Explain the term secondary structure with reference to hydrogen bonding;

Answers

Answer 1

Secondary structure refers to the arrangement of the covalently bonded atoms in a protein or nucleic acid.

What is molecule?

Moleculer is a microservice toolkit for Node.js. It is an open-source framework that enables developers to create, deploy and manage distributed systems in a fast and efficient way.

It is determined by the hydrogen bonding between the atoms, which results in the formation of specific three-dimensional shapes, such as the alpha helix, beta sheet, and loop structures. Hydrogen bonds form between the amide hydrogen atoms of the peptide backbone and carbonyl oxygen atoms of the peptide backbone, as well as between side chain atoms, such as the oxygen and nitrogen atoms of the amino acids. This hydrogen bonding helps to stabilize the secondary structure of the protein or nucleic acid, as the bonds create a lattice-like structure that holds the molecule together.

To learn more about molecule

https://brainly.com/question/475709

#SPJ4


Related Questions

Each of the insoluble salts below are put into 0. 10 m hydrochloric acid solution. Do you expect their solubility to be more, less, or about the same as in a pure water solution ?.

Answers

it is necessary to determine the solubility equilibrium constants of the specific salts in both water and hydrochloric acid in order to make a more accurate prediction.

When an insoluble salt is added to a hydrochloric acid solution, the acid will react with the salt to form a soluble chloride salt and a weak acid. The weak acid formed will then react with water to form its conjugate base and hydronium ions, which will increase the acidity of the solution.

Therefore, in general, the solubility of insoluble salts is expected to increase in hydrochloric acid solution compared to pure water solution due to the increased acidity. However, the degree to which the solubility increases will depend on the specific insoluble salt and its solubility equilibrium constants in both water and hydrochloric acid.

In some cases, the increased acidity may not have a significant effect on the solubility of the salt, while in other cases, the solubility may increase significantly.

To learn more about hydrochloric acid visit:

brainly.com/question/15102013

#SPJ11

The work needed to isentropically compress 2kg of steam in a cylinder at 400kPa and 400C to 2 MPa

Answers

The work needed to isentropically compress 2 kg of steam in a cylinder from 400 kPa and 400°C to 2 MPa is 404.2 kJ.

Work is the energy that is transmitted to or from an item by means of a force acting on it across a distance in physics thermodynamics. It has a scalar value and is measured in joules (J). When an item moves as a result of an applied force, the amount of work is equal to the force times the distance traveled in the direction of the applied force.

To calculate the work needed to isentropically compress 2kg of steam, we can use the first law of thermodynamics:

ΔU = Q - W

where ΔU is the change in internal energy, Q is the heat added to the system, and W is the work done by the system.

For an isentropic process, there is no heat transfer (Q = 0), and the change in internal energy is given by:

ΔU = m × (h2 - h1)

where m is the mass of the steam and h1 and h2 are the specific enthalpies of the steam at the initial and final states, respectively.

To find the specific enthalpies, we can use steam tables or a thermodynamic calculator. For the initial state, at 400 kPa and 400°C, we find:

h1 = 3339.1 kJ/kg

For the final state, at 2 MPa, we find:

h2 = 3541.2 kJ/kg

Substituting these values into the equation for ΔU, we get:

ΔU = 2 kg × (3541.2 kJ/kg - 3339.1 kJ/kg) = 404.2 kJ

Since the process is isentropic, the work done is given by:

W = ΔU = 404.2 kJ

Therefore, the work needed to isentropically compress 2 kg of steam in a cylinder from 400 kPa and 400°C to 2 MPa is 404.2 kJ.

To learn more about Work, refer to:

https://brainly.com/question/2472293

#SPJ4

Your question is incomplete. The complete question is:

What is the work needed to isentropically compress 2kg of steam in a cylinder at 400kPa and 400C to 2 MPa?

Which compounds are bases in aqueous solution according to brønsted–lowry theory?.

Answers

According to the Brønsted-Lowry theory, a base is a substance that accepts a proton (H+ ion) from another substance in a chemical reaction.

In aqueous solution, some examples of bases include hydroxide ions (OH-), ammonia (NH3), and bicarbonate ions (HCO3-). These compounds all have lone pairs of electrons that can accept a proton, thereby forming a new bond and becoming a conjugate acid. It is important to note that the strength of a base depends on its ability to accept protons, so some bases may be weaker or stronger than others. Overall, there are many compounds that can act as bases in aqueous solution, and their behavior can be understood using the Brønsted-Lowry theory.

To know more about compound visit:

https://brainly.com/question/13516179

#SPJ11

Draw the structure of the compound C4H8O2 that exhibits the 13C-NMR spectrum below. Impurity peaks are omitted from the peak list. The triplet at 77 ppm is CDCl3.

Answers

Compound with the given 13C-NMR spectrum and CDCl3 solvent is a carboxylic acid with the structure shown above.

