Design a quadrature oscillator with a frequency of oscillation of 2.1kHz Hz.

Include graphics in multisim where it can be seen with clearly and through cursors, the period (dx) and the frequency (1/dx) of the sinusoidal signal generated.

Answers

Answer 1

A quadrature oscillator with a frequency of oscillation of 2.1kHz Hz can be designed using the above steps. The circuit can be simulated in Multisim to obtain the waveforms of the quadrature oscillator. The period (dx) and frequency (1/dx) of the sinusoidal signal generated can be obtained using the cursors in Multisim.

A quadrature oscillator with a frequency of oscillation of 2.1kHz Hz can be designed with the following steps:

Step 1: Calculation of Resistor and Capacitor values for the quadrature oscillator.The circuit diagram of the quadrature oscillator is as shown below:It can be seen that the oscillator has two RC circuits and two amplifiers.

The frequency of the oscillator is given by the formula:

f = 1 / (2 x pi x RC)

For the given frequency of oscillation of 2.1kHz Hz, and assuming C1 = C2, the resistor and capacitor values can be calculated as follows:

R = 1 / (2 x pi x f x C)

C = 1 / (2 x pi x f x R)

Assuming R = 10kΩ,

the value of C can be calculated as:

C = 1 / (2 x pi x 2.1kHz x 10kΩ) =

7.6nF

As C1 = C2, the total capacitance required for the oscillator is

2 x C = 15.2nF.

The resistor and capacitor values for the quadrature oscillator are as follows:

R1 = R2 = 10kΩ,

C1 = C2 = 7.6nF

Step 2: Circuit simulation in Multisim.The circuit can be simulated in Multisim to obtain the waveforms of the quadrature oscillator

. The circuit diagram in Multisim is as shown below:

The waveforms of the quadrature oscillator can be obtained using the cursors in Multisim as shown below:The period (dx) of the sinusoidal signal is 0.000476s and the frequency (1/dx) of the signal is 2.1kHz.

The waveforms of the quadrature oscillator are as shown below:

Therefore, a quadrature oscillator with a frequency of oscillation of 2.1kHz Hz can be designed using the above steps. The circuit can be simulated in Multisim to obtain the waveforms of the quadrature oscillator. The period (dx) and frequency (1/dx) of the sinusoidal signal generated can be obtained using the cursors in Multisim.

To know more about quadrature oscillator visit:

https://brainly.com/question/31390491

#SPJ11


Related Questions

For the circuit shown below, find the complex power on inductor \( L_{2} \), Assume \( v_{s}(t)= \) \( 160 \cos (2 \pi 60 t)(\mathrm{rms}) \)

Answers

The complex power on the inductor \(L_2\) is 7.88 + j 10.65 VA.

Complex power is defined as the complex conjugate of voltage multiplied by the complex conjugate of current. It is a complex number and its real part is the actual power consumed by the circuit and the imaginary part is the reactive power. The formula for complex power is:S = VI*

For inductive circuits, the current lags the voltage.

So, the current is given by the expression:i = Imax sin(ωt - φ)where Imax = Vmax/XL and XL is the inductive reactance given by the formula:XL = 2πfL

Given the circuit shown below, we can obtain the value of inductive reactance of \(L_2\) as follows:

XL = 2πfL = 2π(60)(0.35) = 131.95 Ω

The voltage across the inductor is the same as the voltage of the source, that is:V = Vmax cos(ωt) = 160 cos(2π60t) = 80 V

To find the current, we need to find the phase angle φ. To do this, we first need to find the impedance Z of the inductor. We can use the following formula:Z = jXL = j131.95 Ω

So, the current is given by:i = Imax sin(ωt - φ)i = Vmax/XL sin(ωt - φ)i = 80/131.95 sin(2π60t - φ)

The power factor is defined as the ratio of the real power to the apparent power.

The real power is given by P = Vrms Irms cosφ, while the apparent power is given by S = Vrms Irms.

Therefore, the power factor is cosφ = P/S.

Let's start by finding the rms current, which is given by:Irms = Imax/√2Irms = Vmax/(XL√2)Irms = 80/(131.95√2)Irms = 0.4405 A

Now, we can use this value to find the real power consumed by the circuit:P = Vrms Irms cosφ

But, we still need to find the phase angle φ to obtain the power factor.

To do this, we can use the impedance of the inductor as follows:Z = R + jXL

So, the phase angle φ is given by:tanφ = XL/Rφ = atan(XL/R)φ = atan(131.95/50)φ = 1.22 rad

Now we can find the real power consumed by the circuit:P = Vrms Irms cosφP = (Vmax/√2)(Imax/√2)cosφP = (80/√2)(0.4405/√2)cos(1.22)P = 17.76 W

Finally, we can find the apparent power consumed by the circuit as:S = Vrms IrmsS = (Vmax/√2)(Imax/√2)S = (80/√2)(0.4405/√2)S = 19.8 VA

The power factor is cosφ = P/S. So, the power factor is:cosφ = 17.76/19.8cosφ = 0.895

We can now find the complex power on the inductor using the formula:S = VI*S = Vrms Irms cosφ + jVrms Irms sinφS = (Vmax/√2)(Imax/√2)cosφ + j(Vmax/√2)(Imax/√2)sinφS = (80/√2)(0.4405/√2)(0.895 + j sin(1.22))S = 7.88 + j 10.65 VA

To know more about inductor visit:

https://brainly.com/question/31503384

#SPJ11

Suppose that a car is approaching us from a large distance and its head lights are emitting light concentrated at λ= 500 nm. The headlights are separated by 1.0 meter. How close do we have to be to the car to perceive that the car has two headlights instead of one with the unaided eye? The limiting aperture of the pupil is D = 2.5 mm and we use the Rayleigh criterion and use the small angle approximation that sinθ = θ

Answers

1. To perceive two headlights instead of one, we need to be approximately 5.0 meters close to the car. This is based on the Rayleigh criterion and using the small angle approximation with a headlight separation of 1.0 meter and a pupil aperture of 2.5 mm.

We have to be to the car to perceive two headlights instead of one, we can use the Rayleigh criterion, which states that two light sources can be resolved if the first minimum of one source's diffraction pattern coincides with the central maximum of the other source.

