Differentiate. a) y=(2x 2
−1) 3
(x 4
+3) 5
b) f(x)= 7−3x 2

6x+5

c) y=sin(x 3
)cos 3
x d) h(x)= e 3−4x
x 2

12. Evaluate each limit, if it exists. If it does not exist, explain why. a) lim x→0

x
16−x

−4

b) lim x→2

2x 2
−x−6
3x 2
−7x+2

13. Where is this function discontinuous? Justify your answer. f(x)= ⎩



−(x+2) 2
+1
x+1
(x−3) 2
−1

if x≤2
if −2 if x>3

14. Use first principles to determine the derivative of f(x)= x−3
2x

.

Answers

Answer 1

Differentiate

(a) dy/dx = 3(2x² - 1)² × 4x / (x⁴ + 3)⁵ - 5(2x² - 1)³ × 4x³ / (x⁴ + 3)⁵

(b) f'(x) = (-6x)(6x + 5) - (7 - 3x²)(6) / (6x + 5)²

(c) dy/dx = 3x² × cos(x³) × cos³(x) + sin(x³) × (-3sin(x))

(d) h'(x) = (-4e³⁻⁴ˣ)(x²) - (e³⁻⁴ˣ)(2x) / (x²)²

a) To differentiate y = (2x² - 1)³ / (x⁴ + 3)⁵, we can use the chain rule.

Let u = 2x² - 1 and v = x⁴ + 3.

Using the chain rule, we have:

dy/dx = dy/du × du/dx / v⁵ - 5(u³) × dv/dx

dy/du = 3(2x² - 1)² × 4x

du/dx = 4x

dv/dx = 4x³

Substituting these values back into the chain rule formula, we have:

dy/dx = 3(2x² - 1)² × 4x / (x⁴ + 3)⁵ - 5(2x² - 1)³ × 4x³ / (x⁴ + 3)⁵

Simplifying the expression gives the final result of dy/dx.

b) To differentiate f(x) = (7 - 3x²) / (6x + 5), we can use the quotient rule.

The quotient rule states that if f(x) = u(x) / v(x), then the derivative is given by:

f'(x) = (u'(x)v(x) - u(x)v'(x)) / (v(x))²

In this case, u(x) = 7 - 3x² and v(x) = 6x + 5.

Differentiating u(x) and v(x) gives:

u'(x) = -6x

v'(x) = 6

Substituting these values into the quotient rule formula, we have:

f'(x) = (-6x)(6x + 5) - (7 - 3x²)(6) / (6x + 5)²

Simplifying the expression gives the derivative f'(x).

c) To differentiate y = sin(x³) × cos³(x), we can use the product rule.

Let u(x) = sin(x³) and v(x) = cos³(x).

Using the product rule, the derivative is given by:

dy/dx = u'(x)v(x) + u(x)v'(x)

Differentiating u(x) and v(x) gives:

u'(x) = 3x² × cos(x³)

v'(x) = -3sin(x)

Substituting these values into the product rule formula, we have:

dy/dx = 3x² × cos(x³) × cos³(x) + sin(x³) × (-3sin(x))

Simplifying the expression gives the derivative dy/dx.

d) To differentiate h(x) = e³⁻⁴ˣ / x², we can use the quotient rule.

The quotient rule states that if f(x) = u(x) / v(x), then the derivative is given by:

f'(x) = (u'(x)v(x) - u(x)v'(x)) / (v(x))²

In this case, u(x) = e³⁻⁴ˣ and v(x) = x²

Differentiating u(x) and v(x) gives:

u'(x) = -4e³⁻⁴ˣ

v'(x) = 2x

Substituting these values into the quotient rule formula, we have:

h'(x) = (-4e³⁻⁴ˣ)(x²) - (e³⁻⁴ˣ)(2x) / (x²)²

Simplifying the expression gives the derivative h'(x).

12. To evaluate the limit lim(x->0) x / (16 - x)⁻⁴, we can substitute the value x = 0 into the expression:

lim(x->0) 0 / (16 - 0)⁻⁴ = 0 / 16⁻⁴ = 0 / (1/16⁴) = 0 × 16⁴ = 0

13.The function f(x) = (-(x + 2)² + 1) / (x + 1), is discontinuous at x = -2 and x = 3.

At x = -2, the function has a vertical asymptote. The denominator becomes zero, resulting in division by zero.

At x = 3, the function has a removable discontinuity. The numerator and denominator both become zero, resulting in an indeterminate form. However, by simplifying the function, we can remove the discontinuity and redefine the function at x = 3.

14. To determine the derivative of f(x) = (x - 3) / (2x), we can use the first principles or the definition of the derivative.

The definition of the derivative is given by:

f'(x) = lim(h->0) [f(x + h) - f(x)] / h

Applying this definition to the function f(x), we have:

f'(x) = lim(h->0) [(x + h - 3) / (2(x + h)) - (x - 3) / (2x)] / h

Simplifying the expression inside the limit, we get:

f'(x) = lim(h->0) [2(x - 3) - (x + h - 3)] / (2(x + h)xh)

Further simplifying and canceling common terms, we have:

f'(x) = lim(h->0) (x - 3 - x - h + 3) / (2xh)

Simplifying the numerator, we get:

f'(x) = lim(h->0) (-h) / (2xh)

Canceling the common factor of h, we have:

f'(x) = lim(h->0) -1 / (2x)

Taking the limit as h approaches zero, we obtain the derivative:

f'(x) = -1 / (2x)

Therefore, the derivative of f(x) = (x - 3) / (2x) is f'(x) = -1 / (2x).

To know more about Differentiate click here :

https://brainly.com/question/31383100

#SPJ4


Related Questions

Evaluate the integral. ∫ (x 2
+2x+2) 2
dx
Select the correct answer. a. 2
1
(tan −1
(x+1)+ x 2
+2x+2
x+1
)+C b. 2
1
(tan(x+1)+ x 2
+2x+2
1
)+C c. 2
1
(tan(x+1)+ x 2
+2x+2
x+1
)+C d. 2
1
(tan −1
(x+1)+ x 2
+2x+2
1
)+C e. 2
1
(tan −1
(x+2)+ x 2
+2
1
)+C

Answers

Answer:

Step-by-step explanation:

Let y=∑ n=0

[infinity]

c n

x n

. Substitute this expression into the following differential equation and simplify to find the recurrence relations. Select two answers that represent the complete recurrence relation. 2y ′

+xy=0 c 1

=0 c 1

=−c 0

c k+1

= 2(k−1)

c k−1

,k=0,1,2,⋯ c k+1

=− k+1

c k

,k=1,2,3,⋯ c 1

= 2

1

c 0

c k+1

=− 2(k+1)

c k−1

,k=1,2,3,⋯ c 0

=0

1 2 3 4 5 6 7 8 9 10 What is the most specific name that can be given to a figure with the following coordinates? (–10, 8), (–7, 13), (3, 7), and (0, 2) A. rectangle B. square C. trapezoid D. parallelogram

Answers

The most specific name that can be given to a figure with the following coordinates (–10, 8), (–7, 13), (3, 7), and (0, 2) is: A. rectangle.

What is a rectangle?

In Mathematics and Geometry, a rectangle can be defined as a type of quadrilateral in which its opposite sides are equal and all the angles that are formed are right angles.