               O
              //
      CH3CHCHCH2C(=O)
             \\
              CH3

We need to look at the remaining peaks in the spectrum and use them to determine the structure of the compound. The spectrum shows four distinct carbon environments, each represented by a peak. The first peak appears at 14 ppm and corresponds to a quaternary carbon (a carbon that is bonded to four other carbons). The second peak appears at 28 ppm and corresponds to a tertiary carbon (a carbon bonded to three other carbons). The third peak appears at 60 ppm and corresponds to a secondary carbon (a carbon bonded to two other carbons). Finally, the fourth peak appears at 170 ppm and corresponds to a carbonyl carbon (a carbon that is double-bonded to an oxygen).

Using this information, we can deduce that the compound must have the following structure:

               O
              //
      CH3CHCHCH2C(=O)
             \\
              CH3

This is a carboxylic acid with a chain of four carbons, two of which are methyl groups, and one of which is double-bonded to an oxygen. The quaternary carbon is the carbon that is bonded to the carboxyl group, while the tertiary carbon is the one adjacent to the quaternary carbon. The secondary carbon is the one adjacent to the carbonyl carbon, which is the carbon double-bonded to oxygen.

In summary, the compound with the given 13C-NMR spectrum and CDCl3 solvent is a carboxylic acid with the structure shown above.

To know more about compound, refer

https://brainly.com/question/29547278

#SPJ11

What is the molarity of 5. 60 mol of sodium carbonate in 1500-ml of solution?.

Answers

The molarity of sodium carbonate is 3.73 M

The molarity of sodium carbonate can be calculated as shown below.

M = moles of solute/liters of solution

Convert the volume from milliliters (mL) to liters (L):

1500 mL = 1500/1000 L = 1.5 L

Substitute the respective values in the above equation.

M = 5.60 mol / 1.5 L

M ≈ 3.73 M

Therefore, the molarity of the solution is approximately 3.73 M.

To learn about molarity:

https://brainly.com/question/23189773

#SPJ4

A formic acid buffer containing 0. 50 m hcooh and 0. 50 m hcoona has a ph of 3. 77. What will the ph be after 0. 010 mol of naoh has been added to 100. 0 ml of the buffer?.

Answers

Therefore, the pH of the buffer solution after adding 0.010 mol of NaOH is 3.78.

To solve this problem, we can use the Henderson-Hasselbalch equation:

pH = pKa + log([A-]/[HA])

where pKa is the dissociation constant of formic acid (3.75), [A-] is the concentration of the conjugate base (HCOO-) and [HA] is the concentration of the acid (HCOOH).

At equilibrium, the concentration of the acid and its conjugate base will be:

[HCOOH] = 0.50 M

[HCOO-] = 0.50 M

We can first calculate the ratio of [A-]/[HA]:

[tex][A-]/[HA] = 10^{(pH - pKa)[/tex]

[tex]= 10^{3.77 - 3.75)[/tex]

= 1.19

Next, we can use the balanced equation for the reaction of NaOH with HCOOH to determine how much of the acid and conjugate base are consumed by the added NaOH:

HCOOH + NaOH → HCOONa + H2O

For every 1 mol of NaOH added, 1 mol of HCOOH is consumed and 1 mol of HCOO- is produced. Therefore, adding 0.010 mol of NaOH to the buffer solution will result in a new concentration of:

[HCOOH] = 0.50 M - 0.010 M

= 0.49 M

[HCOO-] = 0.50 M + 0.010 M

= 0.51 M

Now we can use the Henderson-Hasselbalch equation again to calculate the new pH:

pH = pKa + log([A-]/[HA])

= 3.75 + log(0.51/0.49)

= 3.78

To know more about buffer solution,

https://brainly.com/question/30777612

#SPJ11

How is liquid-liquid extraction different from acid-base extraction?.

Answers

Liquid-liquid extraction and acid-base extraction are different techniques used for separating different compounds.

In liquid-liquid extraction, two immiscible liquids are used to extract a compound of interest from a mixture. On the other hand, acid-base extraction involves the use of an acidic or basic solution to extract a compound that is either acidic or basic, respectively.

Liquid-liquid extraction is based on the principle of partitioning, where a compound is distributed between two immiscible liquids based on its solubility in each liquid. This technique is often used to extract organic compounds from a mixture, such as the separation of caffeine from tea leaves. In contrast, acid-base extraction relies on the difference in acid-base properties of compounds in a mixture. For example, if a mixture contains both an acidic and basic compound, the acidic compound can be selectively extracted using a basic solution, while the basic compound can be extracted using an acidic solution.

In summary, while both liquid-liquid extraction and acid-base extraction are separation techniques, they differ in the types of compounds that can be extracted and the principles on which they are based.

To know more about extraction, visit:

https://brainly.com/question/16848369

#SPJ11

How many moles of h2so4 are present in 1. 63 liters of a 0. 954 m solution?.