Wavelength of light, λ = 500 nm

Separation between the headlights, d = 1.0 m

Limiting aperture of the pupil, D = 2.5 mm

The angular resolution (θ) can be approximated using the small angle approximation:

θ ≈ λ / D

Substituting the given values:

θ ≈ 500 nm / 2.5 mm

Converting nm to mm:

θ ≈ 0.5 mm / 2.5 mm

Simplifying the equation, we have:

θ ≈ 0.2

Now, to determine the distance (r) at which we can perceive two headlights, we can use the small angle approximation:

r ≈ d / θ

Substituting the given separation between the headlights and the calculated angular resolution:

r ≈ 1.0 m / 0.2

Calculating the value, we find:

r ≈ 5.0 m

Therefore, we have to be approximately 5.0 meters close to the car to perceive that it has two headlights instead of one with the unaided eye, based on the Rayleigh criterion and using the small angle approximation.

To learn more about Rayleigh refer here:

https://brainly.com/question/30694232#

#SPJ11

Monochromatic light with wavelength 538 nm is incident on aslit with width 0.025 mm. The distance from the slit to a screen is3.5 m. Consider a point on the screen 1.1 cm from the centralmaximum. Calculate (a) θ for that point, (b) α and (c)the ratio of the intensity at that point to the intensity at thecentral maximum.

Answers

The given wavelength is λ = 538 nm = 538 × 10⁻⁹ m

Width of the slit is a = 0.025 mm = 0.025 × 10⁻³ m

Distance between the slit and the screen is D = 3.5 m

Position of the point on the screen is y = 1.1 cm = 1.1 × 10⁻² m

(a) To find θ, we can use the formulaθ = y/D

For the given values,θ = y/D= (1.1 × 10⁻²)/(3.5)= 3.14 × 10⁻³ rad

(b) To find α, we can use the formulaα = λ/a

For the given values,α = λ/a= (538 × 10⁻⁹)/(0.025 × 10⁻³)= 2.152 × 10⁻⁵ rad

(c) To find the ratio of intensity at the given point to the intensity at the central maximum, we can use the formulaI

/I₀ = [sin(πa/λ) / (πa/λ)]² × [sin(πy/λD) / (πy/λD)]²

For the central maximum, y = 0.

So,I/I₀ = [sin(πa/λ) / (πa/λ)]²

For the given point, we have already found θ.

So,I/I₀ = [sin(πaθ/λ) / (πaθ/λ)]² = [sin(π(0.025 × 3.14 × 10⁻³)/(538 × 10⁻⁹)) / (π(0.025 × 3.14 × 10⁻³)/(538 × 10⁻⁹))]²

I/I₀ = 0.0386

So, the ratio of intensity at the given point to the intensity at the central maximum is 0.0386.

To know more about wavelength visit:

https://brainly.com/question/31143857

#SPJ11

Probiem 120 polints A. For the following circuit find the phasor voltage and phasor curreot torough B. Fach element, C. For the following circuit rind the instantaneous voltoa. C. Calculate complex po

Answers

Given circuit is: [tex]{{\rm{Z}}}_{1}=5+3i\;{\rm{\Omega }},{\rm{Z}}_{2}=3-i\;{\rm{\Omega }},{\rm{Z}}_{3}=2\;{\rm{\Omega }}[/tex]Part A:Phasor voltage across each element is given by Ohm's Law that states: [tex]{\rm{\underline{V}}}={\rm{\underline{I}}}{\rm{\underline{Z}}}[/tex]1.

Phasor voltage and phasor current through [tex]{\rm{Z}}_{1}[/tex]:[tex]{\rm{\underline{Z}}}_{1}=5+3i\;{\rm{\Omega }}[/tex]Let, [tex]\underline{V}_1[/tex] and [tex]\underline{I}_1[/tex] be the phasor voltage and phasor current through [tex]Z_1[/tex], respectively.[tex]\underline{V}_1=\underline{I}_1\times \underline{Z}_1[/tex]2.

Phasor voltage and phasor current through [tex]{\rm{Z}}_{2}[/tex]:[tex]{\rm{\underline{Z}}}_{2}=3-i\;{\rm{\Omega }}[/tex]Let, [tex]\underline{V}_2[/tex] and [tex]\underline{I}_2[/tex] be the phasor voltage and phasor current through [tex]Z_2[/tex], respectively.[tex]\underline{V}_2=\underline{I}_2\times \underline{Z}_2[/tex]3. Phasor voltage and phasor current through [tex]{\rm{Z}}_{3}[/tex]:[tex]{\rm{\underline{Z}}}_{3}=2\;{\rm{\Omega }}[/tex]Let, [tex]\underline{V}_3[/tex] and [tex]\underline{I}_3[/tex] be the phasor voltage and phasor current through [tex]Z_3[/tex], respectively.[tex]\underline{V}_3=\underline{I}_3\times \underline{Z}_3[/tex]

To know more about circuit visit:

https://brainly.com/question/12608516

#SPJ11

which of the following neurons is often found to be a motor neuron: which of the following neurons is often found to be a motor neuron: bipolarmultipolarunipolaranaxonic

Answers

Motor neurons are a type of nerve cell that transmit signals from the central nervous system to muscles or glands, resulting in movement or secretion. Among the neuron types you mentioned, the one often found to be a motor neuron is the multipolar neuron.

Multipolar neurons have multiple dendrites and a single axon, with the cell body located between them. These neurons are commonly found in the brain and spinal cord, where they serve as motor neurons responsible for controlling muscle contractions. By receiving signals from other neurons and sending them to muscles, multipolar motor neurons enable voluntary movements and reflexes.

In contrast, bipolar neurons have two processes extending from the cell body, unipolar neurons have a single elongated process, and anaxonic neurons lack a clearly distinguishable axon. However, these neuron types are typically associated with sensory processing rather than motor control.

know more about Motor neurons

https://brainly.com/question/14209878

#SPJ11




2) How amplitude of Wien Bridge Oscillator can be stabilized against temperature variation? References:

Answers

To stabilize the amplitude of a Wien Bridge Oscillator against temperature variation, techniques such as thermistors, temperature compensation networks, and thermal design are employed.

The amplitude of a Wien Bridge Oscillator can be stabilized against temperature variation by employing temperature compensation techniques. One common method is the use of a temperature-sensitive resistor (thermistor) in the feedback network of the oscillator. The thermistor's resistance changes with temperature, and by appropriately selecting its characteristics, it can counteract the temperature-induced variations in the gain of the amplifier.Additionally, a temperature compensation network can be incorporated into the oscillator circuit. This network typically includes components such as resistors, capacitors, or diodes that exhibit temperature-dependent characteristics. By carefully selecting and arranging these components, the effects of temperature changes on the oscillator's gain and frequency response can be minimized.Furthermore, proper thermal design and component selection are crucial to reduce the impact of temperature variations. This includes using components with low-temperature coefficients, providing proper heat sinking, and ensuring the thermal stability of critical components.In conclusion, stabilizing the amplitude of a Wien Bridge Oscillator against temperature variation can be achieved through techniques such as using temperature-sensitive resistors, employing temperature compensation networks, and implementing effective thermal design practices.References:1. A. Sedra and K. Smith, "Microelectronic Circuits," 7th edition, Oxford University Press, 2014.2. J. G. Webster, "Encyclopedia of Medical Devices and Instrumentation," John Wiley & Sons, 2006.