In any rectangle, each of the two (2) opposite sides are equal and parallel and the two (2) diagonals are equal. In this context, we have the following parallel sides;

√[(10 - 0)² + (8 - 2)²] = √[(-7 - 3)² + (13 - 7)²]

√(100 + 64) = √(100 + 64)

√136 units = √136 units

Read more on rectangle here: brainly.com/question/486045

#SPJ1

rotate the shape defined by the points A(-4,-4), B(3,-2), C(-2,-3), D(-2,-5) counterclockwise 180 degrees about the origin, then reflect across the y-axis.

Answers

Answer:

Step-by-step explanation:

anytime it is a 180-degree rotation it changes from (x,y) to (-x,-y) (the opposite of whatever sign it was before)f

A(-4,-4)    (4,4)

B(3,-2)     (-3,2)

C(-2,-3),   (2,3)

D(-2,-5)   (2,5)

For the following function, find the Taylor series centered at \( x=5 \) and then give the first 5 nonzero terms of the Taylor series and the \( f(x)=e^{5 x} \) \( f(x)=\sum_{n=0}^{\infty} \) \( f(x)=

Answers

The first 5 nonzero terms of the Taylor series of the given function are given by:

                       $$ f(x)= {e^{25}} - 5\left( {{x - 5}} \right) + \frac{{25}}{2}{\left( {{x - 5}} \right)^2} - \frac{{125}}{6}{\left( {{x - 5}} \right)^3} + \frac{{625}}{{24}}{\left( {{x - 5}} \right)^4}$$

The given function is \(f(x) = e^{5x}\). We have to find the Taylor series of \(f(x)\) centered at \(x = 5\).

Formula for the Taylor series of a function about x = a is given as,\[f(x) = \sum\limits_{n = 0}^\infty {\frac{{f^{(n)}}(a)}}{{n!}}{{(x - a)}^n}\]

The first five nonzero terms of the Taylor series are:

                   \[\begin{aligned} f(x) &= e^{5x} = e^{5(x - 5 + 5)}

                              \\ &= {e^{5 \cdot 5}} \cdot {e^{5(x - 5)}}

                         \\ &=  {e^{25}} \cdot \sum\limits_{n = 0}^\infty {\frac{{{{(x - 5)}^n}}}{{n!}}} {5^n}

                      \\ &= \sum\limits_{n = 0}^\infty {\frac{{{5^n}}}{{n!}}} {e^{25}} \cdot {x^n} \cdot {\left( { - 5} \right)^0} + \sum\limits_{n = 1}^\infty {\frac{{{5^n}}}{{n!}}} {e^{25}} \cdot {x^{n - 1}} \cdot {\left( { - 5} \right)^1} \\ &+ \sum\limits_{n = 2}^\infty {\frac{{{5^n}}}{{n!}}} {e^{25}} \cdot {x^{n - 2}} \cdot {\left( { - 5} \right)^2} + \sum\limits_{n = 3}^\infty {\frac{{{5^n}}}{{n!}}} {e^{25}} \cdot {x^{n - 3}} \cdot {\left( { - 5} \right)^3} + \sum\limits_{n = 4}^\infty {\frac{{{5^n}}}{{n!}}} {e^{25}} \cdot {x^{n - 4}} \cdot {\left( { - 5} \right)^4} \\ &= {e^{25}} - 5\left( {{x - 5}} \right) + \frac{{25}}{2}{\left( {{x - 5}} \right)^2} - \frac{{125}}{6}{\left( {{x - 5}} \right)^3} + \frac{{625}}{{24}}{\left( {{x - 5}} \right)^4} + ... \end{aligned}\]

Therefore, the first 5 nonzero terms of the Taylor series of the given function are given by:

                       $$ f(x)= {e^{25}} - 5\left( {{x - 5}} \right) + \frac{{25}}{2}{\left( {{x - 5}} \right)^2} - \frac{{125}}{6}{\left( {{x - 5}} \right)^3} + \frac{{625}}{{24}}{\left( {{x - 5}} \right)^4}$$

Learn more about Taylor series

brainly.com/question/32235538

#SPJ11

Prove O(g(n)), when f(n)=2n4 +5n 2 −3 such that f(n) is θ(g(n)). You do not need to prove/show the Ω(g(n)) portion of θ, just O(g(n)). Show all your steps and clearly define all your values

Answers

The function f(n) = 2n^4 + 5n^2 - 3 is O(g(n)), where g(n) = n^4, with C = 8 and n0 = 1.

This means that there exist constants C and n0 such that f(n) ≤ C * g(n) for all n ≥ n0.

To prove that f(n) = 2n^4 + 5n^2 - 3 is O(g(n)), we need to find a function g(n) and two constants C and n0 such that f(n) ≤ C * g(n) for all n ≥ n0.

Let's choose g(n) = n^4. Now we need to find constants C and n0 that satisfy f(n) ≤ C * g(n) for all n ≥ n0.

Step 1: Simplify f(n) and express it in terms of g(n):

f(n) = 2n^4 + 5n^2 - 3

Step 2: Choose a constant C:

Let's choose C = 8, which is greater than the coefficient of the highest power of n in f(n).

Step 3: Choose a value for n0:

To find n0, we need to solve the inequality f(n) ≤ C * g(n) for n:

2n^4 + 5n^2 - 3 ≤ 8n^4

6n^4 - 5n^2 - 3 ≥ 0

By plotting the graph of the inequality, we can see that it holds true for all n ≥ 1. Therefore, we choose n0 = 1.

Step 4: Verify the inequality for all n ≥ n0:

For n ≥ 1, we have:

2n^4 + 5n^2 - 3 ≤ 8n^4

2n^4 + 5n^2 - 3 - 8n^4 ≤ 0

-6n^4 + 5n^2 - 3 ≤ 0

By factoring the expression, we have:

(n^2 - 1)(-6n^2 + 3) ≤ 0

Since (n^2 - 1) ≥ 0 for n ≥ 1 and (-6n^2 + 3) ≤ 0 for all n, the inequality holds true for all n ≥ n0 = 1.

Therefore, we have shown that f(n) = 2n^4 + 5n^2 - 3 is O(g(n)), where g(n) = n^4, with C = 8 and n0 = 1.

To know more about inequality refer here:

https://brainly.com/question/20383699

#SPJ11

{(-3, 5), (-2, 4), (0, 9) (2,4)}
HELPPP PLEASE PLEASE ILL PAY U

Answers

Answer:

edit the question clearly

Answer:

Domain: {-3, -2, 0, 2}
Range: {5, 4, 9}

This is a function.

The relation is not linear.

Step-by-step explanation:

I didn't know which one you wanted so I put what I knew.

Have a great day thx for your inquiry :)

help answer the question

Answers

Answer and Explanation:

Angles RDY and NDA are both right angles; their measures are both 90°.

This means that:

they are supplementary because their measures add to 180°, which is the definition of supplementary anglesthey are a linear pair because they are supplementary and adjacent (next to each other)

They are NOT vertical angles because they are not on opposite angles of an intersection. They are NOT complementary because their measures don't add to 90°.

Find D3, D7, and D9, from the following data : (a) 80, 90, 70, 50, 40 ​

Answers

We get the values of D3, D7, and D9 as 1.08, 2.52, and 3.24 respectively.

To find the D3, D7, and D9 from the following data (a) 80, 90, 70, 50, 40, you need to arrange the data in ascending order first. After that, you will use the formul[tex]a: $D_{p}= \frac{p}{100}(n+1)$ whe[/tex]re Dp is the p-th percentile, p is the percentile and n is the number of observations in the data set.Ascending order of the given data = 40, 50, 70, 80, 90We have n = 5;Now we can find D3, D7, and D9 as f[tex]ollows:$$D_{3}= \frac{3}{100}(5+1)= \frac{3}{100}(6)= 0.18(5+1)= 1.08$$Ther[/tex]efore, D3 = 1.08. That means 3% of the values in the data are less than or equal to 1.08. So, D3 is the value that separates the bottom 3% of the data from the top 97%.Now, we can find D7 using the same formula:[tex]$$D_{7}= \frac{7}{100}(5+1)= \frac{7}{100}(6)= 0.42(5+1)= 2.52$$[/tex]Therefore, D7 = 2.52. That means 7% of the values in the data are less than or equal to 2.52. So, D7 is the value that separates the bottom 7% of the data from the top 93%.Finally, we can find D9 using the same formula[tex]:$$D_{9}= \frac{9}{100}(5+1)= \frac{9}{100}(6)= 0.54(5+1)= 3.24$$Therefore,[/tex]D9 = 3.24. That means 9% of the values in the data are less than or equal to 3.24. So, D9 is the value that separates the bottom 9% of the data from the top 91%.

for more such question on values

https://brainly.com/question/843074

#SPJ8

For y =
−1
b + cos x
with 0 ≤ x ≤ 2π and 2 ≤ b ≤ 6, where does the lowest point of the graph occur?
What happens to the graph as b increases?

Answers

The lowest point of the graph occurs when b = 6. As b increases, the graph is compressed vertically and shifts downward, getting closer to the x-axis.

To find the lowest point of the graph, we need to identify the minimum value of y for the given range of x and values of b. By observing the equation y = -1/b + cos(x), we can see that the lowest point will occur when the term -1/b is minimized, which happens when b is at its maximum value of 6.

When b is at its maximum value of 6, the term -1/b becomes -1/6, which is the smallest it can be within the given range. Therefore, the lowest point of the graph occurs when b = 6.

As b increases, the graph undergoes a vertical shift downward, moving closer to the x-axis. The effect of increasing b is to compress the graph vertically, making it "flatter" and closer to the x-axis. This is because as b increases, the magnitude of the term -1/b becomes smaller, causing the cosine term to dominate and pull the graph downward.

In summary, the lowest point of the graph occurs when b = 6. As b increases, the graph is compressed vertically and shifts downward, getting closer to the x-axis.

Learn more about maximum value here;

https://brainly.com/question/22562190

#SPJ11

Given the first five terms of the sequence {a n

}, determine the next two terms of sequence, find a recurrence relation that generates the sequence, including an initial value with the first index, and find the explicit formula that generates the nth term of the sequence. {a n

}={(1, 3
1

, 9
1

, 27
1

, 81
1

,…)}

Answers

The next two terms are: [tex]a_{6} =[/tex] 1/[tex]3^{5}[/tex] and [tex]a_{7} =[/tex] 1/[tex]3^{6}[/tex] .

Explicit formula,

[tex]a_{n} = 1/ 3^{n-1}[/tex]

Given,

[tex]a_{n}[/tex] = { 1, 1/3 , 1/9 , 1/27 , 1/81 , .. }

[tex]a_{n}[/tex] = { 1/[tex]3^{0}[/tex] , 1/[tex]3^{1}[/tex] , 1/[tex]3^{2}[/tex], 1/[tex]3^{3}[/tex] , 1/[tex]3^{4}[/tex] ...... }

Here,

Next two terms,

Sixth term,

[tex]a_{n} = 1/ 3^{n-1}[/tex]

Substitute n = 6,

[tex]a_{6} =[/tex] 1/[tex]3^{5}[/tex]

Seventh term,

[tex]a_{n} = 1/ 3^{n-1}[/tex]

Substitute n = 7,

[tex]a_{7} =[/tex] 1/[tex]3^{6}[/tex]

Explicit formula,

[tex]a_{n} = 1/ 3^{n-1}[/tex]

By substituting the n values we can get the desired term .

Know more about geometric sequence,

https://brainly.com/question/27852674

#SPJ4

3) The lifetime risk of developing pancreatic cancer is about
one in 50. Supposed we randomly sample 300 people, what is the
mean?

Answers

The lifetime risk of developing pancreatic cancer is one in 50.

Suppose we randomly sample 300 people,

What is the mean? The probability of developing pancreatic cancer is p=1/50=0.02.

The sample size n = 300.The mean of the sample can be calculated using the formula:μ = npμ = 300 * 0.02μ = 6

Hence, the mean is 6.

to know more about pancreatic cancer visit :

brainly.com/question/31831907

#SPJ11

Consider the following Cauchy problem: \[ \left\{\begin{array}{l} v^{\prime}(t)=\ln 2 \cdot v(t) \\ v(0)=1 \end{array}\right. \] Solve this Cauchy problem; remember to show your steps.

Answers

Applying the initial condition , the particular solution to the Cauchy problem is: v(t) =  2^(t)

How to solve Cauchy Problems?

To solve the given Cauchy problem, we can separate variables and then integrate both sides.

The differential equation is:

v'(t) = In 2 * v(t)

Separating variables gives:

(1/v)dv = In 2 * dt

Integrating both sides gives:

∫(1/v) dv = In 2∫dt

The left-hand side integral becomes the natural logarithm of the absolute value of v, and the right-hand side integral is simply t:

ln ∣v∣ = ln2 ⋅ t + C

To determine the constant of integration, we can use the initial condition v(0) = 1. Substituting t = 0 and v = 1 into the equation above, we get:

ln ∣1∣ = ln2⋅0 + C

0=C

So the equation becomes:

ln ∣v∣ = ln 2 ⋅t

Taking the exponential of both sides:

∣v∣ = [tex]e^{In 2t}[/tex]

Since v can be positive or negative, we consider both cases.

For v > 0:

v = 2^(t)

For v < 0:

v = -2^(t)

Therefore, the general solution to the Cauchy problem is:

v(t) = C⋅2t

Applying the initial condition v(0) = 1, we find C = 1. So the particular solution is: v(t) =  v = 2^(t)

Read more about Cauchy Problems at: https://brainly.com/question/32704872

#SPJ4

Complete question is:

Consider the following Cauchy problem:

[tex]\[ \left\{\begin{array}{l} v^{\prime}(t)=\ln 2 \cdot v(t) \\ v(0)=1 \end{array}\right. \][/tex]

Solve this Cauchy problem; remember to show your steps.

Take four points A, B, C and D on a sheet of paper.
Join them in pairs. How many line segments do you get if
(i) the points are non-collinear?
(i) the points are collinear?
(iii) three of them are col

Answers

(i) When the four points A, B, C and D are non-collinear and joined in pairs, we obtain six line segments. These line segments are AB, AC, AD, BC, BD and CD. A line segment is a part of a line that is bounded by two distinct end points. Therefore, the six line segments obtained have two end points each, one of which coincides with the end point of another line segment.

(ii) When the four points A, B, C and D are collinear, they lie on a straight line. Joining them in pairs gives us three line segments. These line segments are AB, BC and CD. Since the points are collinear, there is only one straight line that passes through them. Each of the three line segments obtained have two end points each, one of which coincides with the end point of another line segment.

(iii) When three of the points A, B, C and D are collinear, they lie on a straight line. The fourth point can be placed anywhere on the plane. Joining them in pairs gives us four line segments. These line segments are AB, AC, AD and BC. Each of the four line segments obtained have two end points each, one of which coincides with the end point of another line segment.