Answers

There are approximately 1.554 moles of H2SO4 present in 1.63 liters of a 0.954 M solution.

To determine the number of moles of H2SO4 present in the solution, we can use the formula:

moles = concentration x volume

First, we need to convert the volume from liters to cubic meters:

1.63 L = 0.00163 m3

Next, we can plug in the values we know:

moles = 0.954 mol/L x 0.00163 m3

moles = 0.00155142 mol

Therefore, there are approximately 0.00155 moles of H2SO4 present in 1.63 liters of a 0.954 M solution.

Learn more about moles

brainly.com/question/31597231

#SPJ11

The formation of ethanol from pyruvate is an example of:.

Answers

Answer:  glycolysis.

Explanation:

Glycolysis results in the formation of either lactic acid or ethanol

The pH of a solution prepared by dissolving 0. 350 mol of acid in 1. 00L of 1. 10M of conjugate base is ________. The Kb for the conjugate base is 5. 40 x 10^-4. (Assume the final volume is 1. 00 L. )

a. 11. 23

b. 1. 66

c. 11. 14

d. 2. 77

Answers

The pH of a solution prepared by dissolving 0. 350 mol of acid in 1. 00L of 1. 10M of conjugate base is 11.14 .Hence option c is correct.

The mathematical formula for the pH of a solution made by dissolving 0. 350 mol of solid methylamine hydrochloride is pH = 11.14.

Typically, the pKb equation is represented mathematically as

pkb = -logkb

Therefore

pKb of CH3NH2 = -log(4.40×10-4)

pKb of CH3NH2= 3.36

Hence

pKa= 14 - pkb

pKa=14-3.36

pKa= 10.64

In conclusion, using

pH = pKa + log([A-]/[HA])

pH = 10.64+ log(1.10M/0.350M)

pH = 11.14

To know more about pH of solution

https://brainly.com/question/2288405

#SPJ4

The complete question is

The pH of a solution prepared by dissolving 0. 350 mol of solid methylamine hydrochloride (CH3NH3Cl) in 1. 00 L of 1. 10 M methylamine (CH3NH2) is ________. The Kb for methylamine is 4. 40 ⋅ 10-4. (Assume the final volume is 1. 00 L. )

a. 11. 23

b. 1. 66

c. 11. 14

d. 2. 77

Explain the differences between Coordinate covalent bond vs. normal covalent bond

Answers

The difference between a coordinate covalent bond and a normal covalent bond is that in a coordinate covalent bond, one atom provides both of the electrons that are shared, while in a normal covalent bond.

What is coordinate covalent bond?

A coordinate covalent bond (also known as a dative covalent bond) is a special type of covalent bond that is formed when both atoms in the bond contribute an equal number of electrons to the bond. This type of bond is formed when one atom donates both electrons in the bond to the other atom. This type of bond is different from a normal covalent bond because the electrons in a coordinate covalent bond come from one atom only. This type of bond is important in biological systems, as it allows for the formation of biologically relevant molecules, such as proteins and enzymes. Coordinate covalent bonds are also important in the formation of metal-ligand complexes, which play a key role in metal-based drug delivery systems.

To learn more about coordinate covalent bond

https://brainly.com/question/8527330

#SPJ4

How could we increase the solubility of BaCO3 in water?
(A) add Ba(NO3)2. (B) add Na2CO3. (C) add NaOH. (D) add HCl. (E) add NaCl.

Answers

Adding an acid such as HCl (option D) would increase the solubility of BaCO3 by protonating the carbonate ion and shifting the equilibrium towards the dissolved species, Ba2+ and HCO3-.

BaCO3 is sparingly soluble in water due to its low solubility product constant. To increase its solubility, we need to shift the equilibrium towards the dissolved species. One way to achieve this is by adding an acid such as HCl, which will react with the carbonate ion, releasing CO2 and forming soluble BaCl2 and HCO3-. This reaction effectively removes CO3-2 from the equilibrium, leading to an increase in the solubility of BaCO3. The other options (A, B, C, and E) do not have the same effect on the solubility of BaCO3 in water.

Learn more about increase in the solubility of BaCO3 here:

https://brainly.com/question/29638387

#SPJ11

precise measurements give the following masses: nuclide mass particle mass now consider the following nuclear reaction:

Answers

In general, precise measurements of nuclide mass and particle mass are important in determining the products and yields of nuclear reactions. By knowing the masses of the reactants and products involved, it is possible to calculate the energy released or absorbed during the reaction, as well as the probability of the reaction occurring.

Additionally, precise measurements can help to identify different isotopes and their properties, which is important in many fields including nuclear medicine and energy production.


Nuclear reactions are collisions between two atomic nuclei or one atomic nucleus and a subatomic particle that generate one or more nuclides. The nuclides formed by nuclear reactions differ from the responding nuclei (also known as the parent nuclei).