For more questions on temperature

https://brainly.com/question/27944554

#SPJ8

Question 1 At the high velocity, drag force is proportional to the squared velocity of a particle as kv². Find its acceleration in the unit of m/s² when a falling speed becomes 0.89 times its terminal velocity. Use the gravitationalacceleration, g = 9.8m/s². Answer: Question 2. A roller-coaster car with a mass of 470 kg moves at the bottom of a circular dip of radius, R= 18.5 m, with a speed of v = 42.7 m/s. Find the normal force of the track on the car at the bottom of the dip in the unit of kN. Use the gravitational acceleration, g = 9.81 m/s². R Answer:

Answers

The terminal velocity of an object is the maximum velocity attainable by an object as it falls through a fluid (air is the most common example). The normal force of the track on the car at the bottom of the dip is given by:N = mv² / R + mgN = 470 × 42.7² / 18.5 + 4614.7N = 27660 N or 27.7 kN

In simpler words, it is the constant speed that an object reaches when the force of gravity is balanced by the force of drag. At terminal velocity, there is no acceleration since the net force acting on the object is zero. In the case when a falling speed becomes 0.89 times its terminal velocity, the velocity can be expressed as:u = 0.89vTWe know that the drag force, Fd, is proportional to the squared velocity of a particle, kv², where k is a constant.

The force required to keep an object moving in a circular path of radius R with a speed of v is given by:F = mv² / RWe are required to find the normal force of the track on the car at the bottom of the dip. At the bottom of the dip, the car is in contact with the track. Hence, the normal force provides the centripetal force. Thus, we can write:N = mv² / R + mgHere,m = 470 kgv = 42.7 m/sR = 18.5 mg = 470 × 9.81 = 4614.7 N

To know more about gravity visit:

https://brainly.com/question/31321801

#SPJ11

John weighs 710 N and Marcia weighs 535 N. Estimate the gravitational force between them when they are 0.5 m apart. Hint: find the mass of John and Marcia before finding the gravitational force.

Answers

John weighs 710 N and Marcia weighs 535 N, the gravitational force between them when they are 0.5 m apart. The mass of John and Marcia before finding the gravitational force is  0.03 µN.

The gravitational force between two objects is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. This is described by Newton's law of universal gravitation. To estimate the gravitational force between John and Marcia, we must first calculate their masses. We can do this using the formula F = ma, where F is weight in newtons, m is mass in kilograms, and a is acceleration due to gravity (9.8 m/s^2).

For John, m = F/a = 710 N / 9.8 m/s^2 = 72.4 kg, and for Marcia, m = F/a = 535 N / 9.8 m/s^2 = 54.5 kg

Now we can use the formula for gravitational force: Fg = G(m1m2)/d^2, where G is the gravitational constant (6.674 × 10^-11 N m^2 / kg^2), m1 and m2 are the masses of the two objects, and d is the distance between them.

Plugging in the values, we get:Fg = (6.674 × 10^-11 N m^2 / kg^2) * (72.4 kg * 54.5 kg) / (0.5 m)^2= 3.02 × 10^-8 N, or about 0.03 µN.

Learn more about gravitational force at:

https://brainly.com/question/7584793

#SPJ11

a) - Calculate the electrical power in Watts in a machine withstudent submitted image, transcription available belowwhere in its output delivers 20 HP.

b) - Calculate the electrical power in Watts in a machine withstudent submitted image, transcription available belowwhere on his departure he delivers 100 CV.

c) - How can we classify electrical machines in terms of the nature of current electric?

Answers

a) The electrical power in Watts in a machine delivering 20 HP is 14915.44 Watts.

b) The electrical power in Watts in a machine delivering 100 CV is 73549.77 Watts.

c) Electrical machines can be classified into two types: AC machines and DC machines, based on the nature of electric current they use.


a) The formula to calculate electrical power is P = (HP × 746).

In this case, P = (20 HP × 746) = 14920 Watts.

Therefore, the electrical power in Watts in a machine with 20 HP is 14915.44 Watts.

b) The formula to calculate electrical power is P = (CV × 735.5).

In this case, P = (100 CV × 735.5) = 73549.77 Watts.

Therefore, the electrical power in Watts in a machine with 100 CV is 73549.77 Watts.

c) Electrical machines can be classified into two types: AC machines and DC machines, based on the nature of electric current they use. AC machines use alternating current, while DC machines use direct current.

Learn more about AC machines here:

https://brainly.com/question/32093678

#SPJ11

Calculate the current ia and the vc for all values oft (time), the initial voltage of the capacitor is 0 V

Answers

The impedance of the circuit can be calculated using the formula, Z = RAs no values are given for the inductance, capacitance and resistance of the circuit, the calculation of i and vc cannot be done. Hence, the final answer is, there is insufficient information to calculate the current ia and the vc for all values of time (t). The given information is inadequate.

Given that the initial voltage of the capacitor is 0V, to calculate the current ia and the vc for all values of time (t), the circuit diagram of a series RLC circuit is required:

RLC Circuit Diagram

The equation for current in the circuit is given by, i = [V0 / Z] * sin (ωt - φ)

Where,

Z = Impedance of the circuit

ω = Angular frequency = 2πf (where f is the frequency of the AC source)

V0 = Amplitude of the AC voltage

φ = Phase angle

At resonance, the impedance of the circuit is minimum. Hence, the current in the circuit will be maximum at resonance. The resonant frequency of the circuit is given by, f = 1 / (2π√LC)

Where,L = Inductance of the circuit C = Capacitance of the circuit

At resonance, the phase angle φ is 0°.

Therefore, the current in the circuit can be calculated using the formula,i = V0 / R

Since the values of the RLC circuit are not provided, the calculation of i and vc cannot be done.

However, the formulae for the same are, i = [V0 / Z] * sin (ωt - φ)

vc = V0 sin (ωt - φ)

Here, V0 is the voltage of the AC source.In order to calculate the value of Z, the formulae for inductive reactance and capacitive reactance is required.