To know more about non-collinear visit:

https://brainly.com/question/17266012

#SPJ11

film company is deciding on the price of the video release of one of its films. Its marketing people estimate that at a price of p dollars, it can sell a total of q-500000 - 20000 p copies What price will bring in the greatest revenue? Click here to create a new row

Answers

The price that will bring in the greatest revenue is $25,000.

Here's how to solve the problem:

Let R be the revenue made from selling the copies of the film. The total number of copies of the film that the company will sell is given by the expression q - 500000 - 20000p.

The revenue R can be calculated by multiplying the price p of each copy by the total number of copies sold, i.e.,

R(p) = p(q - 500000 - 20000p)

R(p) = pq - 500000p - 20000p²

To find the price that will bring in the greatest revenue, we need to find the value of p that maximizes R(p).

To do this, we can differentiate R(p) with respect to p and set the derivative equal to zero:

dR/dp = q - 500000 - 40000

p = 0

q - 500000 = 40000p

q/40000 - 500000/40000 = p

p = q/40000 - 12.5

Substitute the given value of q = 5500000:

p = 5500000/40000 - 12.5

p = 137.5 - 12.5

p = $25,000

Therefore, the price that will bring in the greatest revenue is $25,000.

To know more about revenue visit:

https://brainly.com/question/27325673

#SPJ11

Among 200 households surveyed, 110 have high-speed internet, 38 have land-line phone service, 128 have mobile phone service, 27 have high-speed internet and land-line phone service, 31 have land-line phone service and mobile phone service. Of those with mobile phone service, 80 have high-speed internet. What is the probability that a household will have high-speed internet and mobile phone service?

Answers

The probability that a household will have high-speed internet and mobile phone service is 0.4 or 40%.

The probability that a household will have high-speed internet and mobile phone service can be calculated as 80 divided by the total number of households surveyed.

In the given scenario, we have information about the number of households with high-speed internet, land-line phone service, and mobile phone service. We are specifically interested in determining the probability of a household having both high-speed internet and mobile phone service.

According to the information provided, there are 200 households surveyed in total. Of these, 110 have high-speed internet, and 128 have mobile phone service. Additionally, 27 households have both high-speed internet and land-line phone service, and 31 households have both land-line phone service and mobile phone service. Furthermore, out of the households with mobile phone service, 80 also have high-speed internet.

To calculate the probability of a household having high-speed internet and mobile phone service, we divide the number of households with both services (80) by the total number of households surveyed (200):

Probability = 80 / 200 = 0.4

The probability  is 0.4 or 40%, that a household will have high-speed internet and mobile phone service

To know more about probability, refer here:

https://brainly.com/question/30034780#

#SPJ11

At the movie theatre, child admission is $5.40 and adult admission is $9.50. On Wednesday, 146 tickets were sold for a total sales of $1001.60. How many adult tickets were sold that day?

Answers

Answer:

52 adult tickets

Step-by-step explanation:

We can write a system of equations to solve this:

Let x represent child tickets and y represent adult tickets.

x+y=146

5.4x+9.5y=1001.6

Solve for y in the first equation:

x+y=146

subtract x from both sides

y=146-x

Substitute this into the second equation:

5.4x+9.5(146-x)=1001.6

simplify

5.4x+1387-9.5x=1001.6

combine like terms

-4.1x + 1387=1001.6

subtract 1387 from both sides

-4.1x=-385.4

divide both sides by -4.1

x=94

Next, plug in this into the first equation and solve for y (adult tickets).

94+y=146

subtract 94 from both sides

y=52

So, 52 adult tickets were sold that day.

Hope this helps! :)

Find the absolute extreme values of the function on the interval. h(x) = x+5,-2 ≤x≤3 absolute maximum is- - absolute maximum is absolute maximum is- absolute maximum is 13 at x = 3; absolute minimum is 4 at x = -2 2 at x = -3; absolute minimum is -3 at x = 2 72 72 at x = -2; absolute minimum is 4 at x = 3 at x = 3; absolute minimum is 4 at x = -2

Answers

The absolute maximum is 8 at x = 3 and the absolute minimum is 3 at x = -2 for the function h(x) = x+5 on the interval -2 ≤ x ≤ 3.

The correct option is, the absolute maximum is 8 at x = 3;

The absolute minimum is 3 at x = -2.

To find the absolute extreme values of the function h(x) = x+5 on the interval -2 ≤ x ≤ 3,

We have to find the highest and lowest points of the graph on that interval.

Find the critical points of the function by setting h'(x) = 0,

h'(x) = 1

Since h'(x) is a constant, there are no critical points.

Therefore, we only have to check the endpoints of the interval.

When x = -2,

h(x) = -2+5 = 3

When x = 3,

h(x) = 3+5 = 8

Therefore,

The absolute minimum of h(x) on the interval is 3, which occurs at x = -2. The absolute maximum of h(x) on the interval is 8, which occurs at x = 3.

Hence, the function h(x) = x+5 has an absolute minimum of 3 at x = -2 and an absolute maximum of 8 at x = 3 on the interval -2 ≤ x ≤ 3.

To learn more about the function visit:

https://brainly.com/question/8892191

#SPJ4

Suppose that there are 3 boxes and inside the boxes are 1 ball and 2 marbles in some order. You are supposed to find the box with the ball. You choose the first box but before it is opened, a different box is opened, revealing a marble. You are given a chance to change your choice of box. What is the probability that you will choose the box leading to the ball if you change your choice to the box?

Answers

The chance of picking the ball is 2/3, or approximately 67 percent.

There are three boxes containing one ball and two marbles, and the probability that the ball is in the first box is 1/3. Before it is opened, a different box is opened, revealing a marble. The probability that the other box has the ball is 2/3 if the first box has a marble.

By switching boxes, you'll have a better chance of finding the ball. It is a probability problem.Suppose you choose Box A as your first choice, and without loss of generality, suppose the ball is in Box A. With probability 1/3, the ball is in Box A, and with probability 2/3, the ball is in either Box B or Box C.

When the host opens Box C, the possible outcomes for your first choice are as follows:Box A, Box BBox A, Box CIn the first scenario, switching your choice from Box A to Box B yields a loss, whereas switching your choice from Box A to Box C yields a victory in the second scenario. In both cases, the outcome is 1/2.

Therefore, when you switch, the chance of picking the ball is 2/3, or approximately 67 percent.

Know more about probability here,

https://brainly.com/question/31828911

#SPJ11

Find The Cost Function For The Marginal Cost Function. C′(X)=0.05e0.01x; Fixed Cost Is $8 C(X)=

Answers

The cost function for the marginal cost function C′(x)=0.05e0.01x with a fixed cost of $8 is C(x) = 8 + 0.05e0.01x.

The marginal cost function is the derivative of the cost function. It tells us how much the cost of production increases when we produce one more unit of output. In this case, the marginal cost function is C′(x)=0.05e0.01x.

This means that the cost of producing one more unit of output is $0.05e0.01x.

The fixed cost is the cost that is incurred even when no output is produced. In this case, the fixed cost is $8. This means that the total cost of production is $8 plus the marginal cost of production.

Therefore, the cost function for the marginal cost function C′(x)=0.05e0.01x with a fixed cost of $8 is C(x) = 8 + 0.05e0.01x.

