Determine the exact value of the point of intersection between r =< 2, 1, −3 > +t < −1,2,−3 > and I₁: 3x - 2y + 4z = 20. Check that the intersection is correct by substituting it into the appropriate equation.

Answers

Answer 1

The equation holds true, which means the point of intersection (66/19, -37/19, 27/19) satisfies the plane equation. Therefore, the intersection point is correct.

To find the point of intersection between the line and the plane, we need to solve the system of equations formed by the line equation and the plane equation.

The line equation is given as:

r = <2, 1, -3> + t < -1, 2, -3>

And the plane equation is given as:

3x - 2y + 4z = 20

We can substitute the values of x, y, and z from the line equation into the plane equation and solve for t.

Substituting x, y, and z from the line equation:

3(2 - t) - 2(1 + 2t) + 4(-3 - 3t) = 20

Expanding and simplifying:

6 - 3t - 2 - 4t - 12 - 12t = 20

-19t - 8 = 20

-19t = 28

t = -28/19

Now, substitute the value of t back into the line equation to find the corresponding values of x, y, and z.

x = 2 - (-28/19)

= 2 + 28/19

= (38/19 + 28/19)

= 66/19

y = 1 + 2(-28/19)

= 1 - 56/19

= (19/19 - 56/19)

= -37/19

z = -3 - 3(-28/19)

= -3 + 84/19

= (-57/19 + 84/19)

= 27/19

Therefore, the point of intersection between the line and the plane is (66/19, -37/19, 27/19).

To verify if this point lies on the plane, we substitute its coordinates into the plane equation:

3(66/19) - 2(-37/19) + 4(27/19) = 20

Multiplying through by 19 to clear the fractions:

198 - (-74) + 108 = 380

198 + 74 + 108 = 380

380 = 380

To know more about intersection,

https://brainly.com/question/31586389

#SPJ11


Related Questions

Mr. Butterfunger loans $28,000 at simple interest to his butter
business. The loan is at 6.5% and earns 1365€ interest. What is the
time of the loan in months?

Answers

In order to find the time of the loan in months, we can use the formula for simple interest.

I = P * r * t

I = 1365€ (interest earned).

P = $28,000 (principal amount).

r = 6.5% = 0.065 (interest rate in decimal form).

We can rearrange the formula to solve for t.

t = I / (P * r).

Substituting the values.

t = 1365€ / (28000€ * 0.065).

t ≈ 0.75.

Since there are 12 months in a year, we can multiply the result by 12.

t (months) = 0.75 * 12 ≈ 9 months.

Therefore, the time of the loan is approximately 9 months.

Read more about Simple interest.

https://brainly.com/question/29639856

#SPJ11

A population has an equal proportion of males and females. That is, when randomly selecting one individual, the probability that the individual is male (M) is 1/2 and the probability that the individual is female (F) is 1/2. There are only two outcomes when an individual is selected: {M, F). What is this collection of all possible outcomes called?
A. the sample space
B. the population
C. the distribution D. a census

Answers

The collection of all possible outcomes is called the sample space. This collection can be defined as the set of all possible outcomes of a random experiment or a statistical trial. In a population of males and females with an equal proportion of each, there are only two possible outcomes: male or female.

The sample space consists of two possible outcomes: {M, F}.A sample space is always essential when defining probability in any given situation. When we want to calculate the probability of an event happening, we need to consider all possible outcomes.

By doing so, we can determine the number of outcomes that meet the given criteria compared to the total number of possible outcomes. In the case of the population in question, if we wanted to calculate the probability of selecting a male or female, we would take the number of males or females divided by the total number of individuals.

To know about outcomes visit:

https://brainly.com/question/2495224

#SPJ11

Find the maximum value of the objective function z= 11x + 3y, subject to the following constraints. (See Example 2.)
5x + y ≤ 35
3x + y ≤ 27
x > 0, y > 0

The maximum value is z = ____ at (x, y) =

Answers

Subject to the constraints

5x + y ≤ 353x + y ≤ 27x > 0, y > 0

The maximum value of the objective function is z = 143 at (x, y) = (3, 26)

The given problem can be solved by graphing the feasible region (the region satisfying the given constraints) and then finding the maximum value of the objective function within that region.

We follow the below steps to solve the problem:

1: Rewrite the given constraints as inequalities in slope-intercept form: 5x + y ≤ 35 => y ≤ -5x + 35 3x + y ≤ 27 => y ≤ -3x + 27S

2: Graph the lines y = -5x + 35 and y = -3x + 27 to find the feasible region. Shade the region that satisfies all the constraints as shown below.

3: Now we need to find the coordinates of the vertices of the feasible region. The vertices are the points where the feasible region meets. From Figure 1, we see that the vertices are (0, 27), (3, 26), and (7, 0).

We evaluate the objective function at each vertex. Vertex (0, 27):

z = 11x + 3y = 11(0) + 3(27) = 81

Vertex (3, 26): z = 11x + 3y = 11(3) + 3(26) = 143

Vertex (7, 0): z = 11x + 3y = 11(7) + 3(0) = 77 S

4: Finally, we conclude that the maximum value of the objective function is z = 143 at (x, y) = (3, 26).

Learn more about the objective function at:

https://brainly.com/question/32621457

#SPJ11

Jessica deposits $4000 into an account that pays simple interest
at a rate of 3% per year. How much interest will she be paid in the
first 5 years

Answers

The following is the response to the query:supposing Jessica puts $4,000 into an account that accrues simple interest at a 3% annual rate.

The answer to the question is as follows:Given that Jessica deposits $4000 into an account that pays simple interest at a rate of 3% per year.To find the amount of interest Jessica will be paid in the first 5 years, we'll need to use the simple interest formula.Simple Interest = (P * r * t) / 100Where,P = principal amount (initial amount deposited) = $4000r = annual interest rate = 3%t = time = 5 yearsSubstituting the given values, we have:Simple Interest = (P * r * t) / 100= (4000 * 3 * 5) / 100= $600Hence, the amount of interest Jessica will be paid in the first 5 years is $600.

To know more about simple interest , visit ;

https://brainly.com/question/25845758

#SPJ11

The amount of interest Jessica will be paid in the first 5 years is $600.

The following is the response to the query:

Supposing Jessica puts $4,000 into an account that accrues simple interest at a 3% annual rate.

The answer to the question is as follows:

Given that Jessica deposits $4000 into an account that pays simple interest at a rate of 3% per year.

To find the amount of interest Jessica will be paid in the first 5 years, we'll need to use the simple interest formula.

Simple Interest =  [tex]\frac{(P * r * t)}{100}[/tex]

Where,

P = principal amount (initial amount deposited) = $4000r

= annual interest rate = 3%

t = time = 5 years

Substituting the given values, we have:

Simple Interest = [tex]\frac{(P * r * t)}{100}[/tex]

=  [tex]\frac{(4000 * 3 * 5)}{100}[/tex]

= $600

Hence, the amount of interest Jessica will be paid in the first 5 years is $600.

To know more about simple interest , visit ;

brainly.com/question/25845758

#SPJ11


In a particular unit, the proportion of students getting a P
grade is 45%. What is the probability that a random sample of 10
students contains at least 7 students who get a P grade?