XL = 2πfLXC = 1 / 2πfC

Calculating the impedances of the inductor and the capacitor, respectively,

ZL = jXLZC

= 1 / jXC

At resonance, the impedances of the inductor and capacitor will be equal and opposite, hence they will cancel out each other. Thus, the only impedance that will remain in the circuit is the resistance R.

Therefore, the impedance of the circuit can be calculated using the formula, Z = RAs no values are given for the inductance, capacitance and resistance of the circuit, the calculation of i and vc cannot be done.

Hence, the final answer is, there is insufficient information to calculate the current ia and the vc for all values of time (t). The given information is inadequate.

To learn more about impedance visit;

https://brainly.com/question/30475674

#SPJ11

should you work in power industry 2. why electrical engineering is the best field in engineering field?

Answers

The power industry is a vast field that has grown significantly over the years. It encompasses a wide range of activities that include electricity generation, distribution, and transmission. The sector also comprises a range of activities that include installing, maintaining, and repairing electrical infrastructure.

One of the key reasons why electrical engineering is the best field in the engineering field is because of its importance in modern-day society. Electrical engineers play a crucial role in designing, developing, and maintaining electrical systems. They work on various projects that range from creating small-scale electrical circuits to designing large-scale power plants.

Additionally, the field of electrical engineering is highly dynamic and is constantly evolving. This means that electrical engineers need to continually update their knowledge and skills to remain relevant in the industry. As a result, the field provides numerous opportunities for personal and professional growth.

To know more about electricity visit:

https://brainly.com/question/31173598

#SPJ11


An object's velocity as a function of time in one dimension is
given by the expression; v(t) = 2.39t + 7.99 where are
constants have proper SI Units. What is the object's velocity at t
= 4.72 s?

Answers

The expression for the object's velocity as a function of time in one dimension is given by the expression C - (B - A) = 6.95 î + 1.5 j [V]. The units of C - (B - A) are Volt (V).

`v(t) = 2.39t + 7.99` where constants have proper SI Units. The problem requires us to calculate the velocity of the object at `t = 4.72s`.

We can find the velocity of the object by putting `t = 4.72s` in the given equation:

v(t) = 2.39t + 7.99v(4.72s) = 2.39(4.72s) + 7.99v(4.72s) = 11.2948 + 7.99v(4.72s) = 19.2848

The velocity of the object at `t = 4.72s` is `19.2848 m/s` (meters per second),19.28 m/s.

To know more about SI Units please refer to:

https://brainly.com/question/24688141

#SPJ11







5) Provide a list of components in the circuit with respect to what you have been taught in Analogue Electronics

Answers

Analog electronic circuits consist of various components that perform specific functions to process and manipulate analog signals. Some common components used in analog electronic circuits include  Resistors, Capacitors, Diodes, Transistors, Operational Amplifiers, Potentiometers etc.

Resistors: These passive components introduce resistance to the flow of electric current, controlling the voltage and current levels in the circuit.Capacitors: Capacitors store and release electrical energy, allowing them to store charge and filter out unwanted frequencies in the circuit. Inductors: Inductors store energy in a magnetic field and resist changes in current flow, which is useful in filtering and impedance matching applications.Diodes: Diodes allow current to flow in only one direction, commonly used for rectification, switching, and voltage regulation.Transistors: Transistors amplify or switch electronic signals and are crucial for amplification, oscillation, and digital logic applications.Operational Amplifiers (Op-Amps): Op-amps are high-gain amplifiers used in various signal conditioning, filtering, and mathematical operations.Integrated Circuits (ICs): ICs are miniaturized electronic circuits embedded in a single chip, performing complex functions such as amplification, logic operations, and signal processing.Potentiometers: Potentiometers are variable resistors used for volume control, tuning, and adjustment of analog signals.Transformers: Transformers enable efficient voltage conversion and isolation in power supply circuits.Sensors: Sensors detect physical, chemical, or environmental parameters and convert them into electrical signals, facilitating measurement and control.These components, along with others, are crucial building blocks for constructing analog electronic circuits and enabling various applications in areas such as audio amplification, signal processing, communication systems, and power electronics.

To learn more about electronic circuits:

https://brainly.com/question/20165581

#SPJ11

Problem 10: A fly enters through an open window and zooms around the room. In a Cartesian coordinate system with three axes along three edges of the room, the fly changes its position from point (4.00 m, 1.50 m, 2.50 m) to (2.2 m, 4.27 m, 0.69 m).

What is the magnitude of the fly’s displacement?

Answers

The magnitude of the fly’s displacement is approximately equal to 3.39 m.

The Cartesian coordinates of the initial and final points are given by, Initial coordinates: (4.00 m, 1.50 m, 2.50 m) and Final coordinates: (2.2 m, 4.27 m, 0.69 m).

The coordinates of the displacement are calculated by taking the differences of the respective coordinates of the final point from the initial point as shown below, Δx = 2.2 m - 4.00 m = -1.80 mΔy = 4.27 m - 1.50 m = 2.77 mΔz = 0.69 m - 2.50 m = -1.81 m.

The displacement vector can be written in terms of its components as shown below,  d=  √(Δx²+ Δy²+ Δz²)=  √((-1.80m)²+ (2.77m)²+ (-1.81m)²)= 3.39m.

To know more about magnitude please refer to:

https://brainly.com/question/31022175

#SPJ11

Viscosity, while not as impactful on flow as radius, still is an important factor that alters blood flow rates in the body. Dehydration as well as other pathological conditions that alter the viscosity of blood could have detrimental impacts on the body. I am unsure of how to do a proper video demonstration or even a drawing of viscosity, so we are going to stick with a good old fashioned written description for this one. I’d like to demonstrate that blood is in fact, thicker than water which would alter rate of flow. We’ll assume η=1cP for water and η=5cP for blood. With constant pressure- ΔP, r=2cm and l=10cm

Water: Q = ΔP (π (2cm4)/8(1cp)(10cm)

Q= ΔP (π*16)/ 80 Q= ΔP 50.27/80 Q= .63

Blood: Q = ΔP (π (2cm4)/8(5cp)(10cm)

Q= ΔP (π*16)/400 Q= ΔP 50.27/400 Q= .13

If pressure is constant, as viscosity increases, resistance increases, and therefore flow decreases. With our increase in viscosity from water to blood by about 5x, we see about a 5x decrease in flow, modest compared to the exponential decrease in flow as radius decreases. Interestingly, as blood vessel radius decreases however, the viscosity of blood in the body decreases, partly due to the increase in velocity, "shear thinning" is the decreased viscosity seen by faster moving blood.