Here is a more detailed explanation of how to find the cost function:

The marginal cost function is the derivative of the cost function. This means that we can find the cost function by taking the integral of the marginal cost function. The integral of C′(x)=0.05e0.01x is 8 + 0.05e0.01x. Therefore, the cost function is C(x) = 8 + 0.05e0.01x.

To know more about derivative click here

brainly.com/question/29096174

#SPJ11

please answer neatly and explain
each and every step in the greatest detail possible
3. Let D = {(x, y) = R²: a 20 and y ≥ 0} and f: D→ R is given by f(x, y) = (x² + y²) e-(x+y). (a.) Find the maximum and minimum value of f on D. (b.) Show that e(+-2) > ²²+y²

Answers

The maximum and minimum values of the function is f(x, 0) = (x² + 0²) * e^-(x+0) = x² * e

To find the maximum and minimum values of the function f(x, y) = (x² + y²) * e^-(x+y) on the domain D = {(x, y) ∈ R²: x ≥ 0 and y ≥ 0}, we can follow these steps:

(a) Finding the Maximum and Minimum Values of f on D:

Step 1: Determine the critical points of f within the domain D by finding where the partial derivatives of f with respect to x and y equal zero.

Partial derivative with respect to x:

∂f/∂x = (2x - 1) * e^-(x+y) + (x² + y²) * (-e^-(x+y))

Partial derivative with respect to y:

∂f/∂y = (2y - 1) * e^-(x+y) + (x² + y²) * (-e^-(x+y))

Setting both partial derivatives equal to zero, we get:

(2x - 1) * e^-(x+y) + (x² + y²) * (-e^-(x+y)) = 0   ...(1)

(2y - 1) * e^-(x+y) + (x² + y²) * (-e^-(x+y)) = 0   ...(2)

Step 2: Solve the system of equations (1) and (2) to find the critical points.

From equations (1) and (2), we can observe that the factor e^-(x+y) is common. We can divide both equations by e^-(x+y) and simplify to obtain:

(2x - 1) + (x² + y²) * (-1) = 0   ...(3)

(2y - 1) + (x² + y²) * (-1) = 0   ...(4)

Simplifying equations (3) and (4), we have:

x² + 2x + y² - 1 = 0   ...(5)

x² + y² + 2y - 1 = 0   ...(6)

Step 3: Solve the system of equations (5) and (6) simultaneously to find the critical points.

By subtracting equation (5) from equation (6), we get:

2x - 2y + 2y - 2x = 0

0 = 0

This implies that the equations are dependent, meaning they represent the same line. Therefore, we have infinitely many solutions and no isolated critical points.

Step 4: Check the boundary of the domain D for the maximum and minimum values of f.

On the boundary of D, we have x = 0 or y = 0.

Case 1: x = 0

Substituting x = 0 into f(x, y), we have:

f(0, y) = (0² + y²) * e^-(0+y) = y² * e^-y

Taking the derivative of f(0, y) with respect to y, we get:

df(0, y)/dy = (2y - 1) * e^-y

Setting df(0, y)/dy = 0, we find the critical point:

(2y - 1) * e^-y = 0

2y - 1 = 0

y = 1/2

Case 2: y = 0

Substituting y = 0 into f(x, y), we have:

f(x, 0) = (x² + 0²) * e^-(x+0) = x² * e

Learn more about function here

https://brainly.com/question/11624077

#SPJ11

Given that angle
a
= 71° and angle
b
= 192°, work out
x
.h

Answers

How to determine the value

Find the general solution to 4y′′+y=2sec(t/2)

Answers

Given that 4y′′ + y = 2sec(t/2).

To find the general solution to the given equation.

Solution:The characteristic equation is given by:

4m² + 1 = 0

⇒ m² = -1/4

⇒ m = ±(i/2)

The general solution of the homogeneous equation is given by:

y = c₁ cos(t/2) + c₂ sin(t/2) ---------(1)

Now, consider the non-homogeneous part of the given equation, which is 2sec(t/2)

We assume that y_p = A sec(t/2)

Differentiate y_p with respect to t,y_p' = A sec(t/2) tan(t/2)

Differentiate y_p' with respect to t, y_p'' = A(sec²(t/2) + sec(t/2) tan²(t/2))

Substituting these values in the given equation we get,

4(A(sec²(t/2) + sec(t/2) tan²(t/2))) + Asec(t/2) = 2sec(t/2)

⇒ 4A sec²(t/2) + 4A sec(t/2) tan²(t/2) + Asec(t/2) - 2sec(t/2)

= 0

⇒ (4A + A)sec²(t/2) + (4A - 2) sec(t/2) tan²(t/2) - 2sec(t/2)

= 0

⇒ 5A sec²(t/2) + (4A - 2) sec(t/2) tan²(t/2)

= 2sec(t/2)

Therefore, A = 2/5 and

4A - 2 = 6

Thus, y_p = (2/5)sec(t/2)

The general solution of the differential equation 4y'' + y = 2sec(t/2) is given by combining the homogeneous equation (1) and particular solution which we found is, y = c₁ cos(t/2) + c₂ sin(t/2) + (2/5) sec(t/2)

Therefore, the general solution of the given differential equation is

y = c₁ cos(t/2) + c₂ sin(t/2) + (2/5) sec(t/2)

The general solution of the differential equation

4y'' + y = 2sec(t/2) is given by:

y = c₁ cos(t/2) + c₂ sin(t/2) + (2/5) sec(t/2)

To know more about equation visit :-

https://brainly.com/question/29174899

#SPJ11

With respect to a fixed origin O, the lines l 1

and l 2

are given by the equations l 1

:r= ⎝


2
−3
4




+2 ⎝


−1
2
1




,l 2

:r= ⎝


2
−3
4




+μ ⎝


5
−2
5




where λ and μ are scalar parameters. (a) Find, to the nearest 0.1 ∘
, the acute angle between l 1

and l 2

. The point A has position vector ⎝


0
1
6




. (b) Show that A lies on /. The lines l1 and l2 intersect at the point X. (c) Write down the coordinates of X. (d) Find the exact value of the distance AX. The distinct points B 1

and B 2

both lie on the line /2. Given that AX=XB 1

=XB 2

. (e) find the area of the triangle AB 1

B 2

giving your answer to 3 significant figures. Given that the x coordinate of B 1

is positive, (f) find the exact coordinates of B 1

and the exact coordinates of B 2

.

Answers

We found that the acute angle between the lines l1 and l2 is approximately 47.8°. We then showed that the point A lies on the line l1. The lines l1 and l2 intersect at the point X, with coordinates (0, 1, 6). The distance between points A and X was found to be exactly 0. However, without specific values for B1 and B2, we could not determine the area of the triangle AB1B2 or the exact coordinates of B1 and B2.

To solve this problem, we'll go step by step.

(a) Finding the acute angle between l1 and l2:

The direction vectors of lines l1 and l2 are given by the coefficients of the parameters λ and μ. Let's call these direction vectors d1 and d2, respectively.

d1 = [2, -3, 4]

d2 = [5, -2, 5]

To find the acute angle between these two lines, we can use the dot product formula:

cos θ = (d1 · d2) / (|d1| * |d2|)

where · represents the dot product and |d1| and |d2| represent the magnitudes of the vectors d1 and d2, respectively.