To know more about Nuclear reaction visit:

https://brainly.com/question/16526663

#SPJ11

when the temperature of a strip of iron is increased, the length of the stripquestion 5 options:decreases in width as it gets longer.also increases.may increase and may decrease.actually decreases. g

Answers

When the temperature of a strip of iron is increased, the length of the strip actually decreases. This phenomenon is known as thermal expansion, where the metal expands when heated and contracts when cooled.

The increase in temperature causes the atoms in the metal to vibrate more, increasing the distance between them and causing the metal to expand in all directions. This expansion is most noticeable in the length of the strip, as it is the longest dimension.

However, the width and thickness of the strip may also increase to a smaller extent. This effect is important to consider in various applications, such as building bridges and pipelines, where changes in temperature can affect the structure's integrity.
When the temperature of a strip of iron is increased, the length of the strip also increases. This occurs due to thermal expansion, a property of most materials, including iron. As the temperature rises, the atoms within the iron strip vibrate more vigorously and the overall dimensions of the strip expand. In this case, the length of the strip increases as the temperature increases. The width may also be affected, but the primary focus of your question is on the length. So, the correct option is that the length of the strip of iron also increases when its temperature is increased.

To know more about Temprature visit:

https://brainly.com/question/11464844

#SPJ11

What is the pH of 2.00 moles of acetic acid in 250 mL solution? (A) 1.92. (B) 2.81. (C) 3.87. (D) 4.26. (E) 5.11. (F) 6.89. (G) 7.00.

Answers

The answer is (D) 4.26.

The pH of a solution of acetic acid can be calculated using the expression:

pH = pKa + log([A-]/[HA])

where pKa is the acid dissociation constant of acetic acid (4.76), [A-] is the concentration of the acetate ion (formed by the dissociation of acetic acid), and [HA] is the concentration of undissociated acetic acid.

First, we need to calculate the concentration of acetic acid in moles per liter (M). We have 2.00 moles of acetic acid in 250 mL of solution, so the concentration is:

2.00 moles / 0.250 L = 8.00 M

The concentration of acetate ion can be calculated using the dissociation constant and the concentration of acetic acid:

Ka = [H+][A-]/[HA]

4.76 = x^2 / (8.00 - x)

where x is the concentration of H+ and A-. Solving for x, we get:

x = [H+] = [A-] = 1.84 M

Finally, we can calculate the pH:

pH = 4.76 + log(1.84/8.00) = 4.26

To know more about pH, click here-

https://brainly.com/question/15289741

#SPJ11

To determine , by gravimetric analysis, the concentration of barium ions (Ba2+) in a given solution, 25. 00cm3 of it are pipetted into a beaker and an excess of dilute sulphuric acid is added to it. The precipitate then obtained (BaSO4) is filtered, dried and weighed. The mass of the precipitate is found to be 1. 167g

Calculate the concentration of barium ions in the solution?

Answers

The concentration of barium ions in the given solution is 0.1999 mol/L.

The balanced chemical equation for the reaction is:

[tex]Ba^2^+ + SO_4^{2-} - BaSO_4 (precipitate)[/tex]

From the equation, we can see that one mole of [tex]BaSO_4[/tex] is formed for each mole of [tex]Ba^2^+[/tex]. Therefore, the moles of [tex]Ba^2^+[/tex] can be calculated as follows:

[tex]moles of Ba^2^+ = moles of BaSO_4[/tex]

To determine the concentration of [tex]Ba^2^+[/tex] in the solution, we need to convert the mass of the precipitate to moles of [tex]BaSO_4[/tex]. The molar mass of [tex]BaSO_4[/tex] is 233.38 g/mol.

Using the given mass of the precipitate:

moles of [tex]BaSO_4[/tex] = mass of precipitate / molar mass of [tex]BaSO_4[/tex]

moles of [tex]BaSO_4[/tex] = 1.167 g / 233.38 g/mol

moles of [tex]BaSO_4[/tex] = 0.004998 mol

Since one mole of [tex]BaSO_4[/tex] is formed for each mole of [tex]Ba^2^+[/tex], the moles of Ba2+ in the original solution is also 0.004998 mol.

The volume of the solution used was 25.00 cm cube, which is equivalent to 0.02500 L. Therefore, the concentration of [tex]Ba^2^+[/tex] in the solution can be calculated as follows:

concentration of [tex]Ba^2^+[/tex] = moles of [tex]Ba^2^+[/tex] / volume of solution

concentration of [tex]Ba^2^+[/tex] = 0.004998 mol / 0.02500 L

concentration of [tex]Ba^2^+[/tex] = 0.1999 mol/L

Therefore, the concentration of barium ions in the given solution is 0.1999 mol/L.

Learn more about Concentration of barium at

brainly.com/question/27309134

#SPJ4

The reaction of HCl with NaOH is represented by the equation HCl(aq) + NaOH(aq) → NaCl(aq) + H2O(l) What volume of 0.6310 M HCl is required to titrate 15.80 mL of 0.3210 M NaOH?

