of alpha particle = 2e = 2 × 1.6 × [tex]10^{-19}[/tex] C

The mass of alpha particle = 4 u = 4 × 1.661 × [tex]10^{-27[/tex] kg

Radius of the circular path, r = 5.47 cm = 5.47 × [tex]10^{-2[/tex] m

Magnetic field, B = 1.77 T

(a) Speed of the alpha particle

We know that the magnetic force on a charged particle moving with velocity v in a magnetic field of strength B is given by the equation: F = qvBsinθ

Where q is the charge of the particle, v is the velocity of the particle, B is the magnetic field strength and θ is the angle between v and B. Since the alpha particle moves in a circular path, the magnetic force F acts as the centripetal force [tex]mv^2[/tex]/r. Therefore, we have:

[tex]mv^2[/tex]/r = qvBsinθ

We know that the angle between the velocity of the alpha particle and the magnetic field is 90°.

sinθ = 1

Substituting the given values in the above equation, we get: [tex]mv^2[/tex]/r = qv

B⇒ v = q

Br/m= 2 × 1.6 × [tex]10^{-19[/tex] C × 1.77 T × 5.47 × [tex]10^{-2[/tex] m / 4 × 1.661 × [tex]10^{-27[/tex] kg= 4665975.9 m/s

Therefore, the speed of the alpha particle is 4.67 × [tex]10^6[/tex] m/s.

(b) Period of revolution

The time taken by the alpha particle to complete one revolution is called its period of revolution T. We can calculate T using the formula: T = 2πr/v= 2π × 5.47 × [tex]10^{-2[/tex] m / 4.67 × [tex]10^6[/tex] m/s= 7.3658 ×[tex]10^{-8[/tex]s

Therefore, the period of revolution of the alpha particle is 7.37 × [tex]10^{-8[/tex] s.

(c) Kinetic energy

The kinetic energy of the alpha particle is given by the formula: K.E. = 1/2 [tex]mv^2[/tex]= 1/2 × 4 × 1.661 × [tex]10^{-27[/tex] kg × (4.67 × [tex]10^6[/tex] m/s[tex])^2[/tex]= 7.2280 × [tex]10^{-20[/tex] J= 7.2280 × [tex]10^{-20[/tex] J × 6.24 × [tex]10^{18[/tex] eV/J= 4.50 eV

Therefore, the kinetic energy of the alpha particle is 4.50 eV.

(d) Potential difference

To find the potential difference, we can use the formula: K.E. = eV

where K.E. is the kinetic energy of the alpha particle and e is the charge of an electron. Substituting the given values, we get: 4.50 eV = 1.6 × [tex]10^{-19[/tex] C × V⇒ V = 4.50 eV / 1.6 ×[tex]10^{-19[/tex] C= 2.34 × [tex]10^5[/tex] V

Therefore, the potential difference through which the alpha particle would have to be accelerated to achieve this energy is 2.34 × [tex]10^5[/tex] V.

To know more about magnetic field visit:

https://brainly.com/question/19542022

#SPJ11

A capacitor is constructed with two parallel metal plates each with an area of \( 0.83 \mathrm{~m}^{2} \) and separated by \( d=0.80 \mathrm{~cm} \). The two plates are connected to a \( 9.0 \)-volt b

Answers

The magnitude of the charge accumulated on each of the oppositely charged plates is approximately 5.4888 * 10⁽⁻¹⁰⁾ C.

To find the electric field in the region between the two plates of a capacitor, we can use the formula:

E = V / d

where E is the electric field, V is the potential difference (voltage) between the plates, and d is the distance between the plates.

V = 8.0 V

d = 0.80 cm = 0.80 * 10⁽⁻²⁾ m

Plugging in these values into the formula:

E = 8.0 V / (0.80 * 10⁽⁻²⁾ m)

E = 8.0 V / 0.008 m

E = 1000 V/m

Therefore, the electric field in the region between the two plates is 1000 V/m.

To find the charge magnitude Q accumulated on each of the oppositely charged plates, we can use the formula:

Q = C * V

where Q is the charge, C is the capacitance, and V is the potential difference (voltage) between the plates.

The capacitance of a parallel-plate capacitor is given by the formula:

C = ε₀ * A / d

where ε₀ is the permittivity of free space, A is the area of each plate, and d is the distance between the plates.

A = 0.78 m²

d = 0.80 cm = 0.80 * 10⁽⁻²⁾ m

Substituting these values into the capacitance formula:

C = (8.85 * 10⁽⁻¹²⁾⁾ F/m) * 0.78 m² / (0.80 * 10⁽⁻²⁾⁾m)

C ≈ 6.861 * 10⁽⁻¹¹⁾ F

Plugging the capacitance and the potential difference into the charge formula:

Q = (6.861 * 10⁽⁻¹¹⁾ F) * 8.0 V

Q = 5.4888 * 10⁽⁻¹⁰⁾ C

To know more about  charge refer here

brainly.com/question/14692550

#SPJ11

Complete Question : A capacitor is constructed with two parallel metal plates each with an area of 0.83 m 2 and separated by d=0.80 cm. The two plates are connected to a 9.0-volt battery. The current continues until a charge of magnitude Q accumulates on each of the oppositely charged plates. Find the electric field in the region between the two plates. V. /m Find the charde Q.

