What difference? You just said "Find the difference of 651", but what am I subtracting by? What equation?
PLS HELP ASAP
x^2 - 4x-1=0
Solve using formula
Answer:
Your answer would be x=2±√5
Step-by-step explanation:
help pls :))))))))))))
Answer:
yes, the triangle are congruent by SAS
how do i rewrite -2/3x+2y=-7 in slope intercept form?
Answer:
y=1/3x-7/2
Step-by-step explanation:
First get the 2y by itself by adding 2/3x to both sides. Then subtract both sides by 2.
Use the quadratic formula to find both solutions to the quadratic equation given below. Check all that apply. 2x2 – 3x + 1 = 0
Answer:
5/4 and 7/4 are the two solutions.
2/3 cup of juice for every 1/3 cup of oj. How many cups of juice is used for 1 cup of OJ
[tex]\begin{array}{ccll} Juice&OJ\\ \cline{1-2} \frac{2}{3}&\frac{1}{3}\\[1em] x&1 \end{array}\implies \cfrac{~~ \frac{2}{3}~~}{x}=\cfrac{~~\frac{1}{3} ~~}{1}\implies \cfrac{~~ \frac{2}{3}~~}{x}=\cfrac{1}{3}\implies \cfrac{~~ \frac{2}{3}~~}{\frac{x}{1}}=\cfrac{1}{3} \\\\\\ \cfrac{2}{3x}=\cfrac{1}{3}\implies 6=3x\implies \cfrac{6}{3}=x\implies 2=x[/tex]
Second Graph problem! Can anybody please help me out with this? (Almost done for today) (Algebra graph problem)
Answer:
x = -2
Step-by-step explanation:
The expression f(x) = 1 corresponds to the point on the graph that is 1 unit above the x-axis. You can locate that horizontal line and see where it intersects the graph. That point of intersection is 2 grid squares to the left of the y-axis, where x = -2.
f(-2) = 1
x = -2
Students in a fifth-grade class were given an exam. During the next 2 years, the same students were retested several times. The average score was given by the model f ( t ) = 92 − 4 log 10 ( t + 1 ) , 0 ≤ t ≤ 24 where t is the time in months.
Using the logarithmic function, it is found that:
a) The initial score is of 92.
b) After 6 months, the score is of 88.6.
c) After 18 months, the score is of 86.9.
The average score after t months is modeled by:
[tex]f(t) = 92 - 4\log{(t + 1)}[/tex]
Item a:
The initial score is of f(0), hence:
[tex]f(0) = 92 - 4\log{1} = 92 - 0 = 92[/tex]
The initial score is of 92.
Item b:
After 6 months, the score is of f(6), hence:
[tex]f(6) = 92 - 4\log{7} = 88.6[/tex]
After 6 months, the score is of 88.6.
Item c:
After 18 months, the score is of f(18), hence:
[tex]f(6) = 92 - 4\log{19} = 86.9[/tex]
After 18 months, the score is of 86.9.
A similar problem is given at https://brainly.com/question/24286043
evaluate 6^2 - (9 divided by x) when x = 3
Answer:
33
Step-by-step explanation:
Marking as brainliest! Great the similarity statement!
Answer
1. ΔABC ≅ ΔEFG
2. ΔMKL ≅ ΔVKU
3. ΔMLN ≅ ΔNCD (With this one I couldn't fully read the letter in the middle. I couldn't tell if it was an N or a B so just swap it for the right letter. <3)
4. ΔFGH ≅ ΔRHQ
5. ΔUVL ≅ ΔMNL
6. ΔQRS ≅ ΔVUT
Step-by-step explanation:
hope this helps. . .<3
good luck! UwU
Help please!!!!
Find the measure of the angle indicated
Answer:
x = 6
Step-by-step explanation:
Because we have parallel lines, we can use alternate angles are equal. Therefore, we know that 11x-6 = 10x.
Minus 11 from both sides, and we get -6 = -x, so x = 6
A company makes 110 bags. 30 of the bags have buttons but no zips. 23 of the bags have zips but no buttons. 23 of the bags have neither zips nor buttons. How many bags have zips on them?
Well, 30+23+23 = 76 which means there are only a total of 76 bags that are accounted for. 110-76 = 34 bags which we do not know if they have zips or not. If we assume they have zips, that would be 34+23 bags with zips which is 57 bags.