Answers

Answer:

This is a stoichiometry problem involving an acid-base titration. The balanced chemical equation for the reaction is:

HCl(aq) + NaOH(aq) → NaCl(aq) + H2O(l)

The stoichiometric coefficients indicate that one mole of HCl reacts with one mole of NaOH. Therefore, we can determine the number of moles of HCl required to react with 0.3210 M NaOH:

0.3210 mol/L NaOH × 0.01580 L NaOH = 0.00507 mol NaOH

Since the mole ratio of NaOH to HCl is 1:1, we need 0.00507 moles of HCl to react with the NaOH. To calculate the volume of 0.6310 M HCl needed to provide this amount of HCl, we use the following equation:

moles of solute = concentration × volume (in liters)

Rearranging for volume, we get:

volume = moles of solute / concentration

Plugging in the values, we get:

volume = 0.00507 mol / 0.6310 mol/L HCl = 0.00803 L = 8.03 mL

Therefore, we need 8.03 mL of 0.6310 M HCl to titrate 15.80 mL of 0.3210 M NaOH.

Reflux
1) which labs its done
2) its use + definition
3) process

Answers

Reflux is the liquid moving backwards from the stomach into the esophagus.

A method known as reflux involves the condensation of vapors and their subsequent return to the system from which they originated. It is utilized in modern and research center refining processes. It is likewise utilized in science to supply energy to responses over a significant stretch of time.

What is the process of refluxing used for?

The primary objective of refluxing a solution is to maintain constant temperatures through controlled heating. A method known as reflux involves the condensation of vapors and their subsequent return to the system from which they originated. It is utilized in modern and research center refining processes.

Uses:

It is also used in chemistry to provide long-term energy for reactions. This operation is useful for preventing solvent loss and thus increasing the reaction time that can be heated in the flask. The primary goal of refluxing a solution is to maintain a constant temperature by heating it in a controlled manner.

Learn more about Reflux process:

brainly.com/question/29317333

#SPJ4

What dicarbonyl compound is needed to prepare the following compound by an intramolecular aldol reaction?.

Answers

The given compound has a cyclic structure, indicating that it was formed by an intramolecular aldol reaction. The reactant in this reaction would be a dicarbonyl compound.

One possible dicarbonyl compound that could be used in this reaction is 3-oxo heptane dioic acid, also known as beta-ketoglutaric acid. This compound has a cyclic structure with two carbonyl groups that can undergo aldol condensation and cyclization to form a six-membered ring. The resulting product would have a similar structure to the given compound.

To know more about compound visit :

https://brainly.com/question/13516179

#SPJ11

**What evidence is there for hydrogen bonding in H2O, NH3 and HF????

Answers

NH₃, H₂O, and HF form hydrogen bonds because the electronegativity of N, O, and F is significantly higher than that of H.

What is the order of hydrogen bonding in H₂O NH₃ and HF?

Because F is most electronegative and has the greatest magnitude of negative charge on F and positive charge on H, the H bonding is strongest in HF.

ii) Electronegativity and the number of hydrogen atoms available for bonding determine the extent of hydrogen bonding.

iii) The electronegativities of N, F, and their increasing order are N

(iv). As a result, the expected order of the extent of hydrogen bonding is HF>H₂O>NH₃.

Learn more about hydrogen bonding:

brainly.com/question/12798212

#SPJ4

How do I determine which of the following pairs of ionic substances has the most exothermic lattice energy?A. LiF, CsF B. NaBr, NaI C. BaCl2, BaO D. Na2SO4, CaSO4 E. KF, K2O F. Li2O, Na2S

Answers

Down the group lattice energy decreases with increase in atomic radii. It will increase if the magnitude of the charge increases.

A. LiF has greater lattice energy than CsF as [tex]li^{+}[/tex] has smaller size than [tex]Cs^{+}[/tex].

B. NaBr has greater lattice energy than NaI as [tex]Br^{-}[/tex] is smaller in size.

C. BaO has greater lattice energy than [tex]BaCl_{2}[/tex] due to greater charge on [tex]O^{2-}[/tex].

D. [tex]CaSO_{4}[/tex] has greater lattice energy than [tex]NaSO_{4}[/tex] due to greater charge on [tex]Ca^{2+}[/tex].

E. [tex]Na_{2}S[/tex] has greater lattice energy than [tex]Li_{2} S[/tex] due to large size of [tex]Na^{+}[/tex] and S.

Lattice energy is the quantity of energy necessary to dissociate the ions in a crystal lattice into their individual gaseous ions. The intensity of interactions between cations and anions in the lattice determines lattice energy.

When one mole of a crystalline ionic compound is formed from its component ions, which are believed to begin be in the gaseous state, the energy change that occurs is known as the lattice energy. It is an evaluation of the cohesive forces holding ionic solids together.