Answers

The probability that at least 7 students get a P grade is 0.102

The probability that at least 7 students get a P grade

From the question, we have the following parameters that can be used in our computation:

Sample, n = 10

Success, x = At least 7

Probability, p = 45%

The probability is then calculated as

P(x = x) = ⁿCᵣ * pˣ * (1 - p)ⁿ⁻ˣ

So, we have

P(x ≥ 7) = P(7) + P(8) + P(9) + P(10)

Where

P(x = 7) = ¹⁰C₇ * (45%)⁷ * (1 - 45%)³ = 0.0746

P(x = 8) = 0.02289

P(x = 9) = 0.00416

P(x = 10) = 0.00034

Substitute the known values in the above equation, so, we have the following representation

P(x ≥ 7) = 0.0746 + 0.02289 + 0.00416 + 0.00034

Evaluate

P(x ≥ 7) = 0.102

Hence, the probability is 0.102

Read more about probability at

brainly.com/question/24756209

#SPJ4

Write a function in R. that generates a sample of size n from a continuous distribution with a given cumulative distribution function (cdf) Fx (x; 0) where 0 = (μ, o, k) or 0 = (w, k) is a vector of parameters with k > 0, σ > 0,µ € R and 0 < w < 1. Use this function to generate a sample of size n = 100 with given parameter values. Draw a histogram for the generated data. Write a function that finds the maximum likelihood estimates of the distribution parameters for the generated data ₁,...,100. Provide estimates of (u, o, k) or (w, k) in your report.

Answers

This will give you the MLE estimates for the distribution parameters based on the generated sample. The estimated parameters  are stored in weibull_params, while estimated parameters for the Pareto distribution are stored in pareto_params.

Here's an example of a function in R that generates a sample of size n from a continuous distribution with a given cumulative distribution function (cdf):

# Function to generate a sample from a given cumulative distribution function (cdf)

generate_sample <- function(n, parameters) {

 u <- parameters$u

 o <- parameters$o

 k <- parameters$k

 w <- parameters$w

 # Generate random numbers from a uniform distribution

 u_samples <- runif(n)

 if (!is.null(u) && !is.null(o) && !is.null(k)) {

   # Generate sample using the parameters (μ, σ, k)

   x <- qweibull(u_samples, shape = k, scale = o) + u

   # Generate sample using the parameters (w, k)

   x <- qpareto(u_samples, shape = k, scale = 1/w)

 } else {

   stop("Invalid parameter values.")

 }

# Generate a sample of size n = 100 with the given parameter values

parameters <- list(u = 1, o = 2, k = 3)  # Example parameter values (μ, σ, k)

sample <- generate_sample(n = 100, parameters)

# Draw a histogram of the generated data

hist(sample, breaks = "FD", main = "Histogram of Generated Data")

# Function to find the maximum likelihood estimates of the distribution parameters

find_mle <- function(data) {

 # Define the log-likelihood function

 log_likelihood <- function(parameters) {

   u <- parameters$u

   o <- parameters$o

   k <- parameters$k

   w <- parameters$w

     # Calculate the log-likelihood for the parameters (μ, σ, k)

     log_likelihood <- sum(dweibull(data - u, shape = k, scale = o, log = TRUE))

     # Calculate the log-likelihood for the parameters (w, k)

     log_likelihood <- sum(dpareto(data, shape = k, scale = 1/w, log = TRUE))

   } else {

     stop("Invalid parameter values.")

   }

   return(-log_likelihood)  # Return negative log-likelihood for maximization

 }

 # Find the maximum likelihood estimates using optimization

 mle <- optim(parameters, log_likelihood)

 return(mle$par)

}

# Find the maximum likelihood estimates of the distribution parameters

mle <- find_mle(sample)

Make sure to replace the example parameter values (μ, σ, k) with your actual parameter values or (w, k) if you're using the Pareto distribution. You can adjust the number of samples n as per your requirement.

This code generates a sample from the specified distribution using the given parameters. It then plots a histogram of the generated data and finds the maximum likelihood estimates of the distribution parameters using the generated sample. Finally, it prints the estimated parameters (μ, σ, k) or (w, k) in the output.

Learn more about pareto distribution here:

https://brainly.com/question/30906388

#SPJ11

Another model for a growth function for a limited population is given by the Gompertz function, which is a solution to the differential equation dPdt=cln(KP)P d P d t = c ln ⁡ ( K P ) P where c c is a constant and K K is the carrying capacity. Answer the following questions. 1. Solve the differential equation with a constant c=0.05, c = 0.05 , carrying capacity K=3000, K = 3000 , and initial population P0=750. P 0 = 750. Answer: P(t)= P ( t ) = 2. With c=0.05, c = 0.05 , K=3000, K = 3000 , and P0=750, P 0 = 750 , find limt→[infinity]P(t). lim t → [infinity] P ( t ) . Limit:

Answers

The limit of P(t) as t approaches infinity with c = 0.05, K = 3000, and P₀ = 750 is given by: lim t→∞ P(t)

To find the limit, we can substitute the given values into the Gompertz function:

dP/dt = c ln(KP)P

With c = 0.05, K = 3000, and P₀ = 750, the differential equation becomes:

dP/dt = 0.05 ln(3000P)P

To solve this differential equation, we can separate the variables and integrate:

∫ dP/P(ln(3000P)) = ∫ 0.05 dt

Integrating both sides, we have:

ln|ln(3000P)| = 0.05t + C

Here, C is the constant of integration. We can determine C using the initial condition P₀ = 750:

ln|ln(3000 * 750)| = 0.05 * 0 + C

ln|ln(2250000)| = C

Next, we can rewrite the equation in exponential form:

|ln(3000P)| = e^(0.05t + C)

Since the absolute value of the natural logarithm is always positive, we can remove the absolute value notation:

ln(3000P) = e^(0.05t + C)

Now, let's solve for P:

3000P = e^(0.05t + C)

P = e^(0.05t + C)/3000

Finally, we can substitute the value of C and simplify the equation:

P = e^(0.05t + ln|ln(2250000)|)/3000

Now, as t approaches infinity, the exponential term e^(0.05t + ln|ln(2250000)|) will grow without bound, and P will approach its carrying capacity K = 3000. Therefore, the limit of P(t) as t approaches infinity is:

lim t→∞ P(t) = K = 3000

To know more about the Gompertz function, refer here:

https://brainly.com/question/31683782#

#SPJ11

After Doreen puts $80,000 in the Bank and makes no other deposits
or withdrawals, if the bank promises 5.4% interest, how much is in
the account (to the nearest cent) after 24 years?

Answers

The answer based on the compound interest is the amount in the account after 24 years, to the nearest cent is $251,449.95.

The formula for compound interest is [tex]A = P(1 + \frac{r}{n} )^{nt}[/tex],

where: A = the final amount, P = the principal, r = the annual interest rate (as a decimal),n = the number of times the interest is compounded per year, t = the number of years.

For the given problem, the principal (P) is $80,000, the annual interest rate (r) is 5.4% or 0.054 in decimal form, the number of times the interest is compounded per year (n) is 1 (annually), and the number of years (t) is 24.

Substituting these values into the formula,

A = 80000[tex](1 + 0.054/1)^{(1*24)}[/tex] = 80,000(1.054)²⁴ = $251,449.95 (rounded to the nearest cent).

Therefore, the amount in the account after 24 years, to the nearest cent is $251,449.95.

To know more about Compound interest visit:

https://brainly.com/question/29639856

#SPJ11

Find a basis for the subspace of P2 (the polynomials of degree 2 or less) given by
B:
=
2-1
x-
W = {p€ P2 : ['* p(x)da =
=

Answers

{1,x,x²} is a basis for subspace W.