Can someone answer this for me
Answer:
s=4
Step-by-step explanation:
area of square is side*side
so that means s*s=16
so s = 4
y′′ −y = 0, x0 = 0 Seek power series solutions of the given differential equation about the given point x 0; find the recurrence relation that the coefficients must satisfy
Let
[tex]\displaystyle y(x) = \sum_{n=0}^\infty a_nx^n = a_0 + a_1x + a_2x^2 + \cdots[/tex]
Differentiating twice gives
[tex]\displaystyle y'(x) = \sum_{n=1}^\infty na_nx^{n-1} = \sum_{n=0}^\infty (n+1) a_{n+1} x^n = a_1 + 2a_2x + 3a_3x^2 + \cdots[/tex]
[tex]\displaystyle y''(x) = \sum_{n=2}^\infty n (n-1) a_nx^{n-2} = \sum_{n=0}^\infty (n+2) (n+1) a_{n+2} x^n[/tex]
When x = 0, we observe that y(0) = a₀ and y'(0) = a₁ can act as initial conditions.
Substitute these into the given differential equation:
[tex]\displaystyle \sum_{n=0}^\infty (n+2)(n+1) a_{n+2} x^n - \sum_{n=0}^\infty a_nx^n = 0[/tex]
[tex]\displaystyle \sum_{n=0}^\infty \bigg((n+2)(n+1) a_{n+2} - a_n\bigg) x^n = 0[/tex]
Then the coefficients in the power series solution are governed by the recurrence relation,
[tex]\begin{cases}a_0 = y(0) \\ a_1 = y'(0) \\\\ a_{n+2} = \dfrac{a_n}{(n+2)(n+1)} & \text{for }n\ge0\end{cases}[/tex]
Since the n-th coefficient depends on the (n - 2)-th coefficient, we split n into two cases.
• If n is even, then n = 2k for some integer k ≥ 0. Then
[tex]k=0 \implies n=0 \implies a_0 = a_0[/tex]
[tex]k=1 \implies n=2 \implies a_2 = \dfrac{a_0}{2\cdot1}[/tex]
[tex]k=2 \implies n=4 \implies a_4 = \dfrac{a_2}{4\cdot3} = \dfrac{a_0}{4\cdot3\cdot2\cdot1}[/tex]
[tex]k=3 \implies n=6 \implies a_6 = \dfrac{a_4}{6\cdot5} = \dfrac{a_0}{6\cdot5\cdot4\cdot3\cdot2\cdot1}[/tex]
It should be easy enough to see that
[tex]a_{n=2k} = \dfrac{a_0}{(2k)!}[/tex]
• If n is odd, then n = 2k + 1 for some k ≥ 0. Then
[tex]k = 0 \implies n=1 \implies a_1 = a_1[/tex]
[tex]k = 1 \implies n=3 \implies a_3 = \dfrac{a_1}{3\cdot2}[/tex]
[tex]k = 2 \implies n=5 \implies a_5 = \dfrac{a_3}{5\cdot4} = \dfrac{a_1}{5\cdot4\cdot3\cdot2}[/tex]
[tex]k=3 \implies n=7 \implies a_7=\dfrac{a_5}{7\cdot6} = \dfrac{a_1}{7\cdot6\cdot5\cdot4\cdot3\cdot2}[/tex]
so that
[tex]a_{n=2k+1} = \dfrac{a_1}{(2k+1)!}[/tex]
So, the overall series solution is
[tex]\displaystyle y(x) = \sum_{n=0}^\infty a_nx^n = \sum_{k=0}^\infty \left(a_{2k}x^{2k} + a_{2k+1}x^{2k+1}\right)[/tex]
[tex]\boxed{\displaystyle y(x) = a_0 \sum_{k=0}^\infty \frac{x^{2k}}{(2k)!} + a_1 \sum_{k=0}^\infty \frac{x^{2k+1}}{(2k+1)!}}[/tex]
Write each decimal as a percent. 1. 0.74
4. 0.617 =
Write each percent as a decimal. 6. 68%
9. 175% =
2. 0.15 =
5. 0.834 =
7. 34% =
10. 200% =
3. 0.09 =
8. 58.5% =
Answer:
1. 0.74 = 74%
4. 0.617 = 61.7
6. 68% = 0.68
9. 175% = 1.75
2. 0.15 = 15%
5. 0.834 = 83.4%
7. 34% = 0.34
10. 200% = 2.00
3. 0.09 = 9%
8. 58.5% = 0.585
Step-by-step explanation:
Please help, geometry hw
Step-by-step explanation:
use SOHCAHTOA as shown above in the picture
33. Due to some error in a weighing scale, it shows the following reading when at rest (no weight is placed on it). Neerja measured her weight on this scale. The weight shown on the scale was 28 kg. What should she do to find out her correct weight?