The magnitude J(r) of the current density in a certain cylindrical wire is given as a function of radial distance from the center of the wire's cross section as J(r) = Br, where r is in meters, J is in amperes per square meter, and B = 1. 95 ✕ 105 A/m3. This function applies out to the wire's radius of 2. 00 mm. How much current is contained within the width of a thin ring concentric with the wire if the ring has a radial width of 14. 0 μm and is at a radial distance of 1. 20 mm?

Answers

The current contained within the width of a thin ring concentric with the wire, with a radial width of 14.0 μm and at a radial distance of 1.20 mm, can be determined by integrating the current density function over the area of the ring.

To calculate the current, we need to find the area of the ring first. The area of the ring can be approximated as the difference between the areas of two concentric circles: the outer circle with a radius of (1.20 mm + 7.00 μm) and the inner circle with a radius of (1.20 mm - 7.00 μm).

The outer radius of the ring is (1.20 mm + 7.00 μm) = 1.207 mm = 0.001207 m.

The inner radius of the ring is (1.20 mm - 7.00 μm) = 1.193 mm = 0.001193 m.

The area of the ring is then given by:

A = π * (outer radius)^2 - π * (inner radius)^2.

Substituting the values:

A = π * (0.001207 m)^2 - π * (0.001193 m)^2.

Now, we can calculate the current within the ring by multiplying the area with the current density at the radial distance:

Current = J(r) * A.

The current density, J(r), is given as J(r) = Br, where B = 1.95 × 10^5 A/m^3.

Substituting the values:

Current = (1.95 × 10^5 A/m^3) * (0.001207 m - 0.001193 m).

Learn more about current here:-

https://brainly.com/question/32059694

#SPJ11

Determine the far field distance for the K-Band parabolic reflector antenna used for reception. Given the diameter of the direct broadcast system is 20 inches and it operates at 18 GHz. (3 marks) Question 9 The antenna ranges are more practical than anechoic chambers for testing low-frequencies antennas. Justify the statement. (4 marks) Question 10 Design a rectangular microstrip patch antenna for 802.11 wireless LAN applications with RT/Duroid 6010.2 substrate. The relative permittivity of the substrate is 10.2 and the thickness is 1.27x10³ m. The antenna is operating at a wavelength of 0.12 m. Determine: (a) the width of the patch (3 marks) (b) the effective dielectric constant (3 marks) (c) the effective length of the patch (3 marks) the actual length of the patch.

Answers

The far field distance is given by D=sqrt(4L^2/lambda) where L is the diameter of the reflector antenna and lambda is the wavelength. D=sqrt(4(20/39.37)^2/0.032)=29.44m

Antenna ranges offer several advantages over anechoic chambers for testing low-frequency antennas;

Some low-frequency antennas can be significantly large to be tested in anechoic chambers.

Antenna ranges can accommodate directional low-frequency antennas, but anechoic chambers cannot.

The ground plane may be simulated at an antenna range, but not at anechoic chambers.

The design of a rectangular microstrip patch antenna for 802.11 wireless LAN applications with RT/Duroid 6010.2 substrate given relative permittivity of 10.2 and thickness of 1.27x10³ m.

The wavelength is given by lambda=c/f where c is the speed of light and f is the frequency of operation.

lambda=2.5cm

           =0.025m

(a) The patch width, W=0.412*lambda/sqrt(epsilon_r+1.41)

                                    =0.412*0.025/sqrt(10.2+1.41)

                                   =0.0037m or 3.7mm

(b) The effective dielectric constant,

epsilon_eff =(epsilon_r+1)/2+((epsilon_r-1)/2)*(1+12h/W)^(-0.5)

                  =(10.2+1)/2+((10.2-1)/2)*(1+12(1.27x10^-3)/0.0037)^(-0.5)

                 =5.215

(c) The effective length of the patch,

L_eff=lambda/2*sqrt(epsilon_eff)

       =0.12/2*sqrt(5.215)

       =0.021m or 21mm

The actual length of the patch,

L=L_eff-2delta where delta

  =0.412h(epsilon_eff+0.3)(W/h+0.264)(epsilon_eff-1)^(-0.5)

  =0.412(1.27x10^-3)(5.215+0.3)(3.7x10^-3/1.27x10^-3+0.264)(5.215-1)^(-0.5)

  =0.0004m or 0.4mm

L=0.021-2(0.0004)

 =0.0202m or 20.2mm

To learn more on  frequency :

https://brainly.com/question/30466268

#SPJ11

The wavelength range of the visible spectrum is approximately 400-700 nm. White light falls at normal incidence on a diffraction grating that has 350 slits/mm. Find the angular width of the visible spectrum in the first order. (Calculate your angle to the nearest 0.1 deg)

Answers

The angular width of the visible spectrum in the first order is approximately 1142.9 deg to 2000 deg.