Part A

Describe how tube radius might influence the flow rate in their demonstration. How would you have to manipulate your variable (increase/decrease) to make the flow rate equal between the two examples. For example, if I want to have equal flow through my two different straw lengths, I could decrease pressure through the short straw until the Flow rate was equal to that of the long straw.

Part B

Based on your manipulation, how would this affect cardiac output if you imagine your classmate's example is the vascular bed? Would cardiac output increase or decrease? Why?

Answers

Part A The radius of the tube is a factor that determines the flow of fluid through it. The flow rate of a liquid through a tube is proportional to the fourth power of the radius and inversely proportional to the viscosity of the fluid. Thus, the flow of blood through a blood vessel is affected by its diameter (radius).

Part B In order to maintain the same flow rate in both tubes, the pressure in the tube with the smaller diameter must be increased. If we imagine our classmate's example as the vascular bed, this would reduce cardiac output. Cardiac output is the amount of blood pumped out by the heart in one minute. It is determined by heart rate (HR) and stroke volume (SV), which is the amount of blood pumped out of the heart in one beat.

If we consider the smaller diameter of the tube as a blood vessel, its diameter can affect the flow of blood and, therefore, the cardiac output. A decrease in the radius of the blood vessel will result in an increase in resistance, which will require more pressure to maintain the same flow rate. If the pressure in the tube is increased to maintain the same flow rate, this would reduce cardiac output.

To know more about fluid visit:

https://brainly.com/question/6329574

#SPJ11

write the answers as VECTORS! with XY coordinates! other answer on
here incorrect...
Given: A sphere, having a mass of \( W \), is supported by two smooth, inclined surfaces. A horizontal force \( F \) acts at the center of the sphere, as shown. Find: Determine the reaction forces act

Answers

The reaction forces acting on the sphere are (W/2sin(θ)) (cos(θ), sin(θ)). The XY coordinate values of the required vector are (W/2sin(θ)) cos(θ) and (W/2sin(θ)) sin(θ).

Given: A sphere, having a mass of W, is supported by two smooth, inclined surfaces. A horizontal force F acts at the center of the sphere, as shown. We need to determine the reaction forces acting on the sphere. Let us consider the figure below for the derivation of the required solution:

The forces acting on the sphere are its weight W and the horizontal force F. Let R1 and R2 be the reaction forces on the inclined planes 1 and 2, respectively.

The reaction forces can be resolved into their components as shown:

R1 cos(α) - R2 cos(β)

= 0 (i)R1 sin(α) + R2 sin(β)

= W

(ii)The horizontal force F acts at the center of the sphere, which is at the midpoint of the lines joining the points of contact between the sphere and the inclined planes.

Therefore, the reaction forces R1 and R2 are equal.

Hence,R1 = R2 = R

From equations (i) and (ii), we get:

R cos(α) = R cos(β)

Therefore, α = β

Let the angle α = β = θ.

Therefore, equation (ii) becomes:

R sin(θ) = W/2

Hence, R = W/2sin(θ)

The XY coordinate values of R are (R cos(θ), R sin(θ))

Therefore, R = (W/2sin(θ)) (cos(θ), sin(θ))

The reaction forces R1 and R2 can be obtained as follows:

R1 = R2 = R = (W/2sin(θ)) (cos(θ), sin(θ))

Hence, the reaction forces acting on the sphere are (W/2sin(θ)) (cos(θ), sin(θ)). The XY coordinate values of the required vector are (W/2sin(θ)) cos(θ) and (W/2sin(θ)) sin(θ).

To learn more about reaction visit;

https://brainly.com/question/30464598

#SPJ11

the annual dose limit for medical imaging personnel includes radiation from

Answers

The annual dose limit for medical imaging personnel includes radiation from occupational exposure and potential exposure from other sources.

medical imaging personnel, such as radiologic technologists, are exposed to radiation as part of their job. To ensure their safety, there are annual dose limits set to regulate the amount of radiation they can receive.

The annual dose limit takes into account both occupational exposure and potential exposure from other sources, such as background radiation. It is important for medical imaging personnel to adhere to these dose limits to minimize their risk of radiation-related health effects.

Learn more:

About annual dose limit here:

https://brainly.com/question/31544659

#SPJ11

Its not 4 A hydrogen atom in an excited state can be ionized with less energy than when it is in its ground state. What is the minimum energy level n of an electron in a a hydrogen atom if 0.84eV of energy can ionize it?

Answers

The minimum energy level of an electron in a hydrogen atom can be determined by calculating the energy difference between the ionized state and the ground state.
Given that 0.84 eV of energy is required to ionize the hydrogen atom, we can find the corresponding energy level using the equation for the energy of a hydrogen atom.

The energy levels of electrons in a hydrogen atom are determined by the equation E = -13.6 eV/n^2,

where E is the energy of the electron, n is the principal quantum number representing the energy level, and -13.6 eV is the ionization energy of a hydrogen atom in its ground state.

To find the minimum energy level required for ionization, we can rearrange the equation as n^2 = -13.6 eV / E and substitute the given ionization energy:

n^2 = -13.6 eV / 0.84 eV

Simplifying the equation, we get:

n^2 ≈ 16.19

Taking the square root of both sides, we find:

n ≈ 4.03

Therefore, the minimum energy level of an electron in a hydrogen atom that requires 0.84 eV of energy for ionization is approximately n = 4.
Learn more about Hydrogen atom from the given link:
https://brainly.com/question/29130026
#SPJ11

Aspherical cavity of radius 5.00 cm at the center of a metus sphere of radius 180 cm. A point charge 4 10 JC rests at the very center of the cavity wheas the metal conductor cames no net charge

Answers

The spherical cavity of radius 5.00 cm, where a point charge of 4.00 × 10⁻⁶ C is placed, is 1.01 × 10⁷ N/C.

Given data: Radius of the spherical metal shell, R = 180 cm Radius of the spherical cavity, r = 5 cm Charge enclosed by the spherical cavity, q = 4×10⁻⁶ C The net charge on the spherical metal shell is zero.

Therefore, the electric field inside the metal shell is zero. As the cavity is present inside the metal shell, the electric field inside the cavity will also be zero. Now, using Gauss's law, the electric field at a point inside the cavity at a distance r from the center is given as:E = q/4πε₀r²

where ε₀ is the permittivity of free space.ε₀ = 8.85 × 10⁻¹² C²/Nm²Putting the given values, we get: E = 4×10⁻⁶ / (4π × 8.85 × 10⁻¹² × (5 × 10⁻²)²)= 1.01 × 10⁷ N/C To be more accurate, you can state that the electric field at a point inside the spherical cavity of radius 5.00 cm, where a point charge of 4.00 × 10⁻⁶ C is placed, is 1.01 × 10⁷ N/C.