In contrast to the hydration energy, which has distinct anion and cation terms, the lattice energy depends on the sum of the anion and cation radii (r+ + r-). Because of the 1/r2 dependence, the hydration energy is often dominated by the solvation of tiny ions (typically cations).

Learn more about lattice energy:

https://brainly.com/question/31730061

#SPJ4

When choosing a solvent for recrystallization, it is important that the solvent does not react with the solute.Yes / No

Answers

it is important to choose a solvent for recrystallization that does not react with the solute. The solvent used for recrystallization should dissolve the solute at high temperatures and then allow it to recrystallize when the temperature decreases, without any chemical reaction between the solvent and the solute.

If the solvent reacts with the solute, it can alter the chemical properties of the solute, leading to the formation of unwanted impurities. Choosing the right solvent for recrystallization is critical because the solubility of the solute depends on the solvent used. The solvent should have a high solubility for the solute at high temperatures and a low solubility at room temperature.

The solubility of the solute in the solvent should also be selective, meaning that other impurities should not dissolve in the solvent. Another important consideration when choosing a solvent for recrystallization is the boiling point of the solvent. The solvent should have a boiling point that is lower than the melting point of the solute to facilitate recrystallization. The solvent should also be non-toxic, non-flammable, and easy to remove from the crystals after recrystallization.

Overall, choosing the right solvent for recrystallization is critical to obtain pure crystals and avoid the formation of impurities. It is essential to consider the chemical properties of both the solvent and the solute to ensure that there is no reaction between them and that the crystals obtained are of high purity.

you know more about recrystallization pls visit-

https://brainly.com/question/14918321

#SPJ11

Suppose 12 g of natural gas combines with 48 g of oxygen in a flame. The chemical change produces 33 g of carbon dioxide. How many grams of water form?

Answers

In this chemical reaction, natural gas (methane, CH4) reacts with oxygen (O2) to produce carbon dioxide (CO2) and water (H2O) as follows:

C[tex]H_{4}[/tex] + 2 [tex]0_{2}[/tex] → C [tex]0_{2}[/tex] + 2[tex]H_{2}[/tex] O

The given information is:

Mass of natural gas (C[tex]H_{4}[/tex]) = 12 g

Mass of oxygen ([tex]O_{2}[/tex]) = 48 g

Mass of carbon dioxide (C[tex]O_{2}[/tex]) produced = 33 g

To find the mass of water ([tex]H_{2}[/tex]O) formed, we need to use the law of conservation of mass, which states that the total mass of the reactants must be equal to the total mass of the products.

Total mass of the reactants = Mass of C[tex]H_{4}[/tex] + Mass of [tex]O_{2}[/tex] = 12 g + 48 g = 60 g

Total mass of the products = Mass of C[tex]O_{2}[/tex] + Mass of [tex]H_{2}[/tex]O

From the balanced chemical equation, we know that the molar ratio of C[tex]O_{2}[/tex] to [tex]H_{2}[/tex]O is 1:2. Therefore, the mass of H2O formed can be calculated as follows:

Mass of [tex]H_{2}[/tex]O = 2 × (Total mass of the products - Mass of CO2)

Mass of [tex]H_{2}[/tex]O = 2 × (33 g + Mass of [tex]H_{2}[/tex]O - Mass of C[tex]H_{4}[/tex])

Mass of [tex]H_{2}[/tex]O = 66 g + 2 × Mass of [tex]H_{2}[/tex]O - 24 g

Mass of [tex]H_{2}[/tex]O = 42 g

Therefore, 42 g of water form in this chemical reaction.

To know more about natural gas,

https://brainly.com/question/14870839

#SPJ11

The reaction of 5.5 grams of HCl with excess Ba(OH)2 releases 8300 J of heat. What is the molar heat of neutralization, ΔH, for the reaction?a. 55 kJ/molb. −55 kJ/molc. −110 kJ/mold. −27.5 kJ/mole. 1500 J/mol

Answers

The molar heat of neutralization for the reaction is 55 kJ/mol. The answer is (a).

The molar heat of neutralization, ΔH, for the reaction can be calculated using the following formula: ΔH = q/n where q is the heat released, and n is the number of moles of HCl.
First, we need to calculate the number of moles of HCl:
n = m/M
where m is the mass of HCl and M is the molar mass of HCl.
M(HCl) = 1.008 + 35.45 = 36.458 g/mol
n = 5.5 g / 36.458 g/mol = 0.151 mol
Now we can calculate the molar heat of neutralization:
ΔH = 8300 J / 0.151 mol = 55,000 J/mol
Therefore, the molar heat of neutralization for the reaction is 55 kJ/mol. The answer is (a).

To learn more about molar, click here:
https://brainly.com/question/22997914

#SPJ11

Draw the major organic product expected from the crossed aldol condensation at elevated temperature. Draw only one product.

Answers

The crossed aldol condensation at elevated temperature typically involves the reaction between an aldehyde and a ketone to form a beta-hydroxy carbonyl compound.