To find the angular width of the visible spectrum in the first order, we can use the formula:

Δθ = λ / d

Where,

Δθ is the angular width

λ is the wavelength of light

d is the slit spacing of the diffraction grating

Given,

Wavelength range of visible spectrum: 400-700 nm

Slit spacing of the diffraction grating: 350 slits/mm = 0.35 slits/μm

For the shortest wavelength (λ = 400 nm):

Δθ = 400 nm / (0.35 slits/μm) = 1142.9 μm/μm = 1142.9 deg

For the longest wavelength (λ = 700 nm):

Δθ = 700 nm / (0.35 slits/μm) = 2000 μm/μm = 2000 deg

Therefore, the angular width of the visible spectrum in the first order is approximately 1142.9 deg to 2000 deg (rounded to the nearest 0.1 deg).

Learn more about angular width from the given link:

https://brainly.com/question/31954163

#SPJ11

A total of 10,000 BTU have been rejected from the condenser in two minutes. If the cooling capacity is 120 gallons per minute of water, compute the temperature of cooling water that enters the cooling tower. The cooling water is supplied from the cooling tower at 120ºF. Use the standard density of water.

Answers

the temperature of cooling water that enters the cooling tower is approximately 114.0115 °F.

Given:

BTU rejected = 10,000, cooling capacity = 120 gallons/min of water, cooling water supplied at 120ºFWe need to calculate the temperature of cooling water that enters the cooling tower. We know that,

Heat rejected by the condenser (BTU) = Mass of cooling water (gallons) × Density of water (lb/gallon) × Specific heat of water (BTU/lb °F) × Change in temperature (°F)

Heat rejected by the condenser = 10,000 BTU = Mass of cooling water × 1 lb/gallon × 1 BTU/lb °F × ΔT (in °F) ΔT

= 10,000 / (Mass of cooling water in gallons) .....(i)

Since the cooling capacity is 120 gallons per minute of water, Mass of cooling water in 2 minutes = 120 × 2 = 240 gallons

Density of water at standard temperature and pressure = 8.3454 lb/gallon

Specific heat of water = 1 BTU/lb °F

Substitute the values in equation (i)ΔT = 10,000 / 240× 8.3454 × 1ΔT = 5.9885 °F

The change in temperature (ΔT) of the cooling water is 5.9885 °F.

Since the cooling water is supplied from the cooling tower at 120ºF, the temperature of cooling water that enters the cooling tower = 120 - ΔT= 120 - 5.9885= 114.0115 °F (approx)

Therefore, the temperature of cooling water that enters the cooling tower is approximately 114.0115 °F.

learn more about cooling water here

https://brainly.com/question/1263939

#SPJ11

Write the following characteristics for the lithium and carbon atom:

a) write its electron configuration

b) Write the quantum numbers n, l, and ml corresponding to the electrons in their last electronic shell

c) What chemical characteristics do lithium batteries have that make them so attractive to the industry?

Answers

Lithium batteries are attractive to the industry due to their high energy density, rechargeability, low self-discharge, high voltage, and environmental friendliness.

Electron configuration:

Lithium (Li): 1s^2 2s^1

Carbon (C): 1s^2 2s^2 2p^2

Quantum numbers for the electrons in their last electronic shell:

Lithium (Li): The electron in the last electronic shell of lithium has quantum numbers n = 2, l = 0, and ml = 0. (2s orbital)

Carbon (C): The electrons in the last electronic shell of carbon have quantum numbers n = 2, l = 1, and ml = -1, 0, and +1. (2p orbitals)

Lithium batteries have several chemical characteristics that make them attractive to the industry:

High energy density: Lithium batteries have a high energy density, which means they can store a large amount of energy in a relatively small and lightweight package. This makes them ideal for portable electronic devices and electric vehicles where energy efficiency and weight are crucial.

Rechargeability: Lithium batteries are rechargeable, allowing them to be used repeatedly. They have a longer cycle life compared to many other battery technologies, meaning they can be charged and discharged numerous times before losing significant capacity.

Low self-discharge: Lithium batteries have a low self-discharge rate, meaning they retain their charge for a longer period when not in use. This makes them suitable for applications where long-term energy storage is required, such as emergency backup systems.

High voltage: Lithium batteries have a higher voltage compared to other battery chemistries, providing a higher power output. This makes them suitable for applications that require high power, such as power tools and electric vehicles.

Environmental friendliness: Lithium batteries are relatively environmentally friendly compared to other battery chemistries, as they do not contain toxic heavy metals like lead or cadmium. They also have a lower self-discharge rate, reducing the need for frequent replacement and waste generation.

Overall, the combination of high energy density, rechargeability, low self-discharge, high voltage, and environmental friendliness makes lithium batteries highly attractive to the industry for a wide range of applications.