(A) Add 2 kg to the weight shown. (B) Subtract 2 kg from the weight shown.
(C) Subtract 28 kg from the weight shown. (D) Add 4 kg to the weight shown
Answer:
The traditional scale consists of two plates or bowls suspended at equal distances from a fulcrum. One plate holds an object of unknown mass (or weight), while known masses are added to the other plate until static equilibrium is achieved and the plates level off, which happens when the masses on the two plates are equal. The perfect scale rests at neutral. A
What is the equation of this line?
y= 1/2+2
y = 2x + 2
y= 1/2x-2
y = 2x - 2
HELP ME PLEASEEE ILL GIVE BRAINLIEST
Answer:
y=2x-2
You use rise/run in this problem
4. Suppose you have a map of Charlotte where 2
inches equals 4 miles. On the map, the distance
from your house to school if 3.5 inches. How
many miles is this?
hhhhhhhhhhhhhhhhhhhhhheeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeellllllllllllllllllllllllllllllllllllpppppppppppppppppppppppppppppppppppppppppppppppppppppppp
Answer:
E
Step-by-step explanation:
Like and give 5 star rating
Andrew invests $9000
What are you asking?
Question 24 of 25
Which of these shows the result of using the first equation to substitute for y
in the second equation, then combining like terms?
y = 3x
3x + 2y = 18
ОА. Зу = 18
B. 3x = 18
O C. 9x = 18
O D, 6x = 18
SUBMIT
Answer:
C. 9x=18
Step-by-step explanation:
3x+2(3x)=18
3x+6x=18
9x=18
I need to find out the answer for this problem...
Answer:
where is the problem to solve. please tell me
day!
Altea is making pumpkin spice cupcakes.
She needs 15 ounces of pureed pumpkin
for each batch. If she makes 16 batches of
the cupcakes, how many ounces of the
pureed pumpkin will she need?
o
Answer:
240oz.
Step-by-step explanation:
15oz=1batch
She needs 16 batches.
15oz. x 16batches = 240oz.
Hope this helps :)
The length of a rectangle is three times its width. if the area of the rectangle is 75 in2, find its perimeter.
Answer:
40 in
Step-by-step explanation:
For a width of w, the length is 3w and the area and perimeter are ...
A = LW = (3w)(w) = 3w^2
P = 2(L+W) = 2(3w +w) = 8w
We are given the area, so we can find w to be ...
75 in^2 = 3w^2
25 in^2 = w^2 . . . . . divide by 3
5 in = w . . . . . . . . . square root
Then the perimeter is ...
P = 8w = 8(5 in) = 40 in
Please take a look at the picture
Answer:
I think it'
is A and B
Step-by-step explanation:
hope hwlps
urgent help now plz i will give brainlest
Answer:
Step-by-step explanation:
First get the (m) which is the gradient by using the formula y2-y1/x2-x1
Pick any random 2 values from the table. I will pick. (1,4) (2,8)
Y2=8 Y1=4 X2=2 X1=1
8-4/2-1 4/1 = 4
Y=4x+c
-5(X+2)=35 APPLY THE DISTRIBUTIVE PROPERTY
Hello!
-5(x+2)=35
-5x-10=35
-5x=35+10
-5x=45
x=-9
Hope it helps!
~Just a determined gal
#CarryOnGainingKnowledge
[tex]MysteriousNature[/tex]
Answer:
x = -9
Step-by-step explanation:
-5(x + 2) = 35
~Distribute
(-5 * x) + (-5 * 2) = 35
~Simplify
-5x - 10 = 35
~Add 10 to both sides
-5x = 45
~Divide -5 to both sides
x = -9
Best of Luck!
1. Un restaurant ofrece 14 entradas, 8 platos principales y 7 postres. ¿De cuántas formas un cliente puede ordenar una comida?
2. ¿Cuántos grupos de 4 letras se pueden formar con las letras de la palabra TECNICA?
3. ¿Cuántos números de 4 dígitos se pueden formar con los primeros 7 números naturales?
4. ¿Cuántos partidos distintos se pueden realizar dados 5 equipos de futbol?