Let's calculate this:

d1 · d2 = (2 * 5) + (-3 * -2) + (4 * 5) = 10 + 6 + 20 = 36

[tex]|d1| = \sqrt{(2^2) + (-3^2) + (4^2)} = \sqrt{4 + 9 + 16} = \sqrt{29}[/tex]

[tex]|d2| = \sqrt{(5^2) + (-2^2) + (5^2)} = \sqrt{25 + 4 + 25} = \sqrt{54}[/tex]

cos θ = 36 /( ([tex]\sqrt{29[/tex]) * ([tex]\sqrt{54[/tex])) ≈ 0.675

To find the acute angle θ, we can take the inverse cosine (arccos) of cos θ:

θ ≈ arccos(0.675) ≈ 47.8° (rounded to the nearest 0.1°)

Therefore, the acute angle between l1 and l2 is approximately 47.8°.

(b) Showing that A lies on l1:

To show that a point lies on a line, we substitute the coordinates of the point into the equation of the line and check if it satisfies the equation.

Point A has position vector A = [0, 1, 6]. Substituting these values into the equation of l1:

l1: r = [2, -3, 4] + λ[-1, 2, 1]

Substituting A = [0, 1, 6]:

[0, 1, 6] = [2, -3, 4] + λ[-1, 2, 1]

This equation can be rewritten as a system of equations:

2 - λ = 0

-3 + 2λ = 1

4 + λ = 6

Solving this system, we find:

λ = 2

Since λ = 2 satisfies the system of equations, we conclude that A lies on l1.

(c) Finding the coordinates of X:

To find the point of intersection between l1 and l2, we equate their respective equations:

l1: r = [2, -3, 4] + λ[-1, 2, 1]

l2: r = [2, -3, 4] + μ[5, -2, 5]

Equate the x, y, and z components separately:

For x:

2 - λ = 2 + 5μ

For y:

-3 + 2λ = -3 - 2μ

For z:

4 + λ = 4 + 5μ

Solving this system of equations, we find:

λ = 2

μ = 0

Substituting these values into either equation, we get:

X = [2, -3, 4] + 2[-1, 2

, 1] = [0, 1, 6]

Therefore, the coordinates of the point X are (0, 1, 6).

(d) Finding the exact value of the distance AX:

The distance between two points A and X can be calculated using the distance formula:

Distance [tex]AX = \sqrt{(x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2[/tex]

Substituting the coordinates of A = [0, 1, 6] and X = [0, 1, 6]:

Distance [tex]AX = \sqrt{(0 - 0)^2 + (1 - 1)^2 + (6 - 6)^2) }= \sqrt{0 + 0 + 0[/tex] = 0

Therefore, the exact value of the distance AX is 0.

(e) Finding the area of the triangle AB1B2:

To find the area of a triangle given the coordinates of its vertices, we can use the Shoelace formula or the cross product of two vectors formed by the triangle's sides. Since we have the coordinates of A, B1, and B2, let's use the cross product method.

Let's say vector AB1 = v1 and vector AB2 = v2.

Vector v1 = B1 - A = [x1, y1, z1] - [0, 1, 6] = [x1, y1 - 1, z1 - 6]

Vector v2 = B2 - A = [x2, y2, z2] - [0, 1, 6] = [x2, y2 - 1, z2 - 6]

The area of the triangle AB1B2 is given by:

Area = 0.5 * |v1 x v2|

The cross product of v1 and v2 is:

v1 x v2 = [y1 - 1, z1 - 6, x1] x [y2 - 1, z2 - 6, x2]

         = [(z1 - 6)(x2) - (y2 - 1)(x1), (x1)(y2 - 1) - (z1 - 6)(y1 - 1), (y1 - 1)(z2 - 6) - (z1 - 6)(y2 - 1)]

Since AX = XB1 = XB2, the vectors v1 and v2 are parallel. Hence, their cross product will be zero:

[(z1 - 6)(x2) - (y2 - 1)(x1), (x1)(y2 - 1) - (z1 - 6)(y1 - 1), (y1 - 1)(z2 - 6) - (z1 - 6)(y2 - 1)] = [0, 0, 0]

Solving these equations, we get:

(z1 - 6)(x2) - (y2 - 1)(x1) = 0

(x1)(y2 - 1) - (z1 - 6)(y1 - 1) = 0

(y1 - 1)(z2 - 6) - (z1 - 6)(y2 - 1) = 0

Since we don't have specific values for B1 and B2, we cannot determine the area of the triangle AB1B2.

(f) Finding the exact coordinates of B1 and B2:

Without specific values for B1 and B2, we cannot determine their exact coordinates.

To know more about direction vectors refer here

https://brainly.com/question/30396164#

#SPJ11

For the demand function q=D(p)= (p+2) 2
500

, find the folowing a) The elasticky b) The efassicity at p=9, stating whether the demand is elastic, inelassc er has unit elasticity c) The value(s) of p for which totai reverue ia a maxinum (assume that p is in dolan) a) Find the equation for elasticily E(p) = b) Find the elasticty at the given price, slating whether the demand is elassc. nelastc or has unt olassaly E E(B) = (6 mplify your answer. Tyfe an integor or a tracton?) Is the demand olastic, inelastic, of does it have unt elastoky? A. elastic. 8. inelastic c. unit nasticty c) The value(a) of for which boeal Fevenuis is a mawmum (assame that is in dotarn). Fiound to tho neacest cont as needed. Use a coctea in weparate anarers as needed ).

Answers

a) Elasticity: The elasticity of demand is the ratio of the percentage change in quantity demanded to the percentage change in price.

It tells us the percentage change in quantity demanded resulting from a percentage change in price, and indicates how responsive the quantity demanded is to changes in price. It is given by the equation:
E(p) = (p+2)^2 * 500 / (p+2)^2 * -2
E(p) = -250000/p+2
b) Elasticity at p=9: E(9) = -250000/11 = -22727.27
The demand is inelastic since |E(p)| < 1.
c) Total revenue: Total revenue is given by the equation:
TR(p) = (p+2)^2 * 500
TR(p) = 500p^2 + 2000p + 2000
The derivative of this equation gives us the slope of the curve, which is 0 at the maximum point of the curve. Hence, we have to find the value of p that makes the derivative of TR(p) equal to 0. Differentiating TR(p),

we get:
dTR(p)/dp = 1000p + 2000
1000p + 2000 = 0
p = -2
Since the value of p is negative, the total revenue is maximum at p = $0. Hence, we have to take the value of p as 0 to find the maximum revenue.
TR(0) = 2000.
Thus, the value of p for which the total revenue is maximum is $0 and the maximum revenue is $2000.

To know more about maximum visit :-

https://brainly.com/question/30693656

#SPJ11

I
need help with is question ASAP!
Find f + g, f-g, fg, and f/g and their domains. f(x) = 3x², g(x) = x² - 4 Find (f + g)(x). -1 Find the domain of (f+g)(x). (Enter your answer using interval notation.) (-[infinity]0,00) Find (f - g)(x). -2

Answers

The sum (f + g)(x) is 4x² - 4 with domain (-∞, ∞), and the difference (f - g)(x) is 2x² + 4 with domain (-∞, ∞).

The sum, difference, product, and quotient of two functions f(x) and g(x) can be found by performing the corresponding operations on their respective values. Given f(x) = 3x² and g(x) = x² - 4, we can determine (f + g)(x), (f - g)(x), (f * g)(x), and (f / g)(x), as well as their domains.

To find (f + g)(x), we add the values of f(x) and g(x) together: (f + g)(x) = f(x) + g(x) = 3x² + (x² - 4) = 4x² - 4.