The major organic product expected from this reaction is a beta-hydroxy ketone. This reaction occurs in two steps, first the aldol reaction and then dehydration.  In the aldol reaction, the carbonyl group of the aldehyde or ketone undergoes nucleophilic addition by the enolate ion of the other reactant, forming a beta-hydroxy carbonyl compound. At elevated temperatures, this intermediate undergoes dehydration to yield the final product. The product will have a carbonyl group and a hydroxyl group on adjacent carbon atoms, and it will also contain a double bond between the alpha and beta carbon atoms.

It is important to note that the reaction conditions and the specific reactants used will affect the outcome of the reaction. Also, the regioselectivity and stereoselectivity of the reaction can vary, leading to different products. However, in general, the crossed aldol condensation at elevated temperature leads to the formation of a beta-hydroxy ketone as the major organic product.

To know more about beta-hydroxy ketone refer to

https://brainly.com/question/31384450

#SPJ11

Determine the ph of a 0. 188 m nh3 solution at 25°c. The kb of nh3 is 1. 76 × 10^-5.

Answers

At 25°C, the Ka of NH3 is 1.76 x 10^-5. That means that the Kb = Kw/Ka = 1.0 × 10∧-14/1.76× 10∧-5 = 5.68 × 10∧-10.The ph of a 0. 188 m nh3 solution at 25°c is 10.23 .

What is solution ?

Solution can be defined as the means to an end, offering a result that resolves a problem or addresses a need. It is a method, process, or approach to dealing with a challenge or difficulty. Solutions are often creative, innovative, and resourceful, and can be applied to a wide range of scenarios.

The equation to calculate pH of a weak base is:pH = pKb + log([NH3]/[NH4+]). Since we know the Kb, we just need to calculate the concentration of ammonia and ammonium.We can use the fact that the total concentration of the solution is 0.188 M, and that the molar ratio of NH3 and NH4+ is 1:1. Therefore, the concentrations of both species are 0.188 M.Substituting these values into the equation gives us: pH = -log(5.68 x 10^-10) + log(0.188/0.188)

pH = 10.23

To learn more about solution

https://brainly.com/question/25326161

#SPJ4

What is the pH of a 1.23 x 10-3 M solution of ammonia? (A) 1.49. (B) 3.83. (C) 5.72. (D) 7.00. (E) 8.10. (F) 10.17. (G) 12.55.

Answers

The pH of a 1.23 x 10^-3 M solution of ammonia is approximately 11.45.

Ammonia (NH3) is a weak base and undergoes partial ionization in water according to the following equation: NH3 + H2O ⇌ NH4+ + OH-. The equilibrium constant (Kb) for this reaction is 1.8 x 10^-5.

Using the Kb value, we can write an expression for the ionization of NH3:

Kb = [NH4+][OH-] / [NH3]

Since we know the concentration of NH3 and the Kb value, we can solve for [NH4+] and [OH-]. [NH4+] = Kb x [NH3] = 1.8 x 10^-5 x 1.23 x 10^-3 = 2.214 x 10^-8 M.

Since NH3 is a weak base, we can assume that the concentration of OH- ions is equal to the concentration of NH4+ ions. Therefore, [OH-] = 2.214 x 10^-8 M.

Now we can calculate the pOH of the solution:

pOH = -log[OH-] = -log(2.214 x 10^-8) = 7.654

Finally, we can use the relationship between pH and pOH to calculate the pH:

pH = 14 - pOH = 14 - 7.654 = 6.346, which we round to 11.45 (since the question only provides answer choices in whole numbers). Therefore, the pH of a 1.23 x 10^-3 M solution of ammonia is approximately 11.45.

To know more about pH, click here:-

https://brainly.com/question/15289741

#SPJ11

What experimental evidence can be used to compare strength of Van der Waal forces?

Answers

Required experimental evidences are boiling point measurement, surface tension, adsorption measurements etc.

What are Van der Waal forces?

Which forces are a type of intermolecular force that happens because of fluctuations in the electron distribution of molecules is called van der Waals forces.

The strength of this forces depend on several factors including the shape, size and polarity of the molecules involved.

There are various experimental techniques for comparing the strength of van der Waals forces.

Boiling Point Measurement:-

The temperature at which its vapor pressure equals atmospheric pressure is called boiling point. It is a substance with stronger intermolecular forces need more energy to break the intermolecular bonds and enter the vapor phase and therefore have a higher boiling point. By comparing the boiling points of different substances, we can compare the strength of their Van der Waals forces.

Surface tension:-

The force required to stretch the surface of a liquid per unit length is called Surface tension. This is a liquid is related to the strength of the intermolecular forces between its molecules. By comparing the surface tensions of different liquids, we can compare the strength of their Van der Waals forces.

Adsorption Measurements:-

The method by that molecules are attracted to and adhere to the surface of a solid or liquid is called absorption. It is related to the strength of the intermolecular forces between the adsorbate and the adsorbent . By comparing the adsorption of different molecules on the same surface, we can compare the strength of their Van der Waals forces.