5. ¿De cuántas formas pueden colocarse los 11 jugadores de un equipo de fútbol teniendo en cuenta que el portero no puede ocupar otra posición distinta de la portería mientras que los otros 10 pueden jugar en cualquier otra posición que no sea portero?
6. En el palo de señales de un barco se puede izar tres banderas rojas, dos azules y cuatro verdes. ¿Cuántas señales distintas pueden indicarse con la colocación de las nueve banderas?
Usando técnicas de conteo, se encuentra que
1. Un cliente puede ordenar una comida de 784 formas.
2. 420 grupos de 4 letras se pueden formar con las letras de la palabra TECNICA.
3. 840 números de 4 dígitos se pueden formar con los primeros 7 números naturales.
4. 10 partidos distintos se pueden realizar.
5. Pueden colocarse de 3,628,800 formas.
6. 1260 señales distintas pueden indicarse.
Item 1:
La técnica usada es el principio fundamental de conteo, que afirma que si hay n cosas, cada una con [tex]n_1, n_2, \cdots, n_n[/tex] maneras de seren realizadas, el número total de maneras de ser realizadas es:
[tex]N = n_1 \times n_2 \times \cdots \times n_n[/tex]
En este problema, [tex]n_1 = 14, n_2 = 8, n_3 = 7[/tex], por eso:
[tex]T = 14 \times 8 \times 7 = 784[/tex]
Un cliente puede ordenar una comida de 784 formas.
Item 2:
El orden es importante, ya que TECN es una palabra diferente de NCET, por lo tanto, la fórmula de permutaciones se usa para resolver este problema.
Fórmula de permutaciociones:
El número de permutaciones de x elementos en un conjunto de n elementos es dada por:
[tex]P_{n,x} = \frac{n!}{(n - x)!}[/tex]
En este problema, 4 letras de 7, enconteces:
[tex]P_{7,4} = \frac{7!}{3!} = 840[/tex]
La letra C se repite dos veces, o sea:
[tex]T = \frac{P_{7,4}}{2} = \frac{840}{2} = 420[/tex]
420 grupos de 4 letras se pueden formar con las letras de la palabra TECNICA.
Item 3:
Permutaciones de 4 dígitos de 7, sin repeticiones, o sea:
[tex]P_{7,4} = \frac{7!}{3!} = 840[/tex]
840 números de 4 dígitos se pueden formar con los primeros 7 números naturales.
Item 4:
El orden no es importante, ya que Time 1 x Time 2 es la misma partida de Time 2 x Time 1, por lo tanto, la fórmula de combinaciones se usa para resolver este problema.
Fórmula de combinaciones:
El número de combinaciones de x elementos en un conjunto de n elementos es dada por:
[tex]C_{n,x} = \frac{n!}{x!(n - x)!}[/tex]
En este problema, combinaciones de 2 elementos de un conjunto de 5, entonces:
[tex]C_{5,2} = \frac{5!}{2!3!} = 10[/tex]
10 partidos distintos se pueden realizar.
Item 5:
El número de arreglos de n elementos viene dado por
[tex]A_n = n![/tex]
En este problema, arreglo de 10 elementos, o sea:
[tex]A_{10} = 10! = 3628800[/tex]
Pueden colocarse de 3,628,800 formas.
Item 6:
El número de arreglos de n elementos, con repeticiones de [tex]n_1, n_2, \cdots n_n[/tex] elementos viene dado por
[tex]A_n^{n_1,n_2,\cdots,n_n} = \frac{n!}{n_1!n_2! \cdots n_n!}[/tex]
En este problema, [tex]n = 9, n_1 = 3, n_2 = 2, n_3 = 4[/tex], por eso:
[tex]A_9^{3,2,4} = \frac{9!}{3!2!4!} = 1260[/tex]
1260 señales distintas pueden indicarse.
Un problema similar es dado en https://brainly.com/question/19022577
Write an equation with slope of -2 and goes through the point (-3,7)
Answer:
y = -2x + 1
Step-by-step explanation:
Substitute the slope and the given point into y = mx + b and solve for "b".
y = mx + b
7 = -2(-3) + b
7 = 6 + b
1 = b the y-intercept is 1
The equation of the line is y = -2x + 1
Find the surface area of this cuboid
Answer:
62
Step-by-step explanation:
SA=2(5x2)+2(5x3)+2(3x2)
SA=20+30+12
SA=62