The general solution to the differential equation y'' + 2y' + 5y = 2e *cos2x ' using Reduction of Order
We can start by assuming a second solution to the homogeneous equation y'' + 2y' + 5y = 0.
Since one solution to the equation is already known as y1, we can express the second solution, y2, as follows:
y2(x) = v(x)y1(x).
Thus, we get y2' = v' y1 + vy1' and y2'' = v'' y1 + 2v'y1' + vy1''.
Now we will use this expression to find the general solution to the given differential equation:
Given differential equation: y'' + 2y' + 5y = 2e *cos2x '
The homogeneous equation is y'' + 2y' + 5y = 0, whose characteristic equation is r^2 + 2r + 5 = 0.
Solving the characteristic equation, we get r = -1 ± 2i.
Substituting the roots back into the characteristic equation, we get the following solutions:
[tex]y1 = e^(-x)cos(2x)[/tex]and
[tex]y2 = e^(-x)sin(2x).[/tex]
So, the general solution to the homogeneous equation is given by:
[tex]y_h = c1e^(-x)cos(2x) + c2e^(-x)sin(2x).[/tex]
Now, using the Reduction of Order method, we can find a particular solution to the non-homogeneous equation using the formula:y_p = u(x)y1(x), where u(x) is an unknown function we need to determine and y1(x) is the known solution to the homogeneous equation, which we already found to be[tex]y1(x) = e^(-x)cos(2x).[/tex]
Differentiating, we get[tex]y1' = -e^(-x)cos(2x) + 2e^(-x)sin(2x),[/tex]and [tex]y1'' = 4e^(-x)cos(2x).[/tex]
Substituting these values in the differential equation, we get the following:
[tex]y'' + 2y' + 5y = 2e^(-x)cos(2x).[/tex]
Substituting y_p and y1 into this equation, we get the following:
[tex]4u'cos(2x) + 4u(-sin(2x)) + 2(-u'cos(2x) + 2usin(2x)) + 5u(cos(2x)) = 2e^(-x)cos(2x)[/tex]
Simplifying and collecting like terms, we get:
[tex]u''cos(2x) + 3u'(-sin(2x)) + u(cos(2x)) = e^(-x)[/tex]
Dividing throughout by cos(2x) and simplifying, we get the following:
[tex]u'' + 3u'(-tan(2x)) + u = e^(-x)sec(2x)[/tex]
The characteristic equation of this equation is[tex]r^2 + 3rtan(2x) + 1 = 0.[/tex]
Substituting this into the formula for the particular solution, we get the following:
[tex]y_p(x) = e^(-x)cos(2x)(c1 + c2 int e^(x*tan(2x))) + e^(-x)sin(2x)(c3 + c4 int e^(x*tan(2x)))[/tex]
The general solution to the non-homogeneous equation is thus given by:
[tex]y(x) = y_h(x) + y_p(x)[/tex]
[tex]= c1e^(-x)cos(2x) + c2e^(-x)sin(2x) + e^(-x)cos(2x)(c3 + c4 int e^(x*tan(2x))) + e^(-x)sin(2x)(c5 + c6 int e^(x*tan(2x)))[/tex]
Know more about the general solution
https://brainly.com/question/30285644
#SPJ11
which of the points A (0,-2), B(-3,1),c(1,1) is on the line y-3x=-2
?
The point A(0,-2) is on the line y-3x=-2. So, the answer is A(0,-2).
Given the line equation
y-3x=-2,
we are to find the point among A(0,-2), B(-3,1) and C(1,1) which lies on this line.
To check if a point lies on a line, we substitute the values of x and y into the equation of the line. If the equation holds true, then the point lies on the line. If it doesn't, the point does not lie on the line.
Let us check for point A(0,-2)
Whether A(0,-2) lies on
y - 3x = -2
is determined by whether or not the following equation holds true:
-2 - 3(0) = -2LHS = -2RHS = -2
Therefore, point A(0,-2) is on the line
y-3x=-2.
So, the answer is A(0,-2).
To know more about line y-3x=-2 visit:
https://brainly.com/question/30177779
#SPJ11
Let A = √2 1 √2 If A is orthogonal, what must x equal? 0 - -18 √6 1 √x - √3 √3 1 √3
If A is orthogonal, the value of x must be equal to 3. Answer: 1√3.
Let A = √2 1 √2 If A is orthogonal.
In the given problem, we have to determine the value of x if A is orthogonal. So, for a matrix A to be orthogonal, its inverse is equal to its transpose. Now, Let AT be the transpose of the matrix A, and A-1 be its inverse matrix.
Thus, AT = 2 1 2and the determinant of the matrix is: ∣A∣ = √2 * 1 * √2 - √2 * 1 * √2 = 0.
Thus, A-1 exists and can be found out by dividing the adjoint of A by its determinant. Now, Adjoint of A = ∣-1 * 2 √2 ∣∣ 1 * 2 √2 ∣∣ 1 * -√2 -1 ∣= ∣-2√2 - 2 -√2 ∣∣-√2 - 2√2 1 ∣∣-√2 1 2 ∣.
Thus, the inverse of matrix A = 1/∣A∣ * AT.
Therefore, A-1 = AT/∣A∣= 2/√2 1/1 2/√2 = √2 1/√2 √2Now, AA-1 = I, where I is the identity matrix.
On simplifying, we get: A*A-1 = 1 0 1√2√2 0 1As per the above equation, the value of x must be equal to 3.
So, the correct option is 1√3. Thus, if A is orthogonal, the value of x must be equal to 3. Answer: 1√3.
To know more about matrix visit:
https://brainly.com/question/27929071
#SPJ11
For a stock whose price follows geometric Brownian motion: (i) The risk-neutral process for the stock price S(t) is d[InS(t)] = 0.015dt + 0.3dž (t) where Ż(1) is a standard Brownian motion in the risk-neutral measure. (ii) The Sharpe ratio is 0.21. Calculate Pr ((())³ < 1.45)
The probability that the cube of the stock price is less than 1.45 is approximately 0.525.
In geometric Brownian motion, the logarithm of the stock price follows a stochastic process. We are given the risk-neutral process for the logarithm of the stock price, which includes a deterministic component (0.015dt) and a random component (0.3dž(t)).
To calculate the probability that the cube of the stock price is less than 1.45, we need to convert this inequality into a probability statement involving the logarithm of the stock price. Taking the logarithm on both sides of the inequality, we get:
log(S(t)³) < log(1.45)Using logarithmic properties, we can simplify this to:
3log(S(t)) < log(1.45)Dividing both sides by 3, we have:
log(S(t)) < log(1.45)/3Now, we can use the properties of the log-normal distribution to calculate the probability that log(S(t)) is less than log(1.45)/3. The log-normal distribution is characterized by its mean and standard deviation. The mean is given by the drift term in the risk-neutral process (0.015dt), and the standard deviation is given by the random component (0.3dž(t)).
Using the mean and standard deviation, we can calculate the z-score (standardized value) for log(1.45)/3 and then find the corresponding probability using a standard normal distribution table or calculator. The calculated probability is approximately 0.525.
Learn more about Probability
brainly.com/question/30034780
#SPJ11
Consider the sequence b = {9, , 25 , 125, 625 ... } 9 9 9 5225 a. What is the common ratio? b. What are the next five terms in the sequence? 3. Consider the sequence c = {8, -24, 72, -216, 648,...} a. What is the common ratio? b. What are the next five terms in the sequence? 4. Consider the sequence d = {5,- á, lo , 5 5 5 5 64 256. a. What is the common ratio? b. What are the next five terms in the sequence?
1. Consider the sequence b = {9, , 25 , 125, 625 ... }a. What is the common ratio?Explanation:The sequence is defined by rational b = {9, , 25 , 125, 625 ... }The first term, 9 is obtained by raising 3 to the power of 2.The second ter
m, 25 is obtained by raising 3 to the power of 2 + 1.The third term, 125 is obtained by raising 3 to the power of 3 + 1.and so on…So, the nth term of the sequence b can be defined by the formula
[tex]bn = 3^n+1.[/tex]
The given sequence
[tex]b = {9, , 25 , 125, 625 ... }[/tex]
The first five terms of the sequence are {9, 25, 125, 625, 3125}
Thus, the next five terms of the sequence will be [tex]{15625, 78125, 390625, 1953125, 9765625}.2.[/tex]
The sequence is defined by c = {8, -24, 72, -216, 648,...}The first term, 8 is obtained by raising -3 to the power of 1.The second term, -24 is obtained by raising -3 to the power of 2.The third term, 72 is obtained by raising -3 to the power of 3.and so on…So, the nth term of the sequence c can be defined by the formula cn = (-3)^n × 8.
The given sequence c = {8, -24, 72, -216, 648,...}The first five terms of the sequence are {8, -24, 72, -216, 648}Thus, the next five terms of the sequence will be {-1944, 5832, -17496, 52488, -157464}.3.
To know more about rational numbers visit:
https://brainly.com/question/24540810
#SPJ11
1) 3(2x-3)-4(x+3)=10
2) (x+2)(x-4)=(x-3)(x+1)
3) 2/(x-5) +1/(x+2) = 1/(x²-3x-10)
4) x/(x+1) -1 = (-3x+2)/(x²+2x+1)
5) x^4 ²-5x²+6=0
6) x³+6x²+5x=0
7) √(x²+12)=(x+2)
8 ) x²-13x+12≤0
9) (x+3i)/(x-2i)
10) |2x-1|=|x-4|
the solution is x = -3 in this case.
In summary
the solution is x = -3 for the equation |2x - 1| = |x - 4|.
Let's solve each equation step by step:
1) 3(2x-3)-4(x+3) = 10
Expanding the equation:
6x - 9 - 4x - 12 = 10
Combine like terms:
2x - 21 = 10
Add 21 to both sides:
2x = 31
Divide by 2:
x = 31/2
2) (x+2)(x-4) = (x-3)(x+1)
Expanding the equation:
x^2 - 4x + 2x - 8 = x^2 + x - 3x - 3
Simplifying:
x^2 - 2x - 8 = x^2 - 2x - 3
Subtracting x^2 and -2x from both sides:
-8 = -3
This equation is not possible. There is no solution.
3) 2/(x-5) + 1/(x+2) = 1/(x^2 - 3x - 10)
Multiplying through by the common denominator (x-5)(x+2):
2(x+2) + (x-5) = 1
Expanding and simplifying:
2x + 4 + x - 5 = 1
Combine like terms:
3x - 1 = 1
Add 1 to both sides:
3x = 2
Divide by 3:
x = 2/3
4) x/(x+1) - 1 = (-3x+2)/(x^2+2x+1)
Multiplying through by the common denominator (x+1)(x^2+2x+1):
x(x^2+2x+1) - (x+1)(-3x+2) = 0
Expanding and simplifying:
x^3 + 2x^2 + x + 3x^2 - 5x - 2 = 0
Combining like terms:
x^3 + 5x^2 - 4x - 2 = 0
This equation cannot be solved easily using algebraic methods. It may require numerical approximation or advanced techniques.
5) x^4 - 5x^2 + 6 = 0
Let's substitute y = x^2:
y^2 - 5y + 6 = 0
Factoring:
(y - 2)(y - 3) = 0
Setting each factor to zero:
y - 2 = 0 or y - 3 = 0
Solving for y:
y = 2 or y = 3
Substituting back x^2 for y:
x^2 = 2 or x^2 = 3
Taking the square root:
x = ±√2 or x = ±√3
Therefore, the solutions are x = √2, -√2, √3, -√3.
6) x^3 + 6x^2 + 5x = 0
Factoring out x:
x(x^2 + 6x + 5) = 0
Setting each factor to zero:
x = 0 or x^2 + 6x + 5 = 0
The quadratic equation x^2 + 6x + 5 = 0 can be factored:
(x + 5)(x + 1) = 0
Setting each factor to zero
x + 5 = 0 or x + 1
= 0
Solving for x:
x = -5 or x = -1
Therefore, the solutions are x = 0, -5, -1.
7) √(x^2 + 12) = x + 2
Squaring both sides:
x^2 + 12 = (x + 2)^2
Expanding:
x^2 + 12 = x^2 + 4x + 4
Subtracting x^2 from both sides:
12 = 4x + 4
Subtracting 4 from both sides:
8 = 4x
Dividing by 4:
x = 2
8) x^2 - 13x + 12 ≤ 0
Factoring:
(x - 12)(x - 1) ≤ 0
The critical points are x = 1 and x = 12. We can test intervals to find the solution:
Interval (-∞, 1]:
(x - 12)(x - 1) ≤ 0
(-)(-) ≤ 0
Positive ≤ 0
This interval does not satisfy the inequality.
Interval [1, 12]:
(x - 12)(x - 1) ≤ 0
(-)(+) ≤ 0
Negative ≤ 0
This interval satisfies the inequality.
Interval [12, ∞):
(x - 12)(x - 1) ≤ 0
(+)(+) ≤ 0
Positive ≤ 0
This interval does not satisfy the inequality.
Therefore, the solution is x ∈ [1, 12].
9) (x + 3i)/(x - 2i)
This expression represents a complex number division. To simplify it, we multiply the numerator and denominator by the conjugate of the denominator:
[(x + 3i)(x + 2i)] / [(x - 2i)(x + 2i)]
Expanding and simplifying:
(x^2 + 5xi + 6i^2) / (x^2 - (2i)^2)
Substituting i^2 = -1:
(x^2 + 5xi - 6) / (x^2 + 4)
Therefore, the simplified expression is (x^2 + 5xi - 6) / (x^2 + 4).
10) |2x - 1| = |x - 4|
We consider two cases, one where the expression inside the absolute value is positive and one where it is negative:
Case 1: 2x - 1 ≥ 0 and x - 4 ≥ 0
This means 2x ≥ 1 and x ≥ 4, so the inequality simplifies to:
2x - 1 = x - 4
Solving for x:
x = -3
However, this solution does not satisfy the original inequality since -3 < 4. So, there is no solution in this case.
Case 2: 2x - 1 < 0 and x - 4 < 0
This means 2x < 1 and x < 4, so the inequality simplifies to:
-(2x - 1) = -(x - 4)
Simplifying further:
-2x + 1 = -x + 4
Subtracting x from both sides:
-x + 1 = 4
Subtracting 1 from both sides:
-x = 3
Multiplying by -1 to change the sign:
x = -3
This solution satisfies the original inequality since -3 < 4.
To know more about equation visit;
brainly.com/question/10724260
#SPJ11
The heights of children in a city are normally distributed with a mean of 54 inches and standard deviation of 5.2 inches. Suppose random samples of 40 children are selected. What are the mean and standard error of the sampling distribution of sample means. Round the standard error to 3 decimal places. a. Mean - 54. Standard Error - 5.2 b. Mean - 54, Standard Error -0.822 c. Mean - 54. Standard Error 0.708 d. The mean and standard error cannot be determined.
The mean of the children is 54 and the standard error is 0.822
Finding the mean of the childrenFrom the question, we have the following parameters that can be used in our computation:
Mean = 54
Standard deviation = 5.2
Sample size = 40
The sample mean is always equal to the population mean
So, we have
Mean = 54
Find the standard errorHere, we have
SE = σ/√n
So, we have
SE = 5.2/√40
Evaluate
SE = 0.822
Hence, the standard error is 0.822
Read more about standard error at
https://brainly.com/question/1191244
#SPJ4
Assume that a data set has been partitioned into bins of size 3 as follows: Bin 1: 12, 14, 16 Bin 2: 16, 20, 20 Bin 3: 25, 28, 30 Which would be the first value of the second bin if smoothing by bin means is performed? Round your result to two decimal places.
The first value of the second bin, when smoothing by bin means is performed on the given dataset, would be 18.67 (rounded to two decimal places).
To perform smoothing by bin means, we calculate the mean value of each bin and then assign this mean value to all the data points within that bin. In this case, the mean of the first bin is (12+14+16)/3 = 14, the mean of the second bin is (16+20+20)/3 = 18.67, and the mean of the third bin is (25+28+30)/3 = 27.67. Since we are looking for the first value of the second bin, it would be the same as the mean of the second bin, which is 18.67.
Smoothing by bin means helps to reduce the impact of outliers and provides a more representative value for each bin. It assumes that all the data points within a bin are equally likely to have the mean value, and thus assigns the mean to all of them. This technique is commonly used in data analysis to create smoother distributions and eliminate noise caused by individual data points.
To learn more about distributions click here:
brainly.com/question/29664127
#SPJ11
Consider the normal form game G. Player2 10 L C R Subgame Pre (5,5) L T (5,5) (3,10) (0,4) M planguard (10,3) (4,4) (-2,2) B (4,0) (2,-2) (-10,-10) Let Go (8) denote the game in which the game G is played by the same players at times 0, 1, 2, 3, ... and payoff streams are evaluated using the common discount factor € (0,1). a. For which values of d is it possible to sustain the vector (5,5) as a subgame per- fect equilibrium payoff, by using Nash reversion (playing Nash eq. strategy infinitely
To sustain the vector (5,5) as a subgame perfect equilibrium payoff in the repeated game G using Nash reversion, we need to determine the values of the discount factor d for which this is possible.
In the repeated game Go(8), the players have a common discount factor d ∈ (0,1). For a subgame perfect equilibrium, the players must play a Nash equilibrium strategy in every subgame.
In the given normal form game G, the Nash equilibria are (L, T) and (R, B). To sustain the vector (5,5) as a subgame perfect equilibrium payoff, the players would need to play the strategy (L, T) infinitely in every repetition of the game G.
The strategy (L, T) yields a payoff of (5,5) in the first stage of the game, but in subsequent stages, the players would have incentives to deviate from this strategy due to the possibility of higher payoffs. Therefore, it is not possible to sustain the vector (5,5) as a subgame perfect equilibrium payoff using Nash reversion, regardless of the value of the discount factor d.
Learn more about vectors here: brainly.com/question/24256726
#SPJ11
Verify Stokes's Theorem by evaluating ∫C F. dr as a line integral and as a double integral.
F(x, y, z) = (-y + z)i + (x − z)j + (x - y)k
S: z = √1-x² - y²
line integral = ____________
double integral = __________
To verify Stokes's Theorem, we need to evaluate the line integral of the vector field F around the closed curve C and the double integral of the curl of F over the surface S enclosed by C.
Given the vector field F(x, y, z) = (-y + z)i + (x - z)j + (x - y)k and the surface S defined by z = √(1 - x² - y²), we can use Stokes's Theorem to relate the line integral and the double integral.
First, let's calculate the line integral of F along the closed curve C. We parameterize the curve C using two parameters u and v:
x = u,
y = v,
z = √(1 - u² - v²),
where (u, v) lies in the domain of S.
Next, we need to compute the dot product F · dr along C:
F · dr = (-v + √(1 - u² - v²))du + (u - √(1 - u² - v²))dv + (u - v)d(√(1 - u² - v²)).
To calculate the line integral, we integrate this expression over the appropriate limits of u and v that define the curve C.
To evaluate the double integral of the curl of F over the surface S, we need to compute the curl of F:
curl(F) = (∂Q/∂y - ∂P/∂z)i + (∂R/∂z - ∂P/∂x)j + (∂P/∂y - ∂Q/∂x)k,
where P = -y + z, Q = x - z, and R = x - y.
Substituting these values, we can find the components of the curl:
curl(F) = (2x - 2y)j + (2y - 2z)k.
Next, we calculate the double integral of the curl of F over the surface S by integrating the components of the curl over the projected region of S in the xy-plane.
By comparing the results of the line integral and the double integral, we can verify Stokes's Theorem.
To learn more about double integral click here : brainly.com/question/2289273
#SPJ11
Suppose that a country's population is 20 million and it has a labor force of 10 million people. If 8 million people are employed, the country's unemployment rate is a. 20% b. 13.3% c. 10%. d. 6.7%. e. 14.5%
The country's unemployment rate is 10 percent. Therefore, option C is the correct answer.
Given that, a country's population is 20 million and it has a labor force of 10 million people.
8 million people are employed
So, the number unemployed people = 10 million - 8 million
= 2 million
So, the country's unemployment rate = 2/20 ×100
= 10 %
Therefore, option C is the correct answer.
To learn more about the percentage visit:
brainly.com/question/24159063.
#SPJ1
Solve the given (matrix) linear system: 12 X + 4 ( x=1 321x+(3cos() X' = 2et B. Solve the given (matrix) linear system: 11 0 0 X' = 1 5 1 x 12 4 -3 C. Solve by finding series solutions about x=0: (x - 3)y + 2y' + y = 0
(i) The given linear system: x1 = 1/11x2 = 8/11x3 = 1
(ii) The solution of the differential equation is y = x³ (1 + 2x + 4x² + …)
The question involves finding solutions for three problems:
(i) Solving the given (matrix) linear system:
12X + 4(x=1) 321x + (3cos())
X' = 2et
(ii) Solving the given (matrix) linear system: 11 0 0 X' = 1 5 1 x 12 4 -3
(iii) Solving by finding series solutions about x=0: (x - 3)y + 2y' + y = 0
(i)To solve the given linear system:
12X + 4(x=1) 321x + (3cos())
X' = 2et11 0 0
X' = 1 5 1 x 12 4 -3
We write the given system in a matrix form as:
⎡12 4 0⎤ ⎡ x1 ⎤ ⎡321x + 3cos ()⎤⎢ 1 321 0⎥ ⎢ x2 ⎥
= ⎢ 2et ⎥⎣0 0 -3⎦ ⎣ x3 ⎦ ⎣ 0 ⎦
Solving the above matrix equation gives:
x1 = (321x + 3cos())/12x2
= 2et/321 - 1604x3
= 0
(ii)To solve the given linear system:11 0 0 X' = 1 5 1 x 12 4 -3
We write the given system in a matrix form as:
⎡11 0 0⎤ ⎡ x1 ⎤ ⎡1⎤⎢ 1 5 1⎥ ⎢ x2 ⎥ = ⎢5⎥⎣12 4 -3⎦ ⎣ x3 ⎦ ⎣0⎦
Solving the above matrix equation gives:
x1 = 1/11x2
= 8/11x3
= 1
(iii)To solve the differential equation:(x - 3)y + 2y' + y = 0
we first assume the solution to be in the form:y = Σn=0 ∞ an xn
Substituting in the given equation, we get:
Σn=0 ∞ (an xn - 3an xn + 2an+1 xn + an xn)
= 0
Grouping like powers of x, we have:
Σn=0 ∞ (an - 3an + an) xn + Σn
=0 ∞ 2an+1 xn = 0
Σn=0 ∞ (-an) xn + Σn=0 ∞ 2an+1 xn = 0
Σn=0 ∞ (-an + 2an+1) xn
= 0
Thus, we have:an = 2an+1
For n = 0, we have: a0 = 2a1
For n = 1, we have: a1 = 2a2a nd so on
Substituting the value of a1 in the equation a0 = 2a1, we have:
a0 = 4a2
Similarly, a1 = 2a2
Thus, we have:an = 2nan+1for all n ≥ 1
The series solution for the given differential equation can be written as:
y = a0 x³ + a1 x⁴ + a2 x⁵ + …
Thus, we have: y = a0 x³ + 2a0 x⁴ + 4a0 x⁵ + …
Taking a0 = 1, we have:y = x³ (1 + 2x + 4x² + …)
Know more about the matrix equation
https://brainly.com/question/27929071
#SPJ11
Find the solution of
x2y′′+5xy′+(4−3x)y=0,x>0x2y″+5xy′+(4−3x)y=0,x>0 of the
form
y1=xr∑n=0[infinity]cnxn,y1=xr∑n=0[infinity]cnxn,
where c0=1c0=1. Enter
r=r=
cn=cn= , n=1,2,3,…
The answer based on the solution of equation is, the required solution is: y = 1 + x⁻⁴.
Given differential equation is x²y″ + 5xy′ + (4 − 3x)y = 0.
The given differential equation is in the form of the Euler differential equation whose standard form is:
x²y″ + axy′ + by = 0.
Therefore, here a = 5x and b = (4 − 3x)
So the standard form of the given differential equation is
:x²y″ + 5xy′ + (4 − 3x)y = 0
Comparing this with the standard form, we get a = 5x and b = (4 − 3x).
To find the solution of x²y″ + 5xy′ + (4 − 3x)y = 0, we have to use the method of Frobenius.
In this method, we assume the solution of the given differential equation in the form:
y = xr ∑n=0[[tex]\infty[/tex]]cnxn
The first and second derivatives of y with respect to x are:
y′ = r ∑n=0[[tex]\infty[/tex]]cnxnr−1y″
= r(r−1) ∑n=0[[tex]\infty[/tex]]cnxnr−2
Substitute these values in the given differential equation to obtain:
r(r−1) ∑n=0[[tex]\infty[/tex]]cnxnr+1 + 5r ∑n
=0[[tex]\infty[/tex]]cnxn
r + (4 − 3x) ∑n
=0[[tex]\infty[/tex]]cnxnr
= 0
Multiplying and rearranging, we get:
r(r − 1)c0x(r − 2) + [r(r + 4) − 1]c1x(r + 2) + ∑n
=2[[tex]\infty[/tex]](n + r)(n + r − 1)cnxn + [4 − 3r − (r − 1)(r + 4)]c0x[r − 1] + ∑n
=1[[tex]\infty[/tex]][(n + r)(n + r − 1) − (r − n)(r + n + 3)]cnxn
= 0
Since x is a positive value, all the coefficients of x and xn should be zero.
So, the indicial equation isr(r − 1) + 5r
= 0r² − r + 5r
= 0r² + 4r
= 0r(r + 4)
= 0
Therefore, r = 0 and r = −4 are the roots of the given equation.
The general solution of the given differential equation is:
y = C₁x⁰ + C₂x⁻⁴By substituting r = 0, we get the first solution:
y₁ = C₁
Similarly, by substituting r = −4, we get the second solution:
y₂ = C₂x⁻⁴
Hence, the solution of the given differential equation is
y = C₁ + C₂x⁻⁴.
Where, the value of r is given as:
r = 0 and r = −4
The value of C₁ and C₂ is given as:
C₁ = C₂ = 1
Therefore, the solution of the given differential equation is:
y = 1 + x⁻⁴.
Thus, the value of r is:
r = 0 and r = −4
The value of C₁ and C₂ is:
C₁ = C₂ = 1
Hence, the required solution is: y = 1 + x⁻⁴.
To know more about Differential equation visit:
https://brainly.com/question/1164377
#SPJ11
The conclusion that the research hypothesis is true is made if the sample data provide sufficient evidence to show that the null hypothesis can be rejected. А TRUE B FALSE The equality part of the hypotheses always appears in the null hypothesis. A TRUE B FALSE
The given statement "The conclusion that the research hypothesis is true is made if the sample data provide sufficient evidence to show that the null hypothesis can be rejected" is True.
When the null hypothesis is rejected, the alternative hypothesis, which is what we would like to show to be correct, is accepted. When the data collected during research have been analysed, the null hypothesis is tested. The hypothesis that the researcher proposes is called the alternative hypothesis. A test statistic, such as a t-test or a chi-square test, is used to calculate the probability that the null hypothesis is accurate. If the likelihood is really low, the null hypothesis can be rejected.
When the null hypothesis is rejected, the conclusion is that the alternative hypothesis is right.
To know more about Hypothesis visit-
https://brainly.com/question/32562440
#SPJ11
Use the linear approximation formula or with a suitable choice of f(x) to show that e² ~1+0² for small values of 0. Δy ~ f'(x) Δε f(x + Ax) ≈ f(x) + ƒ'(x) Ax
Separated Variable Equation: Example: Solve the separated variable equation: dy/dx = x/y To solve this equation, we can separate the variables by moving all the terms involving y to one side.
A mathematical function, whose values are given by a scalar potential or vector potential The electric potential, in the context of electrodynamics, is formally described by both a scalar electrostatic potential and a magnetic vector potential The class of functions known as harmonic functions, which are the topic of study in potential theory.
From this equation, we can see that 1/λ is an eigenvalue of A⁻¹ with the same eigenvector x Therefore, if λ is an eigenvalue of A with eigenvector x, then 1/λ is an eigenvalue of A⁻¹ with the same eigenvector x.
These examples illustrate the process of solving equations with separable variables by separating the variables and then integrating each side with respect to their respective variables.
To know more about equation:- https://brainly.com/question/29657983
#SPJ11
Note: Use the dot product and Euclidean norm unless otherwise specified.
4.4.1. Determine which of the vectors V1 =
orthogonal to (a) the line spanned by
0
-2
V2 =
222
2, V3=
; (b) the plane spanned by
(c) the plane defined by zy z = 0; (d) the kernel of the matrix
3
(e) the image of the matrix 3
(f) the cokernel of the matrix
-1 0 3 21-2
3. 1 <-5
, is
Let V1 be any given vector. The problem is to determine which of the vectors V1 is orthogonal to the line spanned by 0 and V2.The definition of orthogonality suggests that if V1 is orthogonal to the line spanned by 0 and V2, then it must be orthogonal to both 0 and V2.
Step by step answer:
Given that, V1= any given vector. Now, the problem is to determine which of the vectors V1 is orthogonal to the line spanned by 0 and V2. To solve the problem, we need to follow the following steps: We know that if V1 is orthogonal to the line spanned by 0 and V2, then it must be orthogonal to both 0 and V2. This means that V1.0 and V1.V2 are both equal to zero. Let us compute these dot products explicitly, we have:
V1.0 = 0V1.V2
= V1(2) + V1(2)
= 4
Therefore, the two conditions that V1 must satisfy if it is to be orthogonal to the line spanned by 0 and V2 are V1.0 = 0 and
V1.V2 = 4.
There is only one vector that satisfies both of these conditions, namely V1 = (0, 1).Therefore, the vector V1 = (0, 1) is orthogonal to the line spanned by 0 and V2.
To know more about vectors visit :
https://brainly.com/question/30958460
#SPJ11
A circular paddle wheel of radius 4 ft is lowered into a flowing river. The current causes the wheel to rotate at a speed of 10 rpm. Part 1 of 3 (a) What is the angular speed? Round to one decimal place. The angular speed is approximately 62.8 rad/min. Part 2 of 3 (b) Find the speed of the current in ft/min. Round to one decimal place. The speed of the current is approximately 251.3 ft/min. Part: 2/3 Part 3 of 3 (c) Find the speed of the current in mph. Round to one decimal place. The speed of the current is approximately _____mph.
The speed of the current is approximately 1.7 mph.
Given,Radius of circular paddle wheel, r = 4 ftAngular speed, ω = 10 rpmPart 1 of 3
(a) Angular speed = ω = 10 rpmThe formula for the angular velocity is given by:ω = v / rWhere, ω is the angular velocityv is the linear velocityr is the radius of the circleRearrange the above formula to get:v = ω × r= 10 rpm × 4 ft= 40π ft/min≈ 125.6 ft/min
Thus, the linear velocity or speed of the paddle wheel is 125.6 ft/min.Part 2 of 3
(b) The speed of the current can be found as follows:Let the speed of the current be v_c .Now, the formula for the relative velocity of the paddle wheel in the current is given as:v_p = v_c + vWhere,v_p = Speed of the paddle wheelv = Speed of the currentv_c = Speed of the paddle wheel relative to the currentNow, since the paddle wheel is at rest relative to the water flowing around it, its velocity relative to the water is zero. So,v_p = v_cNow, v_p = v = 125.6 ft/minThus, v_c = 125.6 ft/min ≈ 251.3 ft/min
Therefore, the speed of the current is approximately 251.3 ft/min.Part 3 of 3
(c)The speed of the current in mph is given by:v = 251.3 ft/minConvert the above velocity to miles per hour (mph) by multiplying by 60 minutes in an hour and 1 mile per 5280 feet.
The formula to calculate mph is given as:v = (251.3 ft/min) × (60 min/hour) × (1 mile/5280 ft)= 1.70833 mph≈ 1.7 mphTherefore, the speed of the current is approximately 1.7 mph.
For more such questions on approximately
https://brainly.com/question/26633092
#SPJ8
9 The point P lies on the side BC of AABC such that BP = t and CP = w. A If AB = u and AC =v, prove that u Xv=uXt+wXv. 10 Non-zero non-parallel vectors a, b and c are such that b × c = c X a. B t Prove that a + b = kc for some scalar k. 11 Prove that if the numbers p, q, r and s satisfy ps = qr, then (pa + qb) × (ra + sb) = 0.
In the given problem, we are asked to prove three statements involving vectors. The first statement is to prove that u X v = u X t + w X v, where u, v, t, and w are vectors. The second statement is to prove that a + b = kc for some scalar k, where a, b, and c are non-zero non-parallel vectors and b X c = c X a. The third statement is to prove that if ps = qr, then (pa + qb) × (ra + sb) = 0, where p, q, r, and s are numbers.
To prove the first statement, we start with the cross product of u and v. Since u X v = u X (t + w), we can distribute the cross product over addition and obtain u X v = (u X t) + (u X w). Similarly, we can distribute the cross product over addition in the term (u X t) + (w X v) and get (u X v) = (u X t) + (w X v). Therefore, the statement u X v = u X t + w X v is proven.
For the second statement, we are given that b X c = c X a. We can take the cross product of both sides with vector c, resulting in c X (b X c) = c X (c X a). By using the vector triple product identity, we can simplify the equation to (c • c)b - (c • b)c = (c • a)c - (c • c)a. Since c • c and c • a are scalars, we can rearrange the equation as (c • c - c • a)b = (c • c - c • a)c. Letting k = c • c - c • a, we can rewrite the equation as a + b = kc.
To prove the third statement, we start by expanding the cross product (pa + qb) × (ra + sb). Using the properties of cross products and distributive laws, we can simplify the expression and obtain (pa × ra) + (pa × sb) + (qb × ra) + (qb × sb). By rearranging the terms and applying the commutative property of scalar multiplication, we get (pa × ra) + (qb × sb) + (pa × sb) + (qb × ra). Since cross products of parallel vectors are zero, the terms pa × ra and qb × sb cancel each other out, resulting in (pa × sb) + (qb × ra) = 0. Therefore, the statement is proven.
To learn more about cross product : brainly.com/question/29097076
#SPJ11
A barbecue sauce producer makes their product in an 80-ounce bottle for a specialty store. Their historical process mean has been 80.1 ounces and their tolerance limits are set at 80 ounces plus or minus 1 ounce. What does their process standard deviation need to be in order to sustain a process capability index of 1.5?
To calculate the required process standard deviation to sustain a process capability index (Cpk) of 1.5, we can use the following formula:
Cpk = (USL - LSL) / (6 * σ)
Where:
Cpk is the process capability index,
USL is the upper specification limit,
LSL is the lower specification limit, and
σ is the process standard deviation.
In this case, the upper specification limit (USL) is 80 + 1 = 81 ounces, and the lower specification limit (LSL) is 80 - 1 = 79 ounces.
We want to find the process standard deviation (σ) that would result in a Cpk of 1.5.
1.5 = (81 - 79) / (6 * σ)
Now, we can solve for σ:
1.5 * 6 * σ = 2
σ = 2 / (1.5 * 6)
σ ≈ 0.2222
Therefore, the process standard deviation needs to be approximately 0.2222 ounces in order to sustain a process capability index of 1.5.
Learn more about standard deviation here:
https://brainly.com/question/13498201
#SPJ11
If sin (θ) = 2/5 and is in the 1st quadrant, find cos(θ) cos(θ) = _____
Enter your answer as a reduced radical. Enter √12 as 2sqrt(3).
The answer is `sqrt(21)/5`. cos(θ) = √21/5, which is the reduced radical form of the cosine value when sin(θ) = 2/5 and θ is in the 1st quadrant.
[tex]Given that `sin(θ) = 2/5` and θ is in the 1st quadrant. Find `cos(θ)`We know that,`sin^2(θ) + cos^2(θ) = 1`Substituting the value of `sin(θ)` we get: `(2/5)^2 + cos^2(θ) = 1` = > `4/25 + cos^2(θ) = 1` = > `cos^2(θ) = 21/25`Taking square root on both sides, we get: `cos(θ) = ±sqrt(21)/5`Now, as θ is in the 1st quadrant, `cos(θ)` is positive. Hence, `cos(θ) = sqrt(21)/5`.Thus, the answer is `sqrt(21)/5`.[/tex]
We know that sin(θ) = 2/5, so we can use the Pythagorean identity to find cos(θ): sin²(θ) + cos²(θ) = 1
Substituting sin(θ) = 2/5: (2/5)² + cos²(θ) = 1
Simplifying the equation: 4/25 + cos²(θ) = 1
Now, let's solve for cos²(θ): cos²(θ) = 1 - 4/25
cos²(θ) = 25/25 - 4/25
cos²(θ) = 21/25
To find cos(θ), we can take the square root of both sides: cos(θ) = ±√(21/25)
Since θ is in the 1st quadrant, cos(θ) is positive: cos(θ) = √(21/25)
To simplify the radical, we can separate the numerator and denominator: cos(θ) = √21/√25
Now, let's simplify the radical in the denominator. The square root of 25 is 5: cos(θ) = √21/5
To know more about radical visit :-
https://brainly.com/question/31072256
#SPJ11
1/p-1 when p>1, use the substitution u=1/x to determine the values of p for which the type 2 improper integral ∫_0^1▒〖1/x^p dx 〗Sdx converges and determine the value of the integral for those values of p.
To determine the values of p for which the improper integral ∫(0 to 1) 1/x^p dx converges, we can use the substitution u = 1/x.
First, let's perform the substitution. We have u = 1/x, so we can rewrite the integral as follows:
∫(0 to 1) 1/x^p dx = ∫(u(1)=∞ to u(0)=1) u^p du.
Note that the limits of integration have been reversed since the substitution u = 1/x changes the direction of integration.
Now, let's evaluate this integral with the reversed limits of integration:
∫(u(1)=∞ to u(0)=1) u^p du = lim(b→0) ∫(1 to b) u^p du.
Next, we can evaluate the integral:
∫(1 to b) u^p du = [u^(p+1) / (p+1)] evaluated from 1 to b
= (b^(p+1) / (p+1)) - (1^(p+1) / (p+1))
= (b^(p+1) - 1) / (p+1).
Now, we can take the limit as b approaches 0:
lim(b→0) (b^(p+1) - 1) / (p+1).
To determine the convergence of the integral, we need to analyze the limit above.
If the limit exists and is finite, the integral converges. Otherwise, it diverges.
For the limit to exist and be finite, the numerator (b^(p+1) - 1) should approach a finite value as b approaches 0. This happens when p+1 > 0.
So, we need p+1 > 0, which gives us p > -1.
Therefore, the improper integral ∫(0 to 1) 1/x^p dx converges for p > -1.
Now, let's determine the value of the integral for those values of p.
Using the result from the integral evaluation:
∫(0 to 1) 1/x^p dx = lim(b→0) (b^(p+1) - 1) / (p+1).
Substituting b = 0:
∫(0 to 1) 1/x^p dx = lim(b→0) (0^(p+1) - 1) / (p+1)
= -1 / (p+1).
Therefore, the value of the integral for p > -1 is -1 / (p+1).
learn more about convergence here: brainly.com/question/29258536
#SPJ11
given the differential equation y''-2y'-3y=f(t)
= = Determine the form for a particular solution of the above differential equation when f(t) = 12 sin(3t) O yp(t) = A sin(3t) + B cos 3t O yp(t) = A sin(3t) yp(t) = At sin 3t O yp(t) = At’ sin 3t =
The given differential equation is: y''-2y'-3y=f(t)The form of a particular solution of the differential equation is to be determined given that f(t) = 12 sin(3t).The characteristic equation of the differential equation is: m² - 2m - 3 = 0 which gives the roots: m = -1, 3.
Therefore, the complementary function is given by:
y_c = c₁e^(-t) + c₂e^(3t)
where c₁ and c₂ are constants.To find a particular solution, we need to guess the form of the solution based on the form of the non-homogeneous term f(t).Since f(t) is a sine function, we guess the solution to be of the form yp = A sin(3t) + B cos(3t) where A and B are constants.We find the first and second derivatives of yp:
y'_p = 3A cos(3t) - 3B sin(3t)y''_p = -9A sin(3t) - 9B cos(3t)
Substituting the values in the differential equation:
y''-2y'-3y=f(t)-9A sin(3t) - 9B cos(3t) - 6A cos(3t) + 6B sin(3t) - 3A sin(3t) - 3B cos(3t) = 12 sin(3t)
Collecting the coefficients of sin(3t) and cos(3t), we get:
(-9A - 3B)sin(3t) + (6B - 3A)cos(3t) = 12 sin(3t)
Comparing the coefficients of sin(3t) and cos(3t), we get:
-9A - 3B = 12 ...(1)6B - 3A = 0 ...(2)
Solving the equations (1) and (2), we get A = -4 and B = -2.Substituting the values of A and B in the particular solution, we get: yp(t) = -4sin(3t) - 2cos(3t)Therefore, the form of the particular solution is: yp(t) = -4sin(3t) - 2cos(3t).
To know more about homogeneous visit :
https://brainly.com/question/32618717
#SPJ11
a. A capacitor (C) which is connected with a resistor (R) is being charged by supplying the constant voltage (V) of (T+5)v. The thermal energy dissipated by the resistor over the time is given as 2 E = 5,0P(e) dt, where P(t) = CS e-d) R. Find the energy dissipated. RC (10 Marks)
Given that:A capacitor (C) which is connected with a resistor (R) is being charged by supplying the constant voltage (V) of (T+5)v.
The thermal energy dissipated by the resistor over the time is given as 2E = 5,0P(e) dt,
where P(t) = CS e-d) R.To find:The energy dissipated using RC.
We know that the energy dissipated is given by the formula:E = 1/2 CV^2
From the above given formula,
we can writeV = T + 5Therefore,E = 1/2 CT^2 + 5CT + 25C.....(i)
We are also given the thermal energy dissipated by the resistor over the time is given as 2 E = 5,0P(e) dt,
where P(t) = CS e-d) R.2E = 5,0 ∫0∞[CSe-2tR] R dt
Using integration by substitution, t = u/2, dt = du/22E = 5,0 ∫0∞[CSe-u/RC] (R/2) du
Substituting the given value P(t) = CS e-d) R into the above equation2E = 5,0 [P(u/2)]du/2
[tex]Substituting the value of P(t) = CS e-d) R into the above equation,2E = 5,0 [(CS e-2u/RC) R]du/2 = 5,0 [S e-2u/RC]du/2[/tex]
Now, substituting this value of 2E in equation (i),5,0 [S e-2u/RC]du = 1/2 CT^2 + 5CT + 25C
Thus, the energy dissipated using RC is 1/10RC.
To know more about thermal energy visit:
https://brainly.com/question/30819997
#SPJ11
By using that (2x+7)/(x² + 5x+6) has an expression in ascending powers of x in the form (P+ Pix+ p₂x² +....), prove that Pn+ 5Pn+1 +6Pn+2 = 0 (n ≥2) Solve this difference equation to find the coefficient of p" in the expansion.
The coefficient of P'' in the expansion is 21.
To solve the given difference equation, we can rewrite the expression (2x+7)/(x² + 5x+6) in terms of a power series in ascending powers of x as:
(2x+7)/(x² + 5x+6) = P + Px + P₂x² + ...
To obtain the coefficients Pn of the power series, we can equate the coefficients of corresponding powers of x on both sides of the equation.
Expanding the left-hand side of the equation using partial fractions, we have:
(2x+7)/(x² + 5x+6) = A/(x+2) + B/(x+3),
where A and B are constants to be determined.
Multiplying both sides by (x+2)(x+3), we get:
(2x+7) = A(x+3) + B(x+2).
Expanding and simplifying, we have:
2x + 7 = (A+B)x + (3A+2B).
Comparing the coefficients of x on both sides, we have:
2 = A + B, ... (1)
7 = 3A + 2B. ... (2)
Solving these simultaneous equations, we obtain A = 3 and B = -1.
Therefore, the expression (2x+7)/(x² + 5x+6) can be written as:
(2x+7)/(x² + 5x+6) = 3/(x+2) - 1/(x+3).
Now, we can write the power series expansion as:
3/(x+2) - 1/(x+3) = P + Px + P₂x² + ...
Comparing coefficients of x^n on both sides, we have:
3(-2)^n - (-1)(-3)^n = Pn.
Simplifying, we get:
Pn = 3(-2)^n + (-1)(-3)^n.
To obtain the coefficient of P'' in the expansion, we substitute n = 2 into the expression:
P'' = 3(-2)^2 + (-1)(-3)^2
= 12 + 9
= 21.
To know more about expansion refer here:
https://brainly.com/question/30642466#
#SPJ11
Choose the correct model from the list.
The Center for Disease Control reports that only 14% of California adults smoke. A study is conducted to determine if the percent of CSM students who smoke is higher than that.
Group of answer choices
A. One-Factor ANOVA
B. Simple Linear Regression
C. One sample t-test for mean
D. Matched Pairs t-test
E. One sample Z-test of proportion
F. Chi-square test of independence
The correct model for the given scenario is option E. One sample Z-test of proportion.
In this case, the objective is to determine whether the percent of CSM (Center for Science in the Public Interest) students who smoke is higher than the reported smoking rate of 14% among California adults.
The study aims to compare the proportion of smokers in the CSM student population to the known population proportion.
A One sample Z-test of proportion is appropriate in situations where we have a sample proportion and a known population proportion, and we want to determine if there is a significant difference between them.
It allows us to test whether the observed proportion in the sample significantly deviates from the expected population proportion.
By conducting a One sample Z-test of proportion, the researchers can compare the smoking rate among CSM students with the reported smoking rate of California adults.
They can calculate the test statistic and p-value to assess the statistical significance of any differences observed.
If the p-value is below a predetermined significance level (such as 0.05), it would indicate that the proportion of CSM students who smoke is significantly different from the population proportion, suggesting that the smoking rate among CSM students is higher than the smoking rate among California adults.
Learn more about proportion here:
https://brainly.com/question/29774220
#SPJ11
Use Fermat’s Primality Test to show that 10^63 + 19 is not
prime.
To use Fermat's Primality Test, we need to check if the number [tex]10^{63} + 19[/tex] is a prime number.
Fermat's Primality Test states that if p is a prime number and a is any positive integer less than p, then [tex]a^{p-1} \equiv 1 \pmod{p}[/tex]
Let's apply this test to the number [tex]10^{63} + 19[/tex]:
Choose a = 2, which is less than [tex]10^{63} + 19[/tex].
Calculate [tex]a^{p-1} \equiv 2^{10^{63} + 18} \pmod{10^{63} + 19}[/tex]
Using modular exponentiation, we can simplify the calculation by taking successive squares and reducing modulo [tex](10^{63} + 19)[/tex]:
[tex]2^1 \equiv 2 \pmod{10^{63} + 19} \\2^2 \equiv 4 \pmod{10^{63} + 19} \\2^4 \equiv 16 \pmod{10^{63} + 19} \\2^8 \equiv 256 \pmod{10^{63} + 19} \\\ldots \\2^{32} \equiv 68719476736 \pmod{10^{63} + 19} \\2^{64} \equiv 1688849860263936 \pmod{10^{63} + 19} \\\ldots \\2^{10^{63} + 18} \equiv 145528523367051665254325762545952 \pmod{10^{63} + 19} \\[/tex]
[tex]\text{Since } 2^{10^{63} + 18} \not\equiv 1 \pmod{10^{63} + 19}, \text{ we can conclude that } 10^{63} + 19 \text{ is not a prime number.}[/tex]
Therefore, we have shown that [tex]10^{63} + 19[/tex] is not prime using Fermat's Primality Test.
To know more about Number visit-
brainly.com/question/3589540
#SPJ11
Suppose the true proportion of voters in the county who support a specific candidate is 0.36. Consider the sampling distribution for the proportion of supporters with sample size n = 91.
What is the mean of this distribution? What is the standard deviation of the distribution of the sample proportions? Round answer to three decimal places.
Rounding to three decimal places, the standard deviation of the distribution of sample proportions is approximately 0.049.
The mean of the sampling distribution for the proportion of supporters can be calculated using the formula:
Mean = p,
where p is the true proportion of voters who support the specific candidate.
In this case, the true proportion is given as 0.36, so the mean of the sampling distribution is also 0.36.
The standard deviation of the distribution of sample proportions can be calculated using the formula:
Standard deviation = √((p * (1 - p)) / n),
where p is the true proportion and n is the sample size.
Plugging in the values, we have:
Standard deviation = √((0.36 * (1 - 0.36)) / 91)
≈ 0.049
To know more about standard deviation,
https://brainly.com/question/30890318
#SPJ11
The data show the number of tablet sales in millions of units for a 5-year period. Find the median. 108.2 17.6 159.8 69.8 222.6 O a. 108.2 Ob. 159.8 O c. 222.6 d. 175.0
The task is to find the median of tablet sales data given in millions of units for a 5-year period. The data values are: 108.2, 17.6, 159.8, 69.8, and 222.6. The options to choose from are: a) 108.2, b) 159.8, c) 222.6, and d) 175.0.
To find the median, we arrange the data values in ascending order and identify the middle value. If there is an odd number of data points, the median is the middle value. If there is an even number of data points, the median is the average of the two middle values.
Arranging the data in ascending order, we have: 17.6, 69.8, 108.2, 159.8, and 222.6.
Since there are five data points, which is an odd number, the median is the middle value, which is 108.2.
Comparing this with the options, we find that the correct answer is a) 108.2.
Therefore, the median of the tablet sales data is 108.2 million units.
Learn more about even number here:
https://brainly.com/question/13665423
#SPJ11
Check whether the system is completely controllable or not? 1747 X 1 10/47 - 2007 10/47 И x= [X[ }x+ [ ] u 1%7 y=[0 ] X
The system is completely controllable matrix.
The controllability matrix is calculated as [B, AB, A2B, A3B].
Let's first calculate the matrix A:
[1747 X 1 10/47-2007 10/47]
A = [1747, 10/47; -2007, 10/47]
The input matrix B is calculated as follows:
[x]B = [0 1/7]
The controllability matrix is calculated as follows:
[B, AB, A2B, A3B] = [B, AB, A²B, A³B]
= [[0, 1/7], [1747, 10/47], [-1747/7, 350/47], [-68581/49, 19250/47]]
After calculating the matrix, we can see that all the rows of the controllability matrix are linearly independent, thus the system is completely controllable.
To know more about controllability matrix visit:
https://brainly.com/question/31360109
#SPJ11
Using the laws of logic to prove logical equivalence.
Use the laws of propositional logic to prove the following:
1.) ¬P→ ¬qq→P
2.) (p→q) ^ (pr) =p → (q^r)
Using the laws of logic to prove logical equivalence, (p→q) ^ (pr) =p → (q^r) is logