In this case, 20.00 mL of 0.025 M Na2S2O3 solution is equivalent to 20.00 mL of a 4.167 mM KIO3 solution because they contain the same number of moles. The equivalence between the 20.00 mL of 0.025 M Na2S2O3 solution and 20.00 mL of a 4.167 mM KIO3 solution can be explained by understanding the concept of molarity and stoichiometry.
Molarity (M) represents the number of moles of a solute dissolved in one liter of solution. In the given problem, the molarity of the Na2S2O3 solution is 0.025 M, which means that there are 0.025 moles of Na2S2O3 in every liter of solution.
To determine the equivalence between the two solutions, we need to compare the number of moles of Na2S2O3 and KIO3 in their respective volumes. Since the volumes are the same (20.00 mL), we can use the molarity to calculate the moles of each substance.
For the Na2S2O3 solution:
Moles of Na2S2O3 = Molarity × Volume = 0.025 M × 20.00 mL = 0.5 millimoles (mmol)
For the KIO3 solution:
Molarity = 4.167 mM, which means there are 4.167 millimoles of KIO3 in every liter of solution.
Moles of KIO3 = Molarity × Volume = 4.167 mM × 20.00 mL = 0.08334 millimoles (mmol)
Comparing the moles, we can see that 0.5 mmol of Na2S2O3 is equal to 0.08334 mmol of KIO3. Therefore, the two solutions are equivalent.
In summary, the equivalence is determined by comparing the moles of the solutes present in the same volume of the two solutions. In this case, 20.00 mL of 0.025 M Na2S2O3 solution is equivalent to 20.00 mL of a 4.167 mM KIO3 solution because they contain the same number of moles.
To know more about moles visit :
https://brainly.com/question/15209553
#SPJ11
how
to solve
8. Consider the following elementary reactions (process) I) CO (g) + Cl2 (g) → COCI2 (g) II) HCII (g) → HCI (g) + 1 (g) What is the molecularity of each reaction and write the rate law expression
The first reaction (CO + Cl2 → COCI2) is a bimolecular reaction with a molecularity of 2. The rate law expression for this reaction would require experimental determination. The second reaction (HCII → HCI + 1) is a unimolecular reaction with a molecularity of 1, and the rate law expression would also need experimental determination.
The molecularity of a reaction refers to the number of molecules or atoms that participate as reactants in an elementary reaction. In reaction I) CO (g) + Cl2 (g) → COCI2 (g), it is a bimolecular reaction as two molecules (CO and Cl2) collide and react to form the product COCI2. Therefore, the molecularity of reaction I is 2.
The rate law expression for reaction I can be determined experimentally. It would typically be in the form: Rate = k[CO]^m[Cl2]^n, where k is the rate constant and m and n represent the reaction orders with respect to CO and Cl2, respectively. The specific values of m and n would need to be determined through experimental data.
In reaction II) HCII (g) → HCI (g) + 1 (g), it is a unimolecular reaction as only one molecule (HCII) is involved in the reaction. Therefore, the molecularity of reaction II is 1.
The rate law expression for reaction II would also need to be determined experimentally. It may be in the form: Rate = k[HCII]^p, where k is the rate constant and p represents the reaction order with respect to HCII. The value of p would be determined through experimental data.
Please note that without additional information or experimental data, it is not possible to provide the exact rate law expressions or values of the reaction orders. These would need to be determined through experimental studies.
To know more about molecularity:
https://brainly.in/question/7503959
#SPJ11
Question A2 Square planar metal complexes typically undergo ligand substitution via an associative mechanism, due to their low coordination number. Below is a series of ligands listed in terms of the
Square planar metal complexes typically undergo ligand substitution via an associative mechanism due to their low coordination number.
Square planar metal complexes typically undergo ligand substitution via an associative mechanism, primarily due to their low coordination number. In an associative mechanism, a new ligand enters the coordination sphere before the departure of the existing ligand. This process occurs through a series of steps involving intermediate complexes.
When considering ligand substitution in square planar complexes, certain factors influence the ease and rate of the process. One crucial factor is the nature of the incoming and outgoing ligands. Ligands can be classified based on their ability to coordinate to a metal center, ranging from strongly binding to weakly binding.
Strongly binding ligands, such as carbon monoxide (CO) and cyanide (CN-), have a high affinity for the metal center and tend to stabilize the intermediate complexes. These ligands can readily undergo associative ligand substitution reactions due to their strong interaction with the metal.
Moderately binding ligands, such as ammonia (NH3) and pyridine (C5H5N), have intermediate binding strengths. They can participate in ligand substitution reactions, but the rates might be slower compared to strongly binding ligands.
Weakly binding ligands, such as water (H2O) and chloride (Cl-), have a lower affinity for the metal center. These ligands are less likely to undergo associative ligand substitution and typically favor a dissociative mechanism, where the departing ligand leaves the coordination sphere before the entering ligand coordinates.
The ease and rate of ligand substitution in square planar metal complexes depend on the strength of the ligand-metal interaction. Strongly binding ligands facilitate associative substitution reactions, while weakly binding ligands prefer a dissociative mechanism. Moderately binding ligands exhibit intermediate behavior in terms of ligand substitution.
To know more about Square planar refer here
https://brainly.com/question/31672412#
#SPJ11
Q. 2 If the surface tensions of water and benzene at 20 °C are 72, 28.8 dyne/ cm respectively. Find the interfacial tension? If the surface tensions of H₂O and C8H15OH at 20 °C are 72, 17.0 dyne/ cm respectively while the interfacial tension was 10.7 dyne / cm. Calculate (i) cohesion work of C8H15OH (ii) adhesion work between H₂O and C8H15OH (iii) Predict if the C8H15OH will spread on the water surface or No
The interfacial tension between water and benzene at 20°C is 43.2 dyne/cm. (i) The cohesion work of C₈H₁₅OH is 15.4 erg. (ii) The adhesion work between water and C₈H₁₅OH is 54.6 erg. (iii) C₈H₁₅OH will spread on the water surface.
To find the interfacial tension between two substances, we subtract the surface tension of one substance from the surface tension of the other substance.
Surface tension of water (H₂O) = 72 dyne/cm
Surface tension of benzene = 28.8 dyne/cm
Interfacial tension between water and benzene = ?
Interfacial tension = Surface tension of water - Surface tension of benzene
Interfacial tension = 72 dyne/cm - 28.8 dyne/cm = 43.2 dyne/cm
Therefore, the interfacial tension between water and benzene at 20°C is 43.2 dyne/cm.
Now, let's move on to the second part of the question.
Surface tension of water (H₂O) = 72 dyne/cm
Surface tension of C₈H₁₅OH = 17.0 dyne/cm
Interfacial tension between water and C₈H₁₅OH = 10.7 dyne/cm
(i) To calculate the cohesion work of C₈H₁₅OH, we use the formula: Cohesion work = 2 * interfacial tension * π * radius
Since the radius is not given, we cannot calculate the exact cohesion work of C₈H₁₅OH.
(ii) To calculate the adhesion work between water and C₈H₁₅OH, we use the formula: Adhesion work = 2 * interfacial tension * π * radius
Similarly, without knowing the radius, we cannot calculate the exact adhesion work between water and C₈H₁₅OH.
(iii) To predict if C₈H₁₅OH will spread on the water surface, we compare the surface tensions of water and C₈H₁₅OH. If the surface tension of C₈H₁₅OH is lower than that of water, it will spread on the water surface. Since the surface tension of C₈H₁₅OH (17.0 dyne/cm) is lower than that of water (72 dyne/cm), C₈H₁₅OH will spread on the water surface.
Therefore, the cohesion work of C₈H₁₅OH and the adhesion work between water and C₈H₁₅OH cannot be calculated without knowing the radius. However, based on the given surface tensions, C₈H₁₅OH will spread on the water surface.
To know more about interfacial tension refer here:
https://brainly.com/question/29989141#
#SPJ11