Learn more about Lithium batteries

brainly.com/question/31115504

#SPJ11







(6 marks) Q2) Design a Low pass filter with cut frequency of \( 10 \mathrm{KHz} \)

Answers

The low-pass filter is designed using the resistance of 10kΩ and capacitance of 15.9nF.

A Low Pass Filter (LPF) allows low-frequency signals to pass through while blocking high-frequency signals. The cut-off frequency, also known as the -3dB point, is the frequency at which the amplitude of the signal is reduced by 50% of its original value. This 50% value is also known as the power level. The cut-off frequency of a filter is the point where the filter transitions from a passband to a stopband.

For a low-pass filter with a cutoff frequency of 10kHz, the following is the design:

Let C be the capacitance value, and R be the resistance value. The cutoff frequency (f_c) formula for a first-order low-pass filter is:

f_c = 1/(2πRC)

We can rearrange this formula to solve for either R or C. Assume R = 10kΩ, then

C = 1/(2πf_cR)

= 1/(2π × 10 × 10³)

= 1/(62.83 × 10³)

= 15.9nF (approximately)

Thus, the low-pass filter is designed using the resistance of 10kΩ and capacitance of 15.9nF.

Learn more about Low Pass Filter (LPF) from :

https://brainly.com/question/31359698
#SPJ11

A 120 V circuit in a house is equipped with a 20 A circuit breaker that will "trip" (i.e., shut off) if the current exceeds 20 A. How many 515 watt appliances can be plugged into the sockets of that circuit before the circuit breaker trips? (Note that the answer is a whole number as fractional appliances are not possible!),

Answers

The maximum number of appliances that can be plugged into the sockets of that circuit before the circuit breaker trips is 4 whole numbers.

Given data: The voltage of circuit, V = 120 V

The current at which circuit breaker will trip, I = 20 A

The power of each appliance, P = 515 W

To find: The number of appliances that can be plugged into the sockets of that circuit before the circuit breaker trips.

Formula:The current through the circuit can be found as follows;

I = P / V Where P is the power of the appliance and V is the voltage of the circuit.

Substituting the given values

I = 515 W / 120 VI = 4.29 A (approx)

The maximum number of appliances can be calculated as follows;

N = I / n Where I is the current of the circuit and n is the current consumption of a single appliance.

N = 20 A / 4.29 AN = 4.66 (approx)

To know more about  circuit  visit:-

https://brainly.com/question/12608491

#SPJ11

What mass of 14C (having a half-life of 5730 years) do you need to provide an activity of 7.57nCi ? 3.84×10−20 kg8.68×10−13 kg1.70×10−12 kg5.38×10−19 kg1.22×10−13 kg​

Answers

The mass of 14C required is,m = 2.74 × 10-21 mol × 14 g/mol=3.84×10−20 kg

Radioactivity refers to the process by which the nucleus of an atom of an unstable isotope releases energy in the form of radiation. It has three types, namely: alpha decay, beta decay, and gamma decay.

ActivityThe activity is the rate at which radioactive nuclei undergo decay. It is the number of disintegrations per second of a sample of radioactive material. It is measured in Becquerels (Bq) or Curie (Ci).

The formula for calculating activity is given as,A=λNWhere A represents activity (Bq), λ represents the decay constant, and N represents the number of radioactive nuclei present.

 Half-lifeIt is defined as the time taken for the activity of a radioactive sample to fall to half of its original value. It is denoted by the symbol T1/2.

The formula for calculating half-life is given as,T1/2=ln2λ

CalculationThe mass of 14C required to provide an activity of 7.57 nCi is to be calculated.

Therefore, the first step is to convert the activity to Becquerels.

The conversion factor is, 1 Ci = 3.7 × 1010 Bq7.57 n

                                       Ci = 7.57 × 10-9

                                         Ci=7.57 × 10-9 Ci×3.7 × 1010 Bq/Ci = 2.80 × 102 Bq

The next step is to calculate the number of radioactive nuclei present.

The formula is given as,A=λNN=A/λN = (2.80 × 102)/ (ln2/5730)=1.90 × 1012

The mass of 14C required to provide an activity of 7.57 nCi is given as,m = N × Mwhere M is the molar mass and N is the number of moles.

The molar mass of 14C is 14 g/mol.

The number of moles of 14C is,3.84×10−20 kg ÷ 14 g/mol=2.74 × 10-21 mol

Therefore, the mass of 14C required is,m = 2.74 × 10-21 mol × 14 g/mol=3.84×10−20 kg

Hence, the answer is 3.84×10−20 kg.

Learn more about Radioactivity

brainly.com/question/1770619

#SPJ11

A piece of glass has a temperature of 83.2°C. Liquid that has a temperature of 27.5°C is poured over the glass, completely covering it, and the temperature at equilibrium is 54.0°C.The mass of the glass and the liquid is the same. Ignoring the container that holds the glass and the liquid and assuming no heat lost to or gained from the surroundings, determine the specific heat capacity of the liquid. Take cglass = 837 J/(kg C°)

Answers

In this problem, we are given the initial temperature of a piece of glass, the temperature of a liquid poured over the glass, and the equilibrium temperature reached by the system.
We need to determine the specific heat capacity of the liquid, assuming no heat is lost to or gained from the surroundings.