Given

B:
=
2-1
x-
W = [tex]{p € P2 : ∫_0^1▒〖p(x)dx=0〗}[/tex]

We need to find a basis for the subspace of P2 given by W.

W is a subspace of P2 since it contains the zero vector (take p(x)=0), and if p and q are in W and c is a scalar, then

[tex](cp+q)(x) = cp(x)+q(x) and∫_0^1▒〖(cp(x)+q(x))dx= c∫_0^1▒〖p(x)dx+∫_0^1▒〖q(x)dx= 0〗+0= 0〗[/tex]

Thus,

cp+q ∈ W.

Let p(x)=ax²+bx+c, where a,b and c are real numbers.

Then

[tex]∫_0^1▒〖p(x)dx= [(a/3)x³+(b/2)x²+cx)|_0^1= (a/3)+(b/2)+c=0]⟹2a+3b+6c=0⟹a=-3/2c-b/2.[/tex]

∴ [tex]{1,x,x²}[/tex]

is a basis for W.

Note: For any k, [tex]{1,x,x²,...,x^k}[/tex]is a basis for Pk.

To know more about scalars visit:

https://brainly.com/question/356987

#SPJ11

If C' is the unit circle in the complex plane C, and ƒ(z) = z², show that f(z) dz = 0 using two ways:
(a) by a direct multivariable integration by writing z = x + iy and suitably parametrizing C, and
(b) using a relevant theorem.

Answers

In this problem, we are given the function ƒ(z) = z² and the unit circle C' in the complex plane. We need to show that the integral of ƒ(z) dz over C' is equal to 0 using two different methods. First, we will use a direct multivariable integration approach by parameterizing C' in terms of x and y. Then, we will employ a relevant theorem to prove the same result.

(a) To directly evaluate the integral of ƒ(z) dz over C', we can parametrize the unit circle C' as z = e^(it), where t ranges from 0 to 2π. Substituting this into ƒ(z) = z², we have ƒ(z) = e^(2it). Differentiating z = e^(it) with respect to t, we get dz = i e^(it) dt. Substituting these expressions into the integral, we have ∫ƒ(z) dz = ∫(e^(2it))(i e^(it)) dt. Simplifying, we have ∫(i e^(3it)) dt. Integrating e^(3it) with respect to t, we get (1/3i)e^(3it). Evaluating the integral over the range of t, we find that the integral is equal to 0.

(b) We can also use the relevant theorem known as Cauchy's Integral Theorem to prove that the integral of ƒ(z) dz over C' is 0. Cauchy's Integral Theorem states that for a function ƒ(z) that is analytic in a simply connected region and its interior, the integral of ƒ(z) dz over a closed curve is 0. In this case, ƒ(z) = z² is an entire function, which means it is analytic in the entire complex plane. Since C' is a closed curve in the complex plane and ƒ(z) is analytic within and on C', we can apply Cauchy's Integral Theorem to conclude that the integral of ƒ(z) dz over C' is equal to 0.

In both approaches, we have shown that the integral of ƒ(z) dz over C' is 0, verifying the result using two different methods.

To learn more about Cauchy's Integral Theorem, click here:

brainly.com/question/30992206

#SPJ11

x² + 7 x + y2 + 2 y = 15
find the y-value where the tangent(s) to the curve are vertical for the expression above

Answers

The y-values where the tangent(s) to the curve are vertical are:y [tex]= (-2 + √13)/2 or y = (-2 - √13)/2[/tex]

Given the expression[tex]x² + 7 x + y2 + 2 y = 15[/tex]

To find the y-value where the tangent(s) to the curve is vertical, we need to differentiate the given expression to get the slope of the curve.

As we know that if the slope of the curve is undefined, then the tangent to the curve is vertical

Differentiating the expression with respect to x, we get:[tex]2x + 7 + 2y(dy/dx) + 2(dy/dx)y' = 0[/tex]

We need to find the value of y' when the tangent to the curve is vertical.

So, the slope of the curve is undefined, therefore[tex]dy/dx = 0.[/tex]

Putting dy/dx = 0 in the above equation, we get:[tex]2x + 7 = 0x = -3.5[/tex]

Now, we need to find the value of y when x = -3.5We know that [tex]x² + 7 x + y2 + 2 y = 15[/tex]

Putting x = -3.5 in the above equation, we get:

[tex]y² + 2y - 2.25 = 0[/tex]

Solving the above quadratic equation using the quadratic formula, we get:y [tex](-2 ± √(4 + 9))/2y = (-2 ± √13)/2[/tex]

Therefore, the y-values where the tangent(s) to the curve are vertical are:y [tex]= (-2 + √13)/2 or y = (-2 - √13)/2[/tex]

Know more about tangent here:

https://brainly.com/question/4470346

#SPJ11

Solve the IVP dy = 2xy + y; y(0) = -3. dx 7. Consider the IVP dy dx xVy – 1; y(1) = 0. Does there exist a solution which satisfies the given initial condition? If there is a solution, is it unique? 9. Find the general solution to the first-order linear differential equation dy t dt + 2y =tº – t.

Answers

The general solution of the given differential equation is:y(x) = -3e^(-x^2)2. To consider the IVP dy/dx = xV(y) – 1; y(1) = 0.

To solve the IVP dy = 2xy + y; y(0) = -3. dx.The differential equation is of the form dy/dx + P(x)y = Q(x), which is a first-order linear differential equation. Here, P(x) = 2x, Q(x) = y and integrating factor (IF) = exp [ ∫ P(x) dx ] = exp [ ∫ 2x dx ] = e^(x^2)Multiplying the given equation by e^(x^2), we get:e^(x^2) dy/dx + 2xye^(x^2) + ye^(x^2) = 0.Now, we apply the product rule of differentiation to the left-hand side, we get:(y(x)e^(x^2))' = 0Integrating both sides with respect to x, we get:y(x) e^(x^2) = C, where C is a constant.Substituting y(0) = -3 in this expression, we have:-3e^0 = C, i.e., C = -3

To know more about differential equation  visit :-

https://brainly.com/question/32524608

#SPJ11

Evaluate the area of the closed and bounded region enclosed by the following three curves :
y = √x ;y = √2x-1 and y = 0.

Answers

The area enclosed by the curves to be 2/3 square units.

Setting the first two curves equal to each other, we have:

√x = √(2x-1)

Squaring both sides and simplifying, we get:

x = 2x - 1

Solving for x, we find:

x = 1

Substituting x = 1 into the curves, we get the points of intersection as (1, 1) and (1, 0).

To find the area, we integrate the difference between the upper curve and the lower curve with respect to x over the interval [0, 1]:

Area = ∫[0, 1] (√x - √(2x-1)) dx

Evaluating this integral gives the area as the difference between the antiderivatives at the limits of integration:

Area = [2/3x^(3/2) - (2/3(2x-1)^(3/2))] [0, 1]

For more information on area under curve visit: brainly.com/question/25311104

#SPJ11

4. Solve and write your solution as a parameter. x - 2y + z = 3 2x - 5y + 6z = 7 (2x - 3y2z = 5

Answers

The solution is x = 1 - t

y = -1 + t

and

z = 2 + t

where t is a parameter.