The domain of (f + g)(x) is the same as the domain of the individual functions f(x) and g(x), which is the set of all real numbers, represented as (-∞, ∞).

To find (f - g)(x), we subtract the values of g(x) from f(x): (f - g)(x) = f(x) - g(x) = 3x² - (x² - 4) = 3x² - x² + 4 = 2x² + 4.

The domain of (f - g)(x) is also the set of all real numbers, (-∞, ∞).

The product (f * g)(x) is obtained by multiplying the values of f(x) and g(x): (f * g)(x) = f(x) * g(x) = (3x²) * (x² - 4) = 3x⁴ - 12x².

The domain of (f * g)(x) remains the same as the domains of f(x) and g(x), which is (-∞, ∞).

Lastly, the quotient (f / g)(x) is calculated by dividing f(x) by g(x): (f / g)(x) = f(x) / g(x) = (3x²) / (x² - 4).

The domain of (f / g)(x) excludes any values of x that make the denominator zero. In this case, x² - 4 = 0 when x = ±2. Therefore, the domain is (-∞, -2) ∪ (-2, 2) ∪ (2, ∞).

In summary, (f + g)(x) = 4x² - 4 with domain (-∞, ∞), (f - g)(x) = 2x² + 4 with domain (-∞, ∞), (f * g)(x) = 3x⁴ - 12x² with domain (-∞, ∞), and (f / g)(x) = (3x²) / (x² - 4) with domain (-∞, -2) ∪ (-2, 2) ∪ (2, ∞).

Learn more about individual functions here:

https://brainly.com/question/18598196

#SPJ11

FREQUENCY DISTRIBUTION Construct a frequency distribution of the magnitudes. Use a class width of 0.50 and use a starting value of 1.00.
Magnitude Depth (km)
2.45 0.7
3.62 6.0
3.06 7.0
3.3 5.4
1.09 0.5
3.1 0.0
2.99 7.0
2.58 17.6
2.44 7.0
2.91 15.9
3.38 11.7
2.83 7.0
2.44 7.0
2.56 6.9
2.79 17.3
2.18 7.0
3.01 7.0
2.71 7.0
2.44 8.1
1.64 7.0

Answers

The frequency distribution of the magnitudes with a class width of 0.50 and a starting value of 1.00 is shown in the table below.

Magnitude Frequency

1.00-1.505.005-2.005.002-2.504.002.5-3.003.003-3.503.503.5-4.004.004-4.505.00.

The frequency of the magnitude is plotted on the y-axis while the magnitude classes are plotted on the x-axis.

To know more about magnitude, please click here:

https://brainly.com/question/29766788

#SPJ11

Solve for MRS
y= 24 - (4(square root of x))

Answers

The Marginal Rate of Substitution (MRS) for the given function is equal to -2/sqrt(x). To find the Marginal Rate of Substitution (MRS), we need to take the derivative of the given function with respect to x.

Given: y = 24 - 4(sqrt(x))

Step 1: Differentiate the function y with respect to x.

dy/dx = d/dx(24 - 4(sqrt(x)))

Step 2: Differentiate each term separately using the power rule and chain rule.

dy/dx = 0 - 4(1/2)(x^(-1/2))(1)

Step 3: Simplify the derivative.

dy/dx = -2(x^(-1/2))

Step 4: Rewrite the derivative in terms of MRS.

MRS = dy/dx = -2/sqrt(x)

Therefore, the Marginal Rate of Substitution (MRS) for the given function y = 24 - 4(sqrt(x)) is -2/sqrt(x).

The negative sign indicates that the MRS is inversely related to x, which means as x increases, the MRS decreases. The value of MRS represents the rate at which a consumer is willing to substitute y (the dependent variable) for an incremental change in x (the independent variable). In this case, as x increases, the consumer is willing to substitute less y for the additional units of x.

To learn more about marginal rate, click here: brainly.com/question/30001195

#SPJ11

A simple graph with n ≥2 vertices satisfies the following
property: For any two distinct vertices, u, v, Deg(u)+Deg(v) ≥n
−1.
Prove there is a path of length at most 2 between any two
vertices.

Answers

Given a simple graph with n≥2 vertices satisfying the property that for any two distinct vertices, u, v, Deg(u)+Deg(v) ≥n − 1.To prove that there is a path of length at most 2 between any two vertices.

To prove that there is a path of length at most 2 between any two vertices, we can proceed in the following way:

Let u and v be any two vertices in the graph. Since the graph is connected, there exists a path of length 1 between u and v. This means that u and v are adjacent vertices.

Now, we need to consider two cases:

Case 1: u and v are not connected by an edge.

Let w be any vertex in the graph that is adjacent to u. Since u and v are not connected by an edge, w cannot be equal to v. Therefore, w is a distinct vertex. Now, consider the two vertices v and w.

Since v and w are distinct, we can apply the property of the graph to get:

Deg(v)+Deg(w) ≥ n − 1. Rearranging this inequality, we get:

Deg(v) ≥ n − Deg(w) − 1. Since Deg(u) + Deg(v) ≥ n − 1, we have:

Deg(u) ≥ 1 + Deg(w).

Combining these two inequalities, we get:

Deg(u) + Deg(v) ≥ n − 1 ≥ Deg(w) + Deg(v).

This means that there exists a vertex w that is adjacent to both u and v.

Therefore, there exists a path of length 2 between u and v: u → w → v.

Case 2: u and v are connected by an edge.

In this case, there is a path of length 1 between u and v.

Therefore, there exists a path of length at most 2 between u and v: u → v.

Hence, we have proved that there is a path of length at most 2 between any two vertices in the given graph.

To know more about graph visit :

https://brainly.com/question/17267403

#SPJ11

Using proper notation, which of the following represents the length of the line
segment below?
OA. XY = 7
OB. Y=7
OC. XY=7
OD. X=7

Answers

The appropriate notation for the length of a line segment is XY = 7

To denote a line segment appropriately, the start point and end point alphabets are used followed by the equal to sign, then the value which represents the length of the line.

Here, the start and end points are denoted as X and Y respectively. The length of the line is 7.

Hence, the proper notation would be XY = 7

Learn more on segment:https://brainly.com/question/17374569

#SPJ1

Find the general solution of the nonhomogeneous differential
equations
3y′′ −4y′ + y = x^2 +8x + 6.

Answers

the general solution to the nonhomogeneous differential equation is y(x) = c₁[tex]e^{(x/3) }[/tex]+ c₂[tex]e^x[/tex]+ [tex]x^2[/tex]+ 12x, where c₁ and c₂ are arbitrary constants.

To find the general solution of the nonhomogeneous differential equation 3y′′ − 4y′ + y = [tex]x^2 +[/tex] 8x + 6, we first solve the associated homogeneous equation, then find a particular solution for the nonhomogeneous equation and combine them.

Step 1: Solve the associated homogeneous equation 3y′′ − 4y′ + y = 0.

The characteristic equation is:

[tex]3r^2[/tex]- 4r + 1 = 0

Factoring the characteristic equation, we get:

(3r - 1)(r - 1) = 0

This gives us two solutions: r = 1/3 and r = 1.

The general solution to the homogeneous equation is:

y_h(x) = c₁[tex]e^{(x/3)}[/tex] + c₂[tex]e^x[/tex]

Step 2: Find a particular solution for the nonhomogeneous equation.