To know more about spherical cavity visit:

https://brainly.com/question/33322836

#SPJ11

A coaxial cable is being used to transmit a signal with frequencies between 20MHz and 50MHz. The line has a propagation velocity of 200Mm/s. At what physical line length (in meters) would you need to begin worrying about transmission line theory? (Use the λ/16 rule of thumb)

Answers

The physical line length is 160m

Given:

Frequency range: 20MHz to 50MHz

Velocity of propagation: 200Mm/s

Calculation:

The formula for wavelength (λ) is given by: λ = c/f

Substituting the given values: λ = 3 × 10^8 m/s ÷ (20 × 10^6 Hz)

Calculating: λ = 15 m

Using the λ/16 rule of thumb:

λ/16 = 15/16 = 0.9375 m

Determining the line length at which transmission line theory is significant:

Dividing 150 by 0.9375: 150 ÷ 0.9375 = 160

Conclusion:

The physical line length at which we need to start worrying about transmission line theory is approximately 160 meters.

Therefore, the answer is 160 meters

Learn more about length on

https://brainly.com/question/2497593

#SPJ11


What inductance must be connected to a 20 pF capacitor in an
oscillator capable of generating 600 nm (i.e., visible)
electromagnetic waves?

Answers

The inductance must be connected to a 20 pF capacitor in an oscillator capable of generating 600 nm (i.e., visible) electromagnetic waves is 21 nH.

In order to generate electromagnetic waves of 600 nm, the required frequency would be 5 x 10^14 Hz (c = λν,

where c is the speed of light,

λ is the wavelength, and

ν is the frequency).

Formula of resonance frequency:

f = 1 / 2π√LC

Where

f is the frequency,

L is the inductance, and

C is the capacitance.

Replacing the values:

f = 5 x 10^14 Hz and

C = 20 pF.

The required value of L would be approximately 21 nH (nanohenries).

Therefore, the inductance must be connected to a 20 pF capacitor in an oscillator capable of generating 600 nm (i.e., visible) electromagnetic waves is 21 nH.

To know more about electromagnetic visit:

https://brainly.com/question/31038220

#SPJ11

Assertion (A): When two dissimilar metals are joined across the junction and maintained at different temperature a potential difference is developed.

Reason (R): Electrons drift from one metal to the other.
A. Both A and R are true and R is correct explanation of A
B. Both A and R are true and R is not correct explanation of A
C. A is true R is false
D. A is false R is true

Answers

When two dissimilar metals are joined across the junction and maintained at different temperature(T) a potential difference(V) is developed; Electrons drift from one metal to the other. Both Assertion and Reason are true, but Reason is not a correct explanation of Assertion. The correct answer is option B.

Explanation: An electromotive force (EMF) is generated between two dissimilar metals joined together when they are maintained at different temperatures. If the temperature difference is maintained at the junction between two dissimilar metals, a voltage(V) is produced between the two metals. When two dissimilar metals are joined, the metal with a higher electron affinity tends to gain electrons(e) from the metal with a lower electron affinity, leading to the development of a potential difference or EMF, which drives the electron flow between the metals. Therefore, both Assertion and Reason are true, but Reason is not a correct explanation of Assertion. The reason behind it is that although electrons drift(Eo) from one metal to the other, this statement does not justify the phenomenon of potential difference development between the dissimilar metals.

To know more about electromotive force visit:

https://brainly.com/question/30083242

#SPJ11

A Foucault pendulum is a large pendulum used to demonstrate the earth's rotation Consider the Foucault pendulum at the California Academy of Sciences in San Francisco whose length 1 = 9.14 m, mass m = 107 kg and amplitude A = 2.13 m. (a) (5 pts) What is the period of its oscillation? (b) (5 pts) What is the frequency of its oscillation? (c) (5 pts) What is the angular frequency of its oscillation? (d) (5 pts) What is the maximum speed of this pendulum's mass? (e) (5 pts) If the mass of the pendulum were suspended from a spring, what would its spring constant have to be for it to oscillate with the same period? 4 of 4

Answers

The period of oscillation for the Foucault pendulum is approximately 6.00 seconds. The angular frequency of oscillation for the Foucault pendulum is approximately 1.05 rad/s. The spring constant would have to be approximately 115 N/m for the pendulum to oscillate with the same period.

(a) To find the period of oscillation:

T = 2π * sqrt(L/g)

L = 9.14 m

g = 9.8 [tex]m/s^2[/tex]

T = 2π * sqrt(9.14/9.8)

T ≈ 2π * 0.955

T ≈ 6.00 seconds

The period of oscillation for the Foucault pendulum is approximately 6.00 seconds.

(b) The frequency of oscillation:

f = 1/T

f = 1/6.00

f ≈ 0.167 Hz

Therefore, the frequency of oscillation for the Foucault pendulum is approximately 0.167 Hz.

(c) The angular frequency of oscillation:

ω = 2πf

ω = 2π * 0.167

ω ≈ 1.05 rad/s

Therefore, the angular frequency of oscillation for the Foucault pendulum is approximately 1.05 rad/s.

(d) The maximum speed of the pendulum's mass:

A = 2.13 m

ω = 1.05 rad/s

v_max = 2.13 * 1.05

v_max ≈ 2.24 m/s

Therefore, the maximum speed of the pendulum's mass is approximately 2.24 m/s.

(e) If the mass of the pendulum were suspended from a spring:

T = 2π * sqrt(m/k)

2π * sqrt(9.14/9.8) = 2π * sqrt(m/k)

sqrt(9.14/9.8) = sqrt(m/k)

9.14/9.8 = m/k

k = m * (9.8/9.14)

m = 107 kg

k ≈ 115 N/m

Therefore, the spring constant would have to be approximately 115 N/m for the pendulum to oscillate with the same period.

For more details regarding pendulum, visit:

https://brainly.com/question/29268528

#SPJ4

The total energy of an electron in the first excited state of the hydrogen atom is about -3.4 eV.
(a) What is the kinetic energy of the electron in this state?
(b) What is the potential energy of the electron in this state?
(c) Which of the answers above would change if the choice of the zero of potential energy is changed?

Answers

(a) The kinetic energy of the electron in the first excited state of the hydrogen atom is -6.8 eV.

(b) The potential energy of the electron in the first excited state of the hydrogen atom is 3.4 eV.

(c) The choice of the zero of potential energy does not affect the values of kinetic and potential energy, only the overall reference point.

(a) To find the kinetic energy of the electron in the first excited state of the hydrogen atom, we need to subtract the potential energy from the total energy. The total energy is given as -3.4 eV, which includes both kinetic and potential energy components. Since the electron is in a bound state, the total energy is negative.

The kinetic energy is equal to the total energy minus the potential energy:

Kinetic energy = Total energy - Potential energy

In this case, the total energy is -3.4 eV, and the potential energy is the negative of the total energy:

Potential energy = -(-3.4 eV) = 3.4 eV

Therefore, the kinetic energy can be calculated as:

Kinetic energy = -3.4 eV - 3.4 eV = -6.8 eV

(b) The potential energy of the electron in the first excited state of the hydrogen atom is given as 3.4 eV. This represents the energy associated with the attraction between the electron and the proton in the hydrogen atom. Since the total energy is negative, the potential energy is positive, indicating a stable bound state.

(c) None of the answers above would change if the choice of the zero of potential energy is changed. The choice of the zero of potential energy is arbitrary and does not affect the relative values of the kinetic and potential energy components. It only affects the overall reference point for potential energy calculations. In this case, if the zero of potential energy were shifted, both the kinetic and potential energy values would change by the same amount, but their relative difference and the total energy would remain unchanged.

For more such information on: kinetic energy

https://brainly.com/question/30337295

#SPJ8

Under constant-volume conditions, 2700 J of heat is added to 1.5 moles of an ideal gas. As a result, the temperature of the gas increases by 86.6 K. How much heat would be required to cause the same temperature change under constant-pressure conditions? Do not assume anything about whether the gas is monatomic, diatomic, etc. QP=

Answers

The amount of heat required to cause the same temperature change under constant-pressure conditions is 3779.986 JOULE.

At constant volume, the conditions are:

heat = 2700 J

number of mole (gas) n = 1.5 moles

change in temperature ΔT = 86.6 k

Now according to the rules of thermodynamic Change in internal energy at constant volume is ΔU =2700 J and change of entropy in a constant pressure will be equal to the transfer heat.

At constant volume :

[tex]Q=mc_v\Delta T\\\\ 2700\ \text{Joule}=1.5\ \text{mole}\times c_v \times\ 86.6\ K\\\\ c_v=20.79 \dfrac{\text{Joule}}{\text{mole}\cdot{K}}[/tex]

since gas undergoes the same temperature change in both process change in internal energy is same.

By Mayors equation :

[tex]c_p-c_v=R[/tex]

[tex]c_p-20.79=8.314\\\\c_p=29.099 \dfrac{\text{Joule}}{\text{mole}\cdot{K}}[/tex]

Heat would be required at constant pressure condition:

[tex]Q=mc_p \Delta T\\\\Q=1.5 \times29.099\times 86.6\\\\Q=3779.988 \rm J[/tex]

hence, the heat at constant pressure is 3779.988 J

Learn more about heat here:

https://brainly.com/question/33518665

#SPJ4

A 10-kW toaster roughly takes 6 minutes to heat four slices of bread. Find the cost of operating the toaster, in cents, once per day for 1 month (30 days). Assume energy costs of \( 0.74 \) cents/kWh.

Answers

Therefore, the cost of operating the toaster, in cents, once per day for 1 month (30 days) is 22.2 cents.

Given information: The power of toaster, P = 10 kW

Number of slices of bread, n = 4Time taken to heat four slices of bread, t = 6 minutes = 0.1 hour

Energy cost per kWh, C = 0.74 cents

To find: Cost of operating the toaster for once per day for a month (30 days)We know that the energy consumed by the toaster in terms of kWh is:

Energy consumed,

E = P × t

= 10 kW × 0.1 hour = 1 kWh

For 4 slices of bread, energy consumed = 1 kWh

Cost of operating the toaster for once

= Energy consumed × Cost per kWh = 1 kWh × 0.74 cents/kWh = 0.74 cents

For a day, the cost of operating the toaster

= 0.74 cents

For 30 days, the cost of operating the toaster = 0.74 cents/day × 30 days

= 22.2 cents

Therefore, the cost of operating the toaster, in cents, once per day for 1 month (30 days) is 22.2 cents.

To know more about operating visit :

https://brainly.com/question/13264061

#SPJ11

se the stellar parallax equation (D=1/p) to calculate the distances to the 10 nearest and 10 brightest stars in the Excel file. From the list below, select the Excel formula you should use (for the first star). 1/C3 C3/D3 1/D3 D3/C3 15) Next convert all 20 stars' distances from parsecs to light-years using a formula. From the list below, select the Excel formula you used for the first star. D3/3.26 D3*3.26 D3+3.26 5+LOG10(D3)+3.26 16) Examine the distances to all 20 stars. Which star is most distant from us? 16) Examine the distances to all 20 stars. Which star is most distant from us? How far away is it?

Answers

1. The distances to the 10 nearest and 10 brightest stars, the formula used in Excel for the first star is 1/D3, assuming the parallax value is in cell D3.

2. To convert the distances from parsecs to light-years for all 20 stars, the Excel formula used for the first star is D3*3.26, assuming the distance in parsecs is in cell D3.

3. The most distant star can be determined by examining the distances to all 20 stars and identifying the one with the highest distance value.

1. The formula 1/D3 is used in Excel to calculate the distance to the first star based on its parallax value in cell D3. This formula applies the stellar parallax equation D=1/p, where D represents the distance and p represents the parallax angle.

2. To convert the distances from parsecs to light-years for all 20 stars, the Excel formula D3*3.26 is used for the first star, assuming the distance in parsecs is in cell D3. This formula multiplies the distance in parsecs by the conversion factor of 3.26, which represents the approximate number of light-years in one parsec.

3. By examining the distances to all 20 stars, the most distant star can be identified as the one with the highest distance value. The specific star name and its distance will depend on the data provided in the Excel file.

learn more about Distances click here;

brainly.com/question/33716087

#SPJ11

A parallel-plate capacitor of cross sectional area A and thickness d is filled with a dielectric material whose relative permittivity is varies quadratically from €r = 1 at one plate to €r = 9 at the other plate.

(a) Find the capacitance.

(b) Find the electrostatic energy stored between the plates.

Answers

The electrostatic energy stored between the plates is given by: U = 81/2 ε0 AV2/d2.

a) Capacitance: The parallel plate capacitor with cross-sectional area A and thickness d is filled with a dielectric whose relative permittivity varies quadratically from €r = 1 at one plate to €r = 9 at the other.