Given equation:

x - 2y + z = 3

2x - 5y + 6z = 7,

2x - 3y + 2z = 5

We can write the system of linear equations in the matrix form AX = B where A is the matrix of coefficients of variables, X is the matrix of variables, and B is the matrix of constants.

Then the system of linear equations becomes:  

[1 -2 1 ; 2 -5 6 ; 2 -3 2] [x ; y ; z] = [3 ; 7 ; 5]

On solving, we get the matrix X: X = [1 ; -1 ; 2]

The solution can be written as the parameter.

Therefore, the solution is x = 1 - t

y = -1 + t

and

z = 2 + t

where t is a parameter.

to know more about  matrix visit :

https://brainly.com/question/29132693

#SPJ11




Find the volume generated when the area bounded by y=√√x and y=-x is rotated around the x-axis 2

Answers

The volume generated when the area bounded by y = √√x and y = -x is rotated around the x-axis is -7π/5.

To find the volume generated when the area bounded by the curves y = √√x and y = -x is rotated around the x-axis, we can use the method of cylindrical shells.

First, let's find the points of intersection between the curves:

√√x = -x

Squaring both sides:

√x = x²

x = x⁴

x⁴ - x = 0

x(x³ - 1) = 0

x = 0 (extraneous solution) or x = 1

So the curves intersect at x = 1.

To set up the integral for the volume, we need to express the curves in terms of y.

For y = √√x, squaring both sides twice:

y² = √x

y⁴ = x

So, for the region bounded by the curves, the limits of integration for y are -1 to 0 (from y = -x to y = √√x).

The radius of the cylindrical shell at height y is given by the difference between the x-values of the curves at that height:

r = √√x - (-x) = √√x + x

The height of the cylindrical shell is given by dy.

Therefore, the volume element of each cylindrical shell is dV = 2πrh dy = 2π(√√x + x)dy.

To find the total volume, we integrate this expression from y = -1 to 0:

V = ∫[from -1 to 0] 2π(√√x + x)dy

Since we expressed the curves in terms of y, we need to convert the limits of integration from y to x:

x = y⁴

So the integral becomes:

V = ∫[from 1 to 0] 2π(√√(y⁴) + y⁴) dy

V = 2π ∫[from 1 to 0] (√y² + y⁴) dy

V = 2π ∫[from 1 to 0] (y + y⁴) dy

V = 2π [ (1/2)y² + (1/5)y⁵ ] [from 1 to 0]

V = 2π [ (1/2)(0)² + (1/5)(0)⁵ - (1/2)(1)² - (1/5)(1)⁵ ]

V = 2π [ -(1/2) - (1/5) ]

V = -π(7/5)

Therefore, the volume generated when the area bounded by y = √√x and y = -x is rotated around the x-axis is -7π/5.

Visit here to learn more about volume brainly.com/question/28058531
#SPJ11

Find a confidence interval for op a) pts) A random sample of 17 adults participated in a four-month weight loss program. Their mean weight loss was 13.1 lbs, with a standard deviation of 2.2 lbs. Use this sample data to construct a 98% confidence interval for the population mean weight loss for all adults using this four-month program. You may assume the parent population is normally distributed. Round to one decimal place.

Answers

The formula for calculating the confidence interval of population mean is given as:

\bar{x} \pm Z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}

Where, \bar{x} is the sample mean, σ is the population standard deviation (if known), and n is the sample size.Z-score:

A z-score is the number of standard deviations from the mean of a data set. We can find the Z-score using the formula:

Z=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}

Here, n = 17, sample mean \bar{x}= 13.1, standard deviation = 2.2. We need to calculate the 98% confidence interval, so the confidence level α = 0.98Now, we need to find the z-score corresponding to \frac{\alpha}{2} = \frac{0.98}{2} = 0.49 from the z-table as shown below:

Z tableFinding z-score for 0.49, we can read the value of 2.33. Using the values obtained, we can calculate the confidence interval as follows:

\begin{aligned}\text{Confidence interval}&=\bar{x} \pm Z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}\\&=13.1\pm 2.33\times \frac{2.2}{\sqrt{17}}\\&=(11.2, 15.0)\\&=(11.2, 15.0) \text{ lbs} \end{aligned}

Hence he 98% confidence interval for the population mean weight loss for all adults using this four-month program is (11.2, 15.0) lbs.

To know more about confidence interval visit:

brainly.com/question/32278466

#SPJ11

Consider a closed system of three well-mixed brine tanks.Tank l has volume 20 gallons,tank 2 has volume l5 gallons,and tank 3 has volume 4 gallons.Mixed brine flows from tank l to tank 2,from tank 2 to tank 3, and from tank 3 back to tank 1. The flow rate between each pair of tanks is 60 gallons per minute. At time zero, tank I contains 28 lb of salt, tank 2 contains l 1 lb of salt, and tank 3 contain no salt.Solve for the amount (lb) of salt in each tank at time t (minutes). Also determine the limiting amount(as t-ooof salt in each tank.(Solve the problem by using Eigenvalues and Laplace Transform

Answers

The limiting amount of salt in each tank as t → ∞ is given by the corresponding eigenvector scaled by the coefficient of the term with the smallest eigenvalue:

[tex]$$\begin{aligned} \lim_{t\to\infty} C_1(t) &= 0.468 \text{ lb/gal} \\ \lim_{t\to\infty} C_2(t) &= -0.571 \text{ lb/gal} \\ \lim_{t\to\infty} C_3(t) &= -0.719 \text{ lb/gal} \end{aligned}$$[/tex]

The differential equations for salt concentration (lb/gal) in tanks 1, 2, and 3 are as follows:

[tex]$$\begin{aligned}\frac{dC_1}{dt}&=60C_2-\frac{60}{20}C_1\\ \frac{dC_2}{dt}&=\frac{60}{20}C_1-60C_2+\frac{60}{15}C_3\\ \frac{dC_3}{dt}&=\frac{60}{15}C_2-60C_3+\frac{60}{4}(-C_3)\\\end{aligned}$$[/tex]

These can be written in matrix form as:

[tex]$$\begin{bmatrix} \frac{dC_1}{dt} \\ \frac{dC_2}{dt} \\ \frac{dC_3}{dt} \end{bmatrix} = \begin{bmatrix} -3 & 3 & 0 \\ 3/4 & -4 & 3/5 \\ 0 & 3/4 & -15 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \\ C_3 \end{bmatrix}$$[/tex]

The matrix of coefficients has eigenvalues

λ1 = -0.238,

λ2 = -3.771, and

λ3 = -12.491.
The eigenvectors are:

[tex]$$\begin{bmatrix} 1 \\ -0.184 \\ 0.057 \end{bmatrix}, \begin{bmatrix} 1 \\ -0.801 \\ 0.029 \end{bmatrix}, \begin{bmatrix} 1 \\ 0.567 \\ 0.998 \end{bmatrix}$$[/tex]

Using these eigenvalues and eigenvectors, we can write the general solution to the system of differential equations as:

[tex]$$\begin{bmatrix} C_1 \\ C_2 \\ C_3 \end{bmatrix} = c_1 e^{-0.238 t} \begin{bmatrix} 1 \\ -0.184 \\ 0.057 \end{bmatrix} + c_2 e^{-3.771 t} \begin{bmatrix} 1 \\ -0.801 \\ 0.029 \end{bmatrix} + c_3 e^{-12.491 t} \begin{bmatrix} 1 \\ 0.567 \\ 0.998 \end{bmatrix}$$[/tex]

Using the initial conditions, we can solve for the coefficients c1, c2, and c3.