To find a particular solution, we use the method of undetermined coefficients. Since the right-hand side of the equation is a polynomial of degree 2, we assume a particular solution of the form:

[tex]y_p(x) = Ax^2 + Bx + C[/tex]

We substitute this into the nonhomogeneous equation and solve for the coefficients A, B, and C.

Plugging [tex]y_p(x)[/tex]into the nonhomogeneous equation, we get:

3(2A) - 4(2Ax + B) +[tex]Ax^2 + Bx + C = x^2 + 8x + 6[/tex]

Simplifying and equating the coefficients of like terms, we have:

A = 1

-4A + B = 8

6 - 4B + C = 6

From the second equation, we find B = 12, and from the third equation, we find C = 0.

Therefore, a particular solution is:

[tex]y_p(x) = x^2 + 12x[/tex]

Step 3: Combine the homogeneous and particular solutions to find the general solution.

The general solution to the nonhomogeneous equation is given by:

[tex]y(x) = y_h(x) + y_p(x)[/tex]

Substituting the values obtained in the homogeneous and particular solutions, we have:

y(x) = c₁[tex]e^{(x/3)}[/tex] + c₂[tex]e^x + x^2 + 12x[/tex]

To know more about equation visit:

brainly.com/question/29657983

#SPJ11

Other Questions
The life times of interactive computer chips produced by York Semiconductor Manufacturer are normally distributed with a mean of 1.4 x 10 hours and a standard deviation of 3 x 10 hours. Compute the probability that a batch of 100 chips will contain a. at least 38 chips whose lifetimes are less than 1.8x 10 hours. b. c. Less than 60 chips whose lifetimes are less than 1.8 x 10 hours. Between 50 and 80 chips (inclusive) whose lifetimes are less than 1.8x 10 hours. Earth's magnetic field varies in strength and direction from place to place today, and also over time. A. Describe the changes that you would see in the Earth's magnetic field as you travel from the equator, to a latitude of 45 N, to the north pole (Earth's spin axis). B. How has Earth's magnetic field varied in the recent past (during the last 3000 years)? C. How has Earth's magnetic field varied in the more distant past (over the last 2 million years)? If consumers expect the price of a good to increase in the near future then immediate demand for that good will be __________. A. stoppedB. increasedC. decreasedD. unchangedPlease select the best answer from the choices providedABCD Why does the author most likely include these details?to illustrate that young activists pressure others to donate moneyto show that young activists are more generous than non-activiststo emphasize the dedication and generosity of young activiststo highlight that young activists are irresponsible with money Quiz navigation The following table shows the quantity demanded and quantity supplied of grapefruits (in millions of kilos): Finish attempt ... Time left 0:16:02 Refer to the table above to answer this question. If factor prices were to rise, causing the supply to change by 12 million kilos, what will be the new equilibrium price and quantity? Select one: A. $2.75 and 44 million kilos B. $2.25 and 36 million kilos C. $2.75 and 20 million kilos D. $3.25 and 28 million kilos Question 3 of 21What is the value of y in the parallelogram below?65A. 13B. 23C. 110D. 60KDMIT Suppose that 3 joule of work are needed to stretch a spring from its natural length of 40 cm to a length of 52 cm. How much work is needed to stretch it from 45 to 50 cm ? Question - 1: Points: 5 Consider the saturated, confined aquifer shown in Figure below. The aquifer has a permeability of 0.022 cm/s. The total head loss across the aquifer is 4.2 m. If H = 3.5 m, L = 75.0 m, and the aquifer makes an angle B = 12.0 degrees with respect to the horizontal. Determine the flow rate (at right angles to the cross section) in m/h per meter into the page) Ah Elll impervious layer ill. direction of flow Ell Bill aquifer B H llllll Elll Bill impervious layer Figure Solution Explain the benefits of a dynamically-scheduled processor when there is a cache miss. Explain false sharing in multiprocessor caches. What can you do to prevent it? A company's income statement reported net income of $91,500 during 2022. The income tax return excluded a revenue item of $11,000 (reported on the income statement) because under the tax laws the $11,000 would not be reported for tax purposes until 2023. Which of the following statements is incorrect assuming a 21% tax rate? Theorem 34 Given two lines and a transversal, if a pair of alternate interior angles are congruent, then the lines are parallel. (Proof by contradiction) Let's assume that the two lines with a pair of congruent alternate interior angles are NOT parallel. Then, there should be a point where the two lines meet each other. This point can be used to create a triangle that results in a contradiction. Thus, the two lines should be parallel. Notice that the underlined statement in this proof does not clearly explain how the assumption leads us to an inevitable contradiction. Explain (a) what the triangle is, (b) which postulate or theorem the triangle contradicts, and (c) why it contradicts. Write a letter to your friend telling here about pakistani joint family system is better than western culture of moving the elderly to an old home The accompanying table gives amounts of arsenic in samples of brown rice from three different states. The amounts are in micrograms of arsenic and all samples have the same serving size. The data are from the Food and Drug Administration. Use a0.05 significance level to test the claim that the three samples are from populations with the same mean. Do the amounts of arsenic appear to be different in the different states? Given that the amounts of arsenic in the samples from Texas have the highest mean, can we conclude that brown rice from Texas poses the greatest health problem?What are the hypotheses for this test?Determine the test statistic.Determine the P-value.Do the amounts of arsenic appear to be different in the different states?There is notsufficient evidence at a0.05significance level to warrant rejection of the claim that the three different states havethe same differentmean arsenic content(s) in brown rice.Given that the amounts of arsenic in the samples from Texas have the highest mean, can we conclude that brown rice from Texas poses the greatest health problem?A. The results from ANOVA allow us to conclude that Texas has the highest population mean, so we can conclude that brown rice from Texas poses the greatest health problem.B. Because the amounts of arsenic in the samples from Texas have the highest mean, we can conclude that brown rice from Texas poses the greatest health problem.C. Although the amounts of arsenic in the samples from Texas have the highest mean, there may be other states that have a higher mean, so we cannot conclude that brown rice from Texas poses the greatest health problem.D. The results from ANOVA do not allow us to conclude that any one specific population mean is different from the others, so we cannot conclude that brown rice from Texas poses the greatest health problem. A toy train is going around a circular track of radius 1.2 m. The train takes 9 seconds to complete one lap of the circular track.Calculate the speed of the train Question 6 1 pts Radoski Corporation's bonds make an annual coupon interest payment of 7.35% every year. The bonds have a par value of $1,000, a current price of $1,300, and mature in 12 years. What is the yield to maturity on these bonds? 4.01% 3.30% 4.13% 3.72% 5.04% In each of the following separate cases, indicate whether the company has entered into a finance lease or an operating lease.1. The title is transferred to the lessee. The lessee can purchase the asset for $1 at the end of the lease, and the lease term is five years. The leased asset has an expected useful life of six years.2. The lessor retains title to the asset, and the lease term is 3 years on an asset that has a 10-year useful life.3. The lessee can purchase the leased asset for a minimal $5 payment at the end of the lease and the lease term is for a major part of the asset's remaining economic life. HELP ME PLEASE IM BEING TIMED If S22 d - a37 = = 1089 and a = - 3 in an arithmetic sequence, find d and a37 anya pulled all-nighters both last night and the night before. tonight, finally, she anticipates going to bed at her usual time. anya will spend a greater proportion of her sleep time than usual in sleep, a phenomenon called . The ratios in an equivalent ratio table are 3:12,4.16 and 5.20. If the number in the ratio is 10 what is the second number justify your reasoning