To solve this problem, we can use the principle of heat transfer, which states that the heat gained by the liquid is equal to the heat lost by the glass at equilibrium.

The heat gained by the liquid can be calculated using the formula: Q = m * c * ΔT, where Q is the heat gained, m is the mass of the liquid and glass (since they are the same), c is the specific heat capacity of the liquid (what we need to find), and ΔT is the change in temperature of the liquid (from its initial temperature to the equilibrium temperature).

The heat lost by the glass can be calculated using the formula: Q = m * cglass * ΔT, where cglass is the specific heat capacity of the glass.
Since the heat gained by the liquid is equal to the heat lost by the glass at equilibrium, we can set up the equation: m * c * ΔT = m * cglass * ΔT.

From this equation, we can see that the mass of the liquid and glass cancels out, leaving us with: c = cglass.

Therefore, the specific heat capacity of the liquid is equal to the specific heat capacity of the glass, which is given as 837 J/(kg °C) in the problem statement.
Learn more about Specific heat capacity from the given link:
https://brainly.com/question/28302906
#SPJ11

Kittel, 8th ed
Complex wavenectors in the energy gap. Find an expression for the imaginary part of the wavevector in the energy gap at the boundary of the first Brillouin zone, in the approximation that led to Eq. (

Answers

The energy gap is an energy range that cannot be occupied by an electron. It can also be defined as the minimum energy required to excite an electron from the valence band to the conduction band. The imaginary part of the wavevector in the energy gap at the boundary of the first Brillouin zone can be derived by making use of the following approximations:

(i) that the bands are parabolic at low energies and (ii) that the energy is much less than the band gap.The relationship between the complex wavevector and the energy is given by:

E = Eg + (hbar^2k^2)

/(2m)

where E is the energy, Eg is the energy gap, h bar is the reduced Planck constant, k is the wavevector, and m is the effective mass of the electron. For energies in the energy gap, E < Eg, the wavevector becomes complex:

k = iK where K is a real number. Substituting this into the above equation, we get:

E = Eg - (hbar^2K^2)

/(2m)

The imaginary part of the wavevector at the boundary of the first Brillouin zone can be found by using the fact that the first Brillouin zone is defined by the condition that the wavevector is less than half of the reciprocal lattice vector.

Therefore, at the boundary of the first Brillouin zone, k = pi/a, where a is the lattice constant.

Substituting this into the above equation, we get:

E = Eg - (hbar^2pi^2)/(2ma^2)

Since the energy is less than the band gap, we can make the approximation that Eg >> E. Therefore, we can neglect the energy term and obtain an expression for the imaginary part of the wavevector at the boundary of the first Brillouin zone: Im(K) = (pi)/(2a)

The above equation can be used to calculate the imaginary part of the wavevector in the energy gap at the boundary of the first Brillouin zone, in the approximation that the bands are parabolic at low energies and the energy is much less than the band gap.

To know more about occupied visit :

https://brainly.com/question/223894

#SPJ11

Two point charges are located on the x-axis of a coordinate system: q1= -15.0 nC is at x = 2.0 m, q2 = +20.0 nC is at x = 6.0 m, and q3 = 5.0 nC at x = 0. What is the net force experienced by q3? ?

find
f1-3
f2-3
f3

Answers

We need to find the net force experienced by q3. Let's find the electrostatic force between q3 and q1 and q3 and q2 using Coulomb's Law.

The force experienced by q3 due to q1 is given by,

[tex]f1-3 = k * q1 * q3 / d1-3f1-3 = 9 * 10^9 * -15 * 10^-9 * 5 * 10^-9 / 2f1-3 = -33.75 N[/tex]

The force experienced by q3 due to q2 is given by,

[tex]f2-3 = k * q2 * q3 / d2-3f2-3 = 9 * 10^9 * 20 * 10^-9 * 5 * 10^-9 / 6f2-3 = 15 N[/tex]

Step 2: Let's find the direction of the forces.

f1-3 acts towards the left and f2-3 acts towards the right

Step 3:

Fnet = f1-3 + f2-3

Fnet = -33.75 + 15

Fnet = -18.75 N

Hence, the option is D.

To know more about electrostatic visit:

https://brainly.com/question/16489391

#SPJ11

1. The phase differences between the RLC phasors are all 90 degrees, but in which order do they come? Which phasor leads and which phasor lags?
2. What response is characteristic of an LRC circuit driven at resonance? What frequency must a resonant circuit be driven at?
3. What is RMS and what is the RMS value of a sinusoidally oscillating function?