Setting t = 0, we have:

[tex]$$\begin{bmatrix} 28 \\ 11 \\ 0 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ -0.184 \\ 0.057 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ -0.801 \\ 0.029 \end{bmatrix} + c_3 \begin{bmatrix} 1 \\ 0.567 \\ 0.998 \end{bmatrix}$$[/tex]

Solving this system of equations, we get:

[tex]$$c_1 = 5.190[/tex]

[tex]\quad c_2 = -16.852[/tex]

[tex]\quad c_3 = 39.662$$[/tex]

Substituting these values into the general solution, we get:

[tex]$$\begin{aligned} C_1(t) &= 5.190 e^{-0.238 t} + (-16.852) e^{-3.771 t} + 39.662 e^{-12.491 t} \\ C_2(t) &= -0.955 e^{-0.238 t} - 1.186 e^{-3.771 t} + 2.141 e^{-12.491 t} \\ C_3(t) &= 0.293 e^{-0.238 t} - 0.029 e^{-3.771 t} - 0.263 e^{-12.491 t} \end{aligned}$$[/tex]

As t → ∞, the dominating term in the solution is the one with the smallest eigenvalue. Therefore, the limiting amount of salt in each tank as t → ∞ is given by the corresponding eigenvector scaled by the coefficient of the term with the smallest eigenvalue:

[tex]$$\begin{aligned} \lim_{t\to\infty} C_1(t) &= 0.468 \text{ lb/gal} \\ \lim_{t\to\infty} C_2(t) &= -0.571 \text{ lb/gal} \\ \lim_{t\to\infty} C_3(t) &= -0.719 \text{ lb/gal} \end{aligned}$$[/tex]

To know more about eigenvalue, visit:

https://brainly.com/question/15586347

#SPJ11

Suppose that the distribution function of a discrete random variable Xis given by 0, a <2 1/4, 2

Answers

Based on the information provided, it seems like you are describing the cumulative distribution function (CDF) of a discrete random variable X. The CDF gives the probability that X takes on a value less than or equal to a given value.

Let's break down the given information:

- For values less than a, the CDF is 0. This means that the probability of X being less than any value less than a is 0.

- For the value a, the CDF is less than 2. This implies that the probability of X being less than or equal to a is less than 2 (but greater than 0).

- For the value 2, the CDF is 1/4. This means that the probability of X being less than or equal to 2 is 1/4.

It's important to note that the CDF is a non-decreasing function, so as the values of X increase, the CDF can only remain the same or increase.

To provide more specific information or answer any questions regarding this discrete random variable, please let me know what you would like to know or calculate.

Learn more about cumulative distribution function (CDF) here:

https://brainly.com/question/30402457

#SPJ11

5. A car travels 544 miles in 8 and a half hours. What is the car's average speed, in miles per hour?

Answers

The car's average speed can be calculated by dividing the distance traveled by the time taken. 544 miles ÷ 8.5 hours = 64 miles per hourTherefore, the car's average speed is 64 miles per hour.

What is the annihilator of y=10-x+4sin 3x?

Answers

The annihilator of the function y = 10 - x + 4sin(3x) is a differential operator that when applied to the function yields zero. In other words, it is a derivative operator that eliminates the given function when applied.

To find the annihilator, we can start by identifying the highest order derivative in the function. In this case, the highest order derivative is the second derivative, which is d²y/dx².

Since the annihilator eliminates the function, applying the second derivative operator to the function should yield zero. Differentiating the given function twice with respect to x, we get:

d²y/dx² = d²(10 - x + 4sin(3x))/dx²

Taking the derivatives, we obtain:

d²y/dx² = -6cos(3x)

Now, setting -6cos(3x) equal to zero, we find the values of x for which the annihilator of the function is satisfied. Solving -6cos(3x) = 0, we get:

cos(3x) = 0

The solutions for this equation occur when 3x is equal to odd multiples of pi/2. Therefore, x can take the values of pi/6, pi/2, 5pi/6, and so on. These are the values that make the annihilator of the function y = 10 - x + 4sin(3x) equal to zero.

Learn more about derivative here: https://brainly.com/question/29144258

#SPJ11








2. Find the Radius of convergence and Interval of convergence for the 011 3x+1 power series (7) 2n+2 net

Answers

Therefore, the radius of convergence is determined by the range of x values that satisfy the inequality, which is -2/3 < x < 0.

To find the radius of convergence and interval of convergence for the power series 011(3x+1)(2n+2), we can apply the ratio test.

The ratio test states that for a power series

∑(n=0 to ∞) a_n(x - c)n, the series converges if the limit of |a_(n+1)/a_n| as n approaches infinity is less than 1.

In our case, the power series is given by ∑(n=0 to ∞) 011(3x+1)(2n+2). Let's determine the limit of the ratio |a_(n+1)/a_n| as n approaches infinity:

|a_(n+1)/a_n| = |011(3x+1)(2(n+1)+2) / 011(3x+1)(2n+2)|

= |(3x+1)(2n+4) / (3x+1)(2n+2)|

= |(3x+1)2|

The series will converge if |(3x+1)²| < 1.

To find the interval of convergence, we need to solve the inequality:

|(3x+1)²| < 1

Taking the square root of both sides, we get:

|3x+1| < 1

This inequality can be rewritten as -1 < 3x+1 < 1.

Solving for x, we have -2/3 < x < 0.

Therefore, the radius of convergence is determined by the range of x values that satisfy the inequality, which is -2/3 < x < 0.

The interval of convergence is the open interval (-2/3, 0).

To know more about Radius of convergence visit:

https://brainly.com/question/18763238
#SPJ11







Find the general solutions to the following difference and differential equations. (3.1) Un+1 = Un +7 (3.2) Un+1 = un-8, u = 2 (3.3) d = 3tP5 - p5 dP dt (3.4) d=3-P+ 3t - Pt dt

Answers

Given difference equations are:Un+1 = Un +7 …… (3.1)

Un+1 = un-8, u = 2 ….. (3.2)

The given differential equations are:d/dt (3tP5 - p5 dP/dt) ….. (3.3)

d/dt (3-P+ 3t - Pt) ….. (3.4)

Solution to difference equation Un+1 = Un +7 …… (3.1)

The given difference equation is a linear homogeneous difference equation.

Therefore, its general solution is of the form:

Un = A(1)n + B

Where, A and B are constants and can be determined from the initial values.

Solution to difference equation Un+1 = un-8, u = 2 ….. (3.2)

The given difference equation is a linear non-homogeneous difference equation with constant coefficients.

Therefore, its general solution is of the form:

Un = An + Bn + C

Where, A, B, and C are constants and can be determined from the initial values.

Solution to differential equation d/dt (3tP5 - p5 dP/dt) ….. (3.3)

The given differential equation is a first-order linear differential equation.

Its solution can be obtained by integrating both sides as follows:

d/dt (3tP5 - p5 dP/dt) = 3tP5 - p5 dP/dt = 0

Integrating both sides w.r.t. t, we get:

∫(3tP5 - p5 dP/dt) dt = ∫0 dt3/2 (t2P5) - p5P = t3/2/ (3/2) - t + C

Again integrating both sides, we get:

P = (2/5) t5/2 - (2/3) t3/2 + Ct + K

Where C and K are constants of integration.

Solution to differential equation d/dt (3-P+ 3t - Pt) ….. (3.4)

The given differential equation is a first-order linear differential equation.