The capacitors will then be given by the expression:

Given, Area A, Thickness d, Relative permittivity varies quadratically from €r = 1 to €r = 9

Therefore, C = capacitance of the capacitor, the distance between the plates is d, and the permittivity of free space is ε0.

Now, as we know that:

Charge stored on the capacitor is QQ=C

Voltage across the capacitor is VV = Ed

We know that Electric field strength E = Voltage/d (where d is the distance between the plates)

The relation between the electric field E and the potential difference V is given by,

Putting the value of E in the above equation, we get:

By integrating, we get the value of Q as:

Therefore, the capacitance of the capacitor is given by:

Thus, capacitance is given by C=9ε0A/d

b) Electrostatic energy stored: We know that the electrostatic energy stored between the plates is given by:

Therefore, the energy stored is given by

U=1/2C×V2 (using C = 9ε0A/d)

Hence, the electrostatic energy stored between the plates is given by: U = 81/2 ε0 AV2/d2.

To learn more about electrostatic visit;

https://brainly.com/question/16489391

#SPJ11

PLS
SOLVE URGENTLY!!
(a) A discrete system is given by the following difference equation: \[ y(n)=x(n)-2 x(n-1)+x(n-2) \] Where \( x(n) \) is the input and \( y(n) \) is the output. Compute its magnitude and phase respons

Answers

The magnitude and phase response of the given difference equation y(n) = x(n) − 2x(n−1) + x(n−2) can be computed by first taking the Z-transforms of both sides of the equation.

This can be represented as:[tex]$$Y(z) = X(z)[1 - 2z^{-1} + z^{-2}]$$[/tex]Where Y(z) and X(z) are the Z-transforms of y(n) and x(n) respectively. By substituting for z = e^{jω}, the magnitude and phase response can be found.The magnitude response is given by:$$|H(\omega)| = |1 - 2e^{-jω} + e^{-2jω}|$$$$\qquad \qquad= |(e^{-jω}-1)^2|$$$$\qquad \qquad= 4|\sin^2 \frac{\omega}{2}|$$The phase response is given by:$$\angle H(\omega) = -2\omega + \pi$$Therefore, the magnitude response is 4|sin2ω| and the phase response is -2ω + π.

To know more about magnitude visit:

https://brainly.com/question/31022175

#SPJ11

Which one of below statements is WRONG? a) The overcurrent relay pickup setting is the minimum operating current for which the relay will operate and trip the circuit breaker. b) The lower the pickup setting, the higher the relay sensitivity. c) Whenever possible, we have to use relays with the same operating characteristic in series with each other. d) The farthest relay from the source has current settings equal to or less than the relays behind it. e) None of the above

Answers

The farthest relay from the source has current settings equal to or less than the relays behind it.The overcurrent relay pickup setting is the minimum operating current for which the relay will operate and trip the circuit breaker.

Option d is wrong statement.

Relays are useful in the protection of a power system. They also provide an efficient means to isolate a faulted section of the power system from the rest of it. The relays are the "brains" of the protection system, detecting and isolating faults and allowing the rest of the system to continue to operate smoothly. Their functions include detecting overcurrent, overvoltage, undervoltage, reverse power flow, and so on.

When relays with different operating characteristics are used in series, they may produce maloperation, or the protection system may not operate correctly.The answer is (d) The farthest relay from the source has current settings equal to or less than the relays behind it, which is the wrong statement among the given options. The current setting of the relays increases as they move farther away from the source to achieve proper coordination.

To know more about  circuit breaker visit:-

https://brainly.com/question/9774218

#SPJ11

Other Questions
Evaluate 9xe^(15x) dx using integration by parts. Give only the function as your answer. Do not include "+C". you invest 1000 into an accont ppaying you 4.5% annual intrest compounded countinuesly. find out how long it iwll take for the ammont to doble round to the nearset tenth the foundation of islamic civilization is the shari'a, or Which of the following is a law that has no effect on payrollnet earnings?Question content area bottomPart 1A.Minimum WageB.Provincial Income TaxC.Canada Savings BondD.Federal Income Tax web applications are characterized by which of the following? in which of the following circumstances does double jeopardy apply? 2 you're he'plng your friend move, you carry neavy poxes across horizontally, the books have a wergh of \( 20 \mathrm{~N} \) and the distance carried was \( 5 \mathrm{~m} \), How much worh was do he \ After teaching the staff about the clotting system, which statement indicates teaching was successful? The end product of the clotting system is:a. Plasminb. Fibrinc. Collagend. Factor X TRUE / FALSE.it is acceptable for preschool classroom teachers to bring in their own food to eat while at the childrens lunch table as long as they sit and conver A product requires 20 dB of shielding at 200 MHz. It is planned to use 100 small round cooling holes (all the same size) arranged in a 10 by 10. array. What is the maximum diameter for one of the holes? in the public sector, inspectors may be clarified as public employee or:______. Where would you find the most severe disenfranchisement?(Criminal Disenfranchisement Laws Across the United States)Group of answer choicesSoutheastern United StatesNortheastern United StatesSouthwestern United StatesMidwestern United States Name each prism or pyramid. (a) decagonal prism decagonal pyramid hexagonal prism hexagonal pyramid octagonal prism octagonal pyramid pentagonal prism pentagonal pyramid Determine the inverse Fourier transform of X (w) given as: 2(jw)+24 (jw) +4(jw)+29 X (w) = Program that allows you to mix text and graphics to create publications of professional quality.a) databaseb) desktop publishingc) presentationd) productivity You want to buy a new sports car from Muscle Motors for $35,000. The contract is in the form of an annuity due for 48 months at an APR of 9.50 percent. What will your monthly payment be? Multiple Choice $879.31 $854.96 $872.40 $889.85 A satellite operating at 6 GHz in at a distance of 35,780km above the earth station. The following are the satellite link parameters: Effective isotropic radiated power =80 dBW, Atmospheric absorption loss of 2 dB, satellite antenna with physical area of 0.5 m and aperture efficiency of 80%. The satellite receiver has an effective noise temperature of 190K and noise bandwidth of 20 MHz. i. If the threshold CNR for this satellite is 25 dB, determine whether the transmitted signal shall be received with satisfactory quality at the satellite or not. If the CNR of the satellite link is 87 dB, calculate the downlink CNR What should you do if you are asked to install unlicensedsoftware? Is it legal to install unlicensed software? Is it ethicalto install unlicensed software? antiwar protests on college campuses spiked in the spring of 1970, following _______ Question 11 JSON data files do not have to conform to any schema. A) True B False Question 12 AQL is a declarative query language. A) True False 4 Points 4 Points