Answers

1. The phase differences between the RLC phasors are all 90 degrees. In the RLC circuit, there are three phasors, namely, the current phasor, voltage phasor across the resistor, and voltage phasor across the inductor and capacitor. The voltage phasor across the resistor leads the current phasor by 0°, and the voltage phasor across the inductor and capacitor lags the current phasor by 90°. Therefore, the voltage phasor across the capacitor is behind the current phasor by 90°.

In the RLC circuit, the phase differences between the phasors are as follows:

Voltage phasor across resistor = In-phase with the current phasor

Voltage phasor across inductor = Lags behind the current phasor by 90°

Voltage phasor across capacitor = Leads ahead of the current phasor by 90°2. The response that is characteristic of an LRC circuit driven at resonance is the current attains its maximum value. In a resonant circuit, the resonant frequency is the frequency at which the inductive reactance and the capacitive reactance are equal in magnitude, causing the impedance to be a minimum, and the current to be a maximum. The resonant frequency of a resonant circuit is calculated by the formula

f0=1/2π√(LC)

where f0 is the resonant frequency, L is the inductance, and C is the capacitance.3. RMS stands for Root Mean Square, and it is the effective or DC equivalent of an AC signal. The RMS value of a sinusoidally oscillating function is defined as the value of a direct current that produces the same heating effect in a resistor as that of an alternating current. The RMS value of a sinusoidally oscillating function is given by the formula

Vrms=Vmax/√2

where Vmax is the maximum amplitude of the sine wave signal.

Therefore, in an RLC circuit, the voltage phasor across the resistor leads the current phasor by 0°, and the voltage phasor across the inductor and capacitor lags the current phasor by 90°.

The response that is characteristic of an LRC circuit driven at resonance is the current attains its maximum value.

The RMS value of a sinusoidally oscillating function is defined as the value of a direct current that produces the same heating effect in a resistor as that of an alternating current.

To know more about phase differences, visit:

https://brainly.com/question/14594671

#SPJ11

A metal rod 0.70 m long moves with a speed of 1.9 mi/s perpendicular to a magnetic field. Part A If the induced ears betwoen the ends of the rod is 0.37 V, what is the strength of the magnetic fieid? Express your answer using two significant figures.

Answers

The strength of the magnetic field is approximately 1.6 x 10^(-4) Tesla.

The strength of the magnetic field can be determined using the formula:

E = B * L * v

Where:
E is the induced emf (0.37 V)
B is the strength of the magnetic field (unknown)
L is the length of the rod (0.70 m)
v is the velocity of the rod (1.9 mi/s)

First, we need to convert the velocity from miles per second to meters per second. There are 1609.34 meters in one mile, so:

v = 1.9 mi/s * 1609.34 m/mi = 3058.75 m/s

Now we can rearrange the formula to solve for B:

B = E / (L * v)

Substituting the given values:

B = 0.37 V / (0.70 m * 3058.75 m/s)

Calculating the numerator and denominator separately:

B = 0.37 / (0.70 * 3058.75) V * m / (m * s)

B ≈ 1.65 x 10^(-4) V * m / (m * s)

Finally, rounding to two significant figures:

B ≈ 1.6 x 10^(-4) T

Therefore, the strength of the magnetic field is approximately 1.6 x 10^(-4) Tesla.

Learn more about the magnetic field

https://brainly.com/question/26257705

#SPJ11

Determine the height h of mercury in the multifluid manometer
considering the data shown and also that the oil (aceite) has a
relative density of 0.8.
The density of water (agua) is 1000 kg/m3 and tha

Answers

The height of the mercury column is 0.00416 m. A manometer is an instrument that uses fluid columns to measure pressure or pressure differences. It is the most accurate way to measure gauge pressure. The most common type of manometer is the mercury manometer. It is used to measure low-pressure differences in liquids and gases.



In this problem, we are given a multifluid manometer with water and mercury. We are asked to determine the height h of mercury in the manometer. We are also given that the oil (aceite) has a relative density of 0.8, and the density of water (agua) is 1000 kg/m3.

The pressure difference between the two sides of the manometer is given by the difference in the heights of the two columns of fluid. Let h1 be the height of the water column, and h2 be the height of the mercury column.

We know that the pressure at the bottom of the manometer is the same on both sides. Therefore, we can write:

ρwater * g * h1 = ρmercury * g * h2 + ρoil * g * h3

where ρwater is the density of water, ρmercury is the density of mercury, ρoil is the density of oil, and h3 is the height of the oil column.

Since the oil has a relative density of 0.8, its density is:

ρoil = 0.8 * ρwater = 0.8 * 1000 kg/m3 = 800 kg/m3

Substituting this value into the equation, we get:

1000 * 9.8 * 0.25 = 13600 * 9.8 * h2 + 800 * 9.8 * 0.15

Solving for h2, we get:

h2 = (1000 * 9.8 * 0.25 - 800 * 9.8 * 0.15) / (13600 * 9.8)

h2 = 0.00416 m

Therefore, the height of the mercury column is 0.00416 m.