Its solution can be obtained by integrating both sides as follows:

d/dt (3-P+ 3t - Pt) = 3 - P - P + 3

Integrating both sides w.r.t. t, we get:

∫(3-P+ 3t - Pt) dt = ∫3 dt - ∫P dt - ∫P dt + ∫3t dt

= 3t - (1/2) P2 - (1/2) P2 + (3/2) t2 + C1

Again integrating both sides, we get:

P = -t2 + 3t - 2C1/2 + K

Where C1 and K are constants of integration.

To learn more please click on the link below

https://brainly.com/question/29073472

#SPJ11

Use Green's Theorem to evaluate
Integral c F. dr. (Check the orientation of the curve before applying the theorem.) F(x, y) = (y - cos(y), x sin(y)), C is the circle (x-4)² + (y + 3)^2-9 oriented clockwise

Answers

To apply Green's Theorem, we need to find the curl of the vector field F and the boundary curve C. ∫C F · dr = ∫(2π to 0) ∫(3 to 0) -9(sin(y)cos(t)sin(t) + (1 + sin(y))cos(t)sin(t)) dt dr. This integral can be evaluated numerically using appropriate numerical methods or software.

Green's Theorem states that the line integral of a vector field F around a simple closed curve C is equal to the double integral of the curl of F over the region enclosed by C.

First, let's find the curl of F(x, y) = (y - cos(y), x sin(y)):

∇ × F = (∂/∂x, ∂/∂y, ∂/∂z) × (y - cos(y), x sin(y))

       = (∂/∂x (x sin(y)), ∂/∂y (y - cos(y)), ∂/∂z)

Now, let's calculate the partial derivatives:

∂/∂x (x sin(y)) = sin(y)

∂/∂y (y - cos(y)) = 1 + sin(y)

Therefore, the curl of F is given by:

∇ × F = (sin(y), 1 + sin(y), ∂/∂z)

Now, we need to find the boundary curve C, which is the circle (x - 4)² + (y + 3)² - 9 = 0, oriented clockwise.

The equation of the circle can be rewritten as:

(x - 4)² + (y + 3)² = 9

This is the equation of a circle with center (4, -3) and radius 3.

To orient the curve C clockwise, we need to reverse the direction of the parameterization. We can use the parameterization:

x = 4 + 3cos(t)

y = -3 + 3sin(t)

where t goes from 2π to 0 (in reverse order).

Now, let's calculate the line integral using Green's Theorem:

∫C F · dr = ∬R (∇ × F) · dA

where R is the region enclosed by the curve C and dA is the differential area.

Using the polar coordinate transformation:

x = 4 + 3cos(t)

y = -3 + 3sin(t)

and the Jacobian determinant:

dA = dx dy = (3cos(t))(-3sin(t)) dt dt = -9cos(t)sin(t) dt

The limits of integration for t are from 2π to 0.

Now, let's calculate the line integral:

∫C F · dr = ∬R (∇ × F) · dA

          = ∫(2π to 0) ∫(3 to 0) (sin(y), 1 + sin(y), ∂/∂z) · (-9cos(t)sin(t)) dt dr

Simplifying the integral, we have:

∫C F · dr = ∫(2π to 0) ∫(3 to 0) -9(sin(y)cos(t)sin(t) + (1 + sin(y))cos(t)sin(t)) dt dr

This integral can be evaluated numerically using appropriate numerical methods or software.

To learn more about Green's Theorem click here brainly.com/question/2758275

#SPJ11

Mention two ways in which you can detect whether numerical data
are from a population with normal distribution

Answers

There are two ways to detect whether numerical data comes from a population with a normal distribution are  histogram and normal probability plots.

There are two ways to detect whether numerical data comes from a population with a normal distribution. These two ways are histogram and normal probability plots.

How to detect whether numerical data comes from a population with a normal distribution:

Histograms: Histograms are graphical representations of data distributions. The histogram is a bar chart that shows the frequencies of a variable that has been grouped into a set of continuous intervals or bins.

Normal probability plots: A normal probability plot is a graphical method for assessing whether the data comes from a normal distribution. In a normal probability plot, the data is plotted against theoretical quantiles of the normal distribution.

If the data comes from a normal distribution, the points will form a straight line.

Know more about the normal distribution

https://brainly.com/question/4079902

#SPJ11

Show that the equation
x4+4y 4= z2 x # 0, y # 0, z #0
has no solutions. It may be helpful to reduce this to the case that x > 0 y > 0, z > 0, (x,y) = 1, and then by dividing by 4 (if necessary) to further reduce this to where x is odd.

Answers

There are no solutions to the equation x4 + 4y4 = z2 with x > 0, y > 0, z > 0, (x,y) = 1, and x odd since, we have a4 + b4 = z/2, which contradicts the assumption that (x,y,z) is a solution with (x,y) = 1.

First, we need to show that if there is a solution to the equation above, then there must exist a solution with x > 0, y > 0, z > 0, (x,y) = 1. To see why this is true, suppose there is a solution (x,y,z) to the equation such that x ≤ 0, y ≤ 0, or z ≤ 0. Then, we can negate any negative variable to get a solution with all positive variables. If (x,y) ≠ 1, we can divide out the gcd of x and y to obtain a solution (x',y',z) with (x',y') = 1.

We can repeat this process until we obtain a solution with x > 0, y > 0, z > 0, (x,y) = 1.Next, we need to show that if there is a solution to the equation above with x > 0, y > 0, z > 0, (x,y) = 1, then there must exist a solution with x odd. To see why this is true, suppose there is a solution (x,y,z) to the equation such that x is even. Then, we can divide both sides of the equation by 4 to obtain the equation (x/2)4 + y4 = (z/2)2, which contradicts the assumption that (x,y,z) is a solution with (x,y) = 1. Thus, if there is a solution with (x,y,z) as described above, then x must be odd. Now, we will use Fermat's method of infinite descent to show that there are no solutions with x odd.

Suppose there is a solution (x,y,z) to the equation x4 + 4y4 = z2 with x odd. Then, we can write the equation as z2 - x4 = 4y4, or equivalently,(z - x2)(z + x2) = 4y4.Since (z - x2) and (z + x2) are both even (since x is odd), we can write them as 2u and 2v for some u and v. Then, we have uv = y4 and u + v = z/2. Since (x,y,z) is a solution with (x,y) = 1, we must have (u,v) = 1. Thus, both u and v must be perfect fourth powers, say u = a4 and v = b4. Then, we have a4 + b4 = z/2, which contradicts the assumption that (x,y,z) is a solution with (x,y) = 1. Therefore, there are no solutions to the equation x4 + 4y4 = z2 with x > 0, y > 0, z > 0, (x,y) = 1, and x odd.

More on equations: https://brainly.com/question/29657983

#SPJ11

Solve the problem. 18) 5 thousand raffle tickets are sold. One first prize of $2000, 4 second prizes of $700 each, and 8 third prizes of $300 each are to be awarded, with all winners selected randomly. If one entered 1 ticket, what are the expected winnings? A) -144 cents B) 60 cents C) 120 cents D) 144 ents

Answers

The expected winnings when 1 ticket is entered are $0.60.(B) Here's how to solve the problem: To calculate the expected winnings, we need to multiply the probability of winning each prize by the amount of money that will be won.

There are a total of 13 prizes, which means there are 13 possible outcomes. We'll calculate the probability of each outcome and then multiply it by the amount of money that will be won. The probability of winning the first prize is 1/5000, since there is only one first prize and 5000 tickets sold. The amount of money won for the first prize is $2000. Therefore, the expected winnings for the first prize are: 1/5000 x $2000 = $0.40. The probability of winning a second prize is 4/5000, since there are four second prizes and 5000 tickets sold. The amount of money won for each second prize is $700. Therefore, the expected winnings for a second prize are: 4/5000 x $700 = $0.56. The probability of winning a third prize is 8/5000, since there are eight third prizes and 5000 tickets sold. The amount of money won for each third prize is $300. Therefore, the expected winnings for a third prize are: 8/5000 x $300 = $0.48.

Finally, we add up the expected winnings for each prize to get the total expected winnings: $0.40 + $0.56 + $0.48 = $1.44. Since we entered one ticket, we need to divide the total expected winnings by 5000 to get the expected winnings for one ticket: $1.44/5000 = $0.000288. We can convert this to cents by multiplying by 100: $0.000288 x 100 = $0.0288. Therefore, the expected winnings when 1 ticket is entered are $0.60, which is answer choice B).

To know more about Lottery visit-

https://brainly.com/question/24834093

#SPJ11

Consider the function x(t) = sinc (t/2)
a. Draw the signal by hand in time for -10 < t < 10 sec.
b. Derive X(f) and draw it by hand for -3 C. Generate Matlab figures representing the functions x(t),x(f) within the same ranges of time and frequency. Explore different values of At and N to obtain a good match with your hand drawings.
d. Identify and discuss the discrepancies between your hand drawn signals and their representation in Matlab.

Answers

When comparing the hand-drawn signals with their MATLAB representation, discrepancies may arise due to factors such as inaccuracies in hand-drawn sketches, limitations of the human eye in capturing fine details, and the discretization and numerical approximations introduced during the plotting process in MATLAB.

To complete the task, first, the signal x(t) = sinc(t/2) needs to be hand-drawn in the time domain for -10 < t < 10 seconds. Then, the Fourier transform of x(t), X(f), needs to be derived and hand-drawn in the frequency domain for -3 < f < 3 Hz. MATLAB can be used to generate figures representing x(t) and x(f) within the same ranges of time and frequency. It is important to experiment with different values of At (time scale factor) and N (number of samples) to obtain a good match with the hand-drawn signals. When comparing the hand-drawn signals with their MATLAB representation, discrepancies may arise due to factors such as inaccuracies in hand-drawn sketches, limitations of the human eye in capturing fine details, and the discretization and numerical approximations introduced during the plotting process in MATLAB. Differences in scale, resolution, and precision between hand-drawn and MATLAB-generated plots can also contribute to the observed discrepancies. It is important to carefully analyze and interpret the differences, considering the limitations of both the hand-drawn and MATLAB representations.

learn more about MATLAB here: brainly.com/question/30763780

#SPJ11

Emarpy Appliance is a company that produces all kinds of major appliances. Bud​ Banis, the president of​ Emarpy, is concerned about the production policy for the​ company's best-selling refrigerator. The annual demand for this has been about 8,250 units each​ year, and this demand has been constant throughout the year. The production capacity is 130 units per day. Each time production​starts, it costs the company ​$120 to move materials into​place, reset the assembly​ line, and clean the equipment. The holding cost of a refrigerator is ​$50 per year. The current production plan calls for 390 refrigerators to be produced in each production run. Assume there are 250 working days per year.
a) what is daily demand for this product?
b) if the company were to continue to produce 390 units each time production starts, how many days would production continue?
c) under the current policy, how many production runs per year would be required?
d) if the current policy continues, how many refrigerators would be in inventory when production stops? What would the average inventory level be?
e) if the company produces 390 refrigerators at a time, what would be the total annual setup cost and holding costs be?
f) If Bud Banis wants to minimize the total annual inventory cost, how may refrigerators should be produced in each production run? how much would this see the company in inventory costs compared to the current policy of producing 390 units in each production run?

Answers

The total annual cost of inventory can be minimized by producing 641 refrigerators in each production run, which is 251 more than the present production run, and the total inventory cost of the company would be $17,575.16 - $13,515 = $4,060.16 less than the present production run.

a) Daily demand for the product

Daily demand = Annual demand / Working days per year

= 8,250 / 250

= 33 units per day.

b) Number of days of production if 390 units are produced each time.

Number of days of production = Annual demand / Production capacity per day

= 8,250 / 390

= 21.15 days

≈ 22 days.

c) Production runs per year requiredProduction runs = Annual demand / Production run

= 8,250 / 390

= 21.15 runs

≈ 22 runs.

d) Refrigerators in inventory when production stops and average inventory levelThe production run is for 390 units of refrigerators. The holding cost of a refrigerator is $50 per year. When the production stops, the number of refrigerators produced will be equal to the number of refrigerators in the inventory.Each run will last for 390/130 = 3 days.The number of refrigerators produced during the last run will be less than or equal to 390.

Number of refrigerators produced = Number of refrigerators sold + Number of refrigerators left in inventoryAverage inventory

= Total inventory holding cost / Number of refrigerators in the inventoryTotal inventory holding cost

= Average inventory × Holding cost per refrigerator per year

= (Production run / 2) × 390 × 50= 9750 (Half of the annual holding cost)

Therefore,

Number of refrigerators produced during the last run = Annual demand - Number of refrigerators produced during all runs except for the last run

= 8250 - (21 × 390)

= 45Ref

= 45

Therefore, Number of refrigerators in inventory when production stops = Number of refrigerators produced during the last run + Number of refrigerators left in inventory= 45 + 0 = 45Avg Inventory = (390+45)/2= 217.5

e)Total annual setup cost and holding cost

Total annual setup cost = Number of runs × Setup cost per run

= 22 × $120

= $2,640

Total annual holding cost = Total inventory × Holding cost per unit per year

= 217.5 × $50

= $10,875

Total annual setup cost and holding cost = $2,640 + $10,875

= $13,515.

f) Minimum cost of inventory per yearGiven that the annual demand for refrigerators is 8,250 units, the number of units in the production run is n.

Number of production runs = Annual demand / nAnnual inventory holding cost

= Average inventory × Holding cost per unit per year

= (n / 2) × Average inventory × Holding cost per unit per year

Total annual holding cost = Annual inventory holding cost × Number of production runs

= (n / 2) × Average inventory × Holding cost per unit per year × (Annual demand / n)

Total annual setup cost = Setup cost per run × Number of production runs

= $120 × (Annual demand / n)Total annual cost

= Total annual holding cost + Total annual setup costTotal annual cost

= [(n / 2) × Average inventory × Holding cost per unit per year × (Annual demand / n)] + ($120 × (Annual demand / n))Differentiate the cost function and set the first derivative to zero.

2 × Average inventory × Holding cost per unit per year × Annual demand / n² - $120 / n²

= 0n

= √[(2 × Average inventory × Holding cost per unit per year × Annual demand) / $120

]For the current policy, the number of units in the production run, n, is 390. Total annual cost = $13,515.

Average inventory = (n / 2)

= 195.

Therefore,n = √[(2 × 195 × 50 × 8,250) / $120]

≈ 640.6

We can't produce 640.6 refrigerators, so we'll round up to 641.

Average inventory = (641 / 2) = 320.5

Total annual setup cost

= $120 × (8,250 / 641)

≈ $1,550.16

Total annual holding cost

= 320.5 × $50

= $16,025

Total annual cost = $1,550.16 + $16,025

= $17,575.16

To know more about inventory  please visit :

https://brainly.com/question/26533444

#SPJ11

the length of a rectangle is 2 cm greater than the width. the area is 80 cm^2. find the length and width

Answers

The width is 8 cm and the length is 10 cm. Given that the length of a rectangle is 2 cm greater than the width and the area is 80 cm². We are to find the length and width.

The area of a rectangle is given as: A = l × w and the length is 2 cm greater than the width. l = w + 2 cm.

We are given that the area is 80 cm².

A = l × w₈₀

= (w + 2) × w₈₀

= w² + 2w.

Rearrange the terms to form a quadratic equation

w² + 2w - 80 = 0

We need to solve this quadratic equation using the formula as shown below: x = (-b ± sqrt(b² - 4ac))/(2a), Where a = 1, b = 2 and c = -80.

Substituting these values in the formula above:

x = (-2 ± √(2² - 4(1)(-80)))/2(1)x

= (-2 ± √(4 + 320))/2x

= (-2 ± √(324))/2.

We can simplify this expression by taking the square root of 324 which gives us:

x = (-2 ± 18)/2x₁

= (-2 + 18)/2

= 8 cm (Width)x₂

= (-2 - 18)/2

= -10 cm (Not possible as width cannot be negative).

Therefore, the length is:

l = w + 2 = 8 + 2

= 10 cm.

Therefore, the width is 8 cm and the length is 10 cm.

To know more about rectangle, refer

https://brainly.com/question/2607596

#SPJ11

Determine all solutions for the equation 4 sin 2x = sin x where 0≤x≤ 2n Include all parts of a complete solution using the methods taught in class (diagrams etc.)

Answers

The solutions for the equation 4 sin(2x) = sin(x) are x ≈ 0.4596π, π and 1.539π

How to determine all solutions for the equation

From the question, we have the following parameters that can be used in our computation:

4 sin(2x) = sin(x)

Expand sin(2x)

So, we have

4 * 2sin(x)cos(x) = sin(x)

Evaluate the products

8sin(x)cos(x) = sin(x)

Divide both sides by sin(x)

This gives

8cos(x) = 1 and sin(x) = 0

Divide both sides by 8

cos(x) = 1/8 and sin(x) = 0

Take the arc cos & arc sin of both sides

x = cos⁻¹(1/8) and x = sin⁻¹(0)

Using the interval 0 < x < 2π, we have

x ≈ 0.4596 π, π and 1.539 π

Hence, the solutions for the equation are x ≈ 0.4596π, π and 1.539π

The graph is attached

Read more about trigonometry ratio at

https://brainly.com/question/17155803

#SPJ4

Other Questions
You purchased an industrial oven five years ago for $80,000. O&M costs were $20,000 for this year but are expected to increase by $750 each year for the next five years. The current salvage value of the oven is $40,000 but expected to decrease by 10% in each of the following years of use (e.g. $36,000 after one year, $32,400 after two years, so on). At i = 10%, find the remaining economic life for this asset. A) 1 year B) 2 years C) 3 years D) Answers A, B and C are not correct a client with a femur fracture develops fat embolus and is experiencing respiratory distress. the nurse plans to assist with which therapies? Should the Wheels Group pursue a non-asset-based growthstrategy or an asset-based strategy? Why or whynot? explain the occurrence of edema in patients who are bedridden Which of the following descriptions best represents the gradual model of speciation? Speciation occurs regularly as a result of the accumulation of many small changes. Speciation occurs under unusual circumstances and therefore transitional fossils are hard to find. An isolated population differentiates quickly from its parent stock as it adapts to its local environment. Species undergo little change over long periods interrupted only by short periods of rapid change. could you please solve and explainThe answer above is NOT correct. -3 (1 point) Let A = -5 -1 5 4 Perform the indicated operation. -99 Av= -18 -24 Preview My Answers -4 -4 3 and 7 = Submit Answers 9 6 -3 Questiona) Discuss the organizing process by using an appropriatediagramb) Compare and contrast traditional organizational designsandcontemporary organizational designs 1. Prove that for any positive integer n: 1 + 2 3 +4 + ... + (1)n - (1)n(n+1) 2 HEALTH TOPIC CREATIVE PORTION flyer) Topic: Chronic Kidney Disease. Create a 1-page sheet (students typically create a flyer) that includes photos/images along with informational wording that will educate the public on your chosen health issue. Specifically, this page should focus on how to prevent the health issues including: risk factors, prevention and the signs/symptoms.HEALTH TOPIC MINI RESEARCH PAPER (Chronic Kidney Disease)This paper will accompany your creative concept. Please use a minimum of 3 reliable sourceswhen researching your health topic. Your paper will be a minimum of 2.5 pages 1.5 spacing.It must include an Intro, Body and Conclusion. You may include history of the health topic, the importance of practicing prevention, statistics on its impact on various populations,current research, etc. Please be thorough, giving the public enough information to have a good understanding of the issue. Search the internet for news on companies that have abandoned, changed, or revised their EPM system /Briefly discuss what happened, why it did, and how the alternative relates to EPM. Also include a checkable reference (no longer than 250 words). find the particular solution that satisfies the differential equation and the initial condition. f ''(x) = x2, f '(0) = 7, f(0) = 7 For the reaction4PH3(g)6H2(g)+P4(g)the equilibrium concentrations were found to be [PH3]=0.250 M, [H2]=0.580 M, and [P4]=0.750 M.What is the equilibrium constant for this reaction?c= .Look up human age structure diagrams for a developed nation and a developing nation. Note the shape of the diagrams. At a glance, can you reasonably predict if that nations population is expected to grow rapidly (or not) in the near future? How could you know this? In 2019, Alberta-based Corporation Growth has $95,000 in taxable income, and Alberta-based Corporation Income has $10,400,000 in taxable income. Use the tax rates from Table 2.7. a. What is the tax bill for each? (Omit $ sign in your response.)Firms Tax Bill Alberta-based Corporation Growth $Alberta-based Corporation Income $b. Suppose both firms have identified a new project that will increase taxable income by $26,000. How much additional taxes will each firm pay? (Omit $ sign in your response.)Firms Additional Taxes Alberta-based Corporation Growth $ Alberta-based Corporation Income $c. Is this amount the same? multiple choiceYes No The traffic flow rate (cars per hour) across an intersection is r ( t ) = 400 + 900 t 150 t 2 , where t is in hours, and t =0 is 6am. How many cars pass through the intersection between 6 am and 11 am? What is the grammatical name and it's function for the expression "A short distance away from the house,. " e) Without using the simplex method, solve the LPP Max Z = (n-j+1)x; j=1 subject to the n conditions ki for 1 i n k=1 and the non-negativity constraints xi0 for 1 i n (2) a patient arrives at the hospital with a history of long-term exposure to caustic fumes. assessment reveals a forced expiratory volume in 1 second/forced vital capacity (fev1/fvc) ratio of 65% and a functional oxygen saturation of 88%. the patient smokes 1 pack of cigarettes per day and reports a recent increase in sputum production and a change in color from clear to green. in which order should the nurse initiate the collaborative care actions? besides education, what other areas within its borders is a state responsible for funding? whamong stack, queue, deque, and priority queue, which structure(s) does not accept null?