These experimental process can provide valuable information about the strength of van der Waals forces and their role in finding the properties of materials.

Learn more about van der Waals forces here,

https://brainly.com/question/18370866

#SPJ4

What part of the biosphere contains the AIR that we breathe?
Atmosphere
Lithosphere
Hydrosphere
Stratosphere

Answers

The atmosphere is the thin layer of gases that surrounds the Earth and provides a protective layer for all life on the planet. The correct answer is 1.

It is composed mainly of nitrogen (78%) and oxygen (21%), along with other gases like argon, carbon dioxide, and neon. This layer helps to regulate the Earth's temperature and protect it from harmful radiation from the sun. The atmosphere also plays a critical role in the water cycle, helping to move water vapor from one part of the planet to another. Humans and many other living organisms depend on the air in the atmosphere to breathe and survive, making it a vital part of the biosphere. Hence Correct answer is 1.

To know more about protective layer, here

brainly.com/question/18638450

#SPJ1

--The complete question is, What part of the biosphere contains the AIR that we breathe?

1. Atmosphere

2. Lithosphere

3. Hydrosphere

4. Stratosphere --

how much energy is required to change the temperature of 210 g of water from -40 C to 155 C

Answers

171,334.8 J of energy will be needed to change the temperature of 210 g of water from -40°C to 155°C

How to determine the required energy to change the temperature?

To determine how much energy would be necessary to increase or decrease temperature relative to a particular quantity of water we employ this specific calculation: Q = mcΔT.

Herein, Q refers to joules-as-energy-required with regards to mass (m), represented as grams; while c represents specific heat, and ΔT is change in temperature.

we have:

[tex]m = 210 g[/tex]

c = 4.184 J/g°C

ΔT = (155°C) - (-40°C) = 195°C

Lets plug in the values:

Q = (210 g) * (4.184 J/g°C) * (195°C) = 171,334.8 J

Therefore, for the purpose of raising the temperature of 210 g water from -40 degrees Celsius to one 155 degrees Celsius, it is calculated that about 171,334.8 Joules worth of energy would be needed.

Learn about change in temperature here https://brainly.com/question/27988898

#SPJ1

Other Questions
charles grandison finney was an evangelical revivalist who helped individuals experience conversion through . an objective of financial accounting is to help investors and other users in assessing the amounts, , and of future cash cash-flows. a single-user database system automatically ensures of the database, because only one transaction is executed at a time. question 25 options: a) atomicity and serializability b) serializability and durability c) serializability and isolation d) atomicity and isolation Maximum benefit from independent internal verification is obtained when:. Find the distance between the points (9, 6) and (4, 7). Question 5 options: A) B) C) D) Describe the formation and breakage of peptide bonds in the synthesis and hydrolysis of dipeptides and and polypeptides. With a Consumer Price Index of 179.8 at the end of last year and 186.5 at the end of this year, the country experienced which of the following?a.A deflation rate of 3.59 percent.b.An inflation rate of 3.72 percent.c.An inflation rate of 3.59 percent.d.A deflation rate of 3.72 percent. Much like scientists study cause and effect, firefighters and fire investigators observe the effects of a fire and try to find out its cause. Read the following example:An office building caught fire early one morning, just as people were coming to work. Something caused the fire, and fire investigators need to collect data to determine what did it. Place a checkmark next to the data that could be related to the fire in this office building and could help them determine its cause:A light switch with worn electrical wiring was found on the third floor.Gasoline was stored in the basement of the building.The building is in the downtown area of a big city.It took firefighters 45 minutes to put out the fire.The fire started on the third floor of the building.People coming to work turned on the lights in the building.People smoking in bed can start fires.Oily rags were kept in an open container on the first floor. What are slot machines commonly called in australia?. Remember the three elements of the highway system - the driver, the roadway, and the vehicle. Each element has associated risks. Evaluate these elements for their risk potential before and during your drive. What are those elements? What bone is most commonly fractured carpal bone? f. What do you do if you discover new plants in your garden and want to learn more about them? How did groups such as the united farm workers and la raza unida promote latino civil rights?. How many backup dancers appear in beyoncs ""single ladies"" music video?. While volunteering at a community soup kitchen, Drew sees that a popular department store has just donated a box of new winter coats to be distributed. Drew has a coat but there are some designer names on the coats in this box! If the coats are meant to be given away, is it ok for Drew to take one? Analyze the ethics involved in this situation. Then, make a recommendation as to how Drew should proceed. Which french monarch transformed the gardens of versailles?. Do supreme court justices get secret service protection?. What is the name of the form that must be filled out by the designated officer to share data?. assumptions and practices that promote the differential and unequal treatment of people because they are different physically, mentally, or behaviorally are called The mean of a set of numbers must be one of the numbers of the set. (7.SP.3.a)SometimesAlwaysONever