To learn more about mercury visit;

https://brainly.com/question/19940784

#SPJ11

White light is passed through a cloud of cool hydrogen gas and then examined with a spectroscope. The dark lines observed on a bright (coloured) background are caused by (a) diffraction of the white light. (b) constructive interference. (c) hydrogen emitting all the frequencies of white light. (d) hydrogen absorbing certain frequencies of the white light

Answers

Option (d) hydrogen absorbing certain frequencies of the white light is the correct answer.

White light is passed through a cloud of cool hydrogen gas and then examined with a spectroscope. The dark lines observed on a bright (colored) background are caused by hydrogen absorbing certain frequencies of the white light.

A spectroscope is a scientific instrument used to split and disperse light into its constituent colors and wavelengths. The resulting spectrum may be viewed via a detector and analyzed to determine information about the properties of the substance under investigation. The hydrogen absorption spectrum

Hydrogen is unique because of the way it emits light. Hydrogen atoms emit specific frequencies of light when they are excited by an electric current or another form of energy, and these frequencies correspond to specific colors of light. The resulting spectrum of light is referred to as the hydrogen emission spectrum.

When white light is shone through a cloud of cool hydrogen gas and then examined with a spectroscope, the dark lines observed on a bright (colored) background are caused by hydrogen absorbing certain frequencies of the white light. The dark lines are referred to as an absorption spectrum.

The answer to this question is option (d) hydrogen absorbing certain frequencies of the white light.

Learn more about spectroscope from:

https://brainly.com/question/28457917

#SPJ11

Other Questions
-what version of HTML is used currently?html3html4html5html- what are the important and required attributes of an element?link,altsrc,althref,altwid,altwhich class provides a reponsice fixed width container ?.container.container-fixed.container-responsive.container-fluid Question 11 The electric field of a plane wave propagating in a nonmagnetic material is given by E=(3y^+4z^)cos(1.0108t1.34x)(V/m). Find the relative permittivity of the material r. r= Your Answer: Answer Question 12 A 3.0MHz frequency plane wave propagates in a medium characterized by T=3.0. r=1.5, and =5.0( S/m). Calculate . = Your Answer: Answer Question 13 A parallel-polarized ( p-wave) plane wave is incident from air onto a dielectric medium with r=4. At what incident angle i there will be no reflection? Answer to the 4th digit precision after the decimal place (eg. 1.2345). i=(rad). Your Answer: Answer Question 14 A plane wave with a frequency of f=1.5MHz and electric field amplitude of 9 (V/m) is normally incident in air onto the plane surface of a semi-infinite conducting material with a relative permittivity r=7.3, relative permeability r=1, and conductivity =110(5/m). Determine the transmitted power per unit cross sectional area in a 2.2 mm penetration of the conducting medium. Answer to the 4 th digit precision after the decimal place (eg. 1.2345). Your Answer: Answer Rodriguez Company pays $358,020 for real estate with land, land improvements, and a building. Larimprovements are appraised at $45,000; and the building is appraised at $202,500.1. Allocate the total cost among the three assets.2. Prepare the journal entry to record the purchase. small pressure above or below atmospheric pressure is primarily measured in A system with excitation x(0) and response y() is described by y(t) = 3sin(x()). Identify the characteristics of the given system. Multiple Choice Linear, time invariant, BIBO stable, static, and non-causal Linear, time invariant, BIBO stable, dynamic, and non-causal Non-linear, time invariant, BIBO stable, static, and causal Non-linear, time invariant, BIBO stable, static, and non-causal 1- Write a Console Application using 8088 Assembly to implement a calculator. The Calculator accepts the input in the form of "Operand1 Operation Operand2 =".Where: Operand 1 and Operand 2 are decimal unsigned numbers that fits in 16 bits. Operation is one of the following math Operations: ++/% sqrt pow Once the user enters "=", you should display the result. The output for the division should displayed to 2 decimal digits after the "." You should ignore any non-operator or non-digit character Describe the type of correlation between the two variables on your graph. How do you know?Thank you! The Excelsior Corporation, a hotel and entertainment company, focuses on delivering superior customer experiences at its various hotels and theme parks. The companys HRM function aggressively recruits people who possess the personal and technical skills needed to provide superior customer service. This is an example of which type of alignment? Multiple Choice matrix normative external vertical diagonal 5. What is 5-number summary? Explain its usage in Healthcare Data Analytics. Which institution became a pillar of stability for the immigrants as they settled into the communities in American cities?a. schoolb. churchc. Salvation Armyd. benevolent societies why does arsine have a higher boiling point than phosphine? McDuck Enterprises Pty Ltd, a company owned by the McDuck family, amongst other investments, owns and operates a chain of profitable business clothing stores. McDuck Enterprises Pty Ltd also has a small number of investments. McDuck Enterprises Pty Ltd is an Australian resident company for tax purposes. The company's Senior Accountant, Mr Duckworth is in the process of preparing income tax returns for the income year 2021/22, for the company and staff. He approaches a prominent firm GlassWaterhouseCoopers (GWC) which employs a highly skilled team of tax lawyers and tax accountants. GWC is renowned for providing integrated tax solutions for their clients. GWC organises a meeting between Mr Duckworth and one of GWC's tax partners. The CEO of McDuck Enterprises Pty Ltd, Mr Ebenezer Scrooge, also attends the meeting. Shortly afterwards the parties sign an Engagement Letter which provides for McDuck Enterprises Pty Ltd to engage the services of GWC. McDuck Enterprises Pty Ltd seeks advice on the matters set out below: PART B A couple of years ago, on 1 August 2019, McDuck Enterprises Pty Ltd, acquired all of the shares in another company CorpCo Pty Ltd. (Eight years earlier CorpCo Pty Ltd had acquired two acres of land in the Central Coast. The purchase price of the land was $1 million. At the time of the purchase of the land, the minutes of the directors meetings recorded that the purpose of the purchase was to build singlestorey beach villas for holiday rental to tenants. However, the work never actually began on the construction of beach villas.) McDuck Enterprises Pty Ltd, in determining a purchase price for the shares in CorpCo Pty Ltd, valued the Central Coast land at $1 million. CorpCo Pty Ltd's previous business activities have not involved residential construction projects. Following the purchase of the shares in CorpCo Pty Ltd, new directors were appointed to CorpCo Pty Ltd. The new directors passed a resolution to seek a rezoning of the Central Coast land, aiming to construct 8 homes on the land and to sell each home at a profit. CorpCo Pty Ltd submitted a rezoning application to the council which involved the payment of council fees of $5000 and also legal fees of $4000 in relation to obtaining legal assistance in the preparation of the rezoning application. The rezoning application by CorpCo Pty Ltd was successful. Following the rezoning CorpCo Pty Ltd obtained an estimate of the market value of the Central Coast land. The valuation of the land was $3 million. In January 2020 CorpCo Pty Ltd commenced work on the building of the homes. On 1 March 2021 the building of the homes was completed at a total cost of $2 million. There was significant market demand for the homes and CorpCo Pty Ltd sold each home for $2 million. B) any relevant income tax and/or capital gains tax implications, regarding the sale of property arising from the facts in PART B. In your answer make sure you show your calculation of any relevant amount included in CorpCo's assessable income in relation to the sale of property. The goal in organizing for global marketing is to find a structure that enables the company to respond to significant differences in international market environments and to extend valuable corporate knowledge.In your initial post,Discuss at least three alternatives for global organization structure.For each one, explain the structure and some of its advantages and disadvantages for global operations.Evaluate the importance of creating the balance between autonomy and integration in various global organization structures. More than 12 million Americans rely on long-term services and supports in home, community, or institutional settings. The number may more than double by 2050 (Commission on Long-Term Care 2013). Only a small share get services in nursing homes, and the trend is toward lower rates of nursing home care Several factors may influence how and where Americans get these services (Susta et al. 2015). First, Medicaid is a major funder of long-term care services and supports, so any changes in Medicaid policy can have major effects. Second, rates of disability have been trending down for a number of years, but there is no guarantee that this trend will continue. Third, use of long-term services and supports varies widely among major ethnic groups, so changes in the composition of the population might have major effects on demand. Technology represents a wild card in efforts to predict the volume and nature of long-term services and supports. For example, the development of smart homes and devices might well increase the share of the population getting these services in their homes, Draw a graph of the Market for Nursing Home Care (initial graph). For each of the discussion questions (1-4) below, show the changes in the market equilibrium, and provide evidence (i.e. a recent published study or report) to support your argument. Discussion Questions 1. What sorts of policy changes seem likely to shift the demand for nursing home care? a. How would your initial graph change given the scenario you outline in (1) above? 2. What sort of demographic changes seem likely to shift the demand for nursing home care? a. How would your initial graph change given the scenario you outline in (2) above? 3. What sorts of technological changes seem likely to shift the demand for nursing a. How would your initial graph change given the scenario you outline in (3) above? 4. What sorts of health changes seem likely to shift the demand for nursing home care? a. How would your initial graph change given the scenario you outline in (4) above? home care? a common dysfunction of teams is to be results oriented. Which type of power source is the leastcommon type being manufactured today?3. Which type of power source is the least common type being manufactured today? A. The engine-driven generator B. The motor-driven generator C. The light-duty transformer D. The medium-duty transform O Here is the graph of y = 7 - x for values of x from 0 to 7 10 9 8 7 6 5 4 3 2 0 1 2 3 4 5 6 7 8 9 10 a) On the same grid, draw the graph of y = x - 1 b) Use the graphs to solve the simultaneous equations y=7-x and y = x - 1 y = continuation means that our eye searches for a break in unity. true or false If you are the Marketing Manager of El Molino San Marcos, whatwould make your role important? What you search for as anobjective, taking in consideration the meaning of marketing?Why? which cartilage is also known as the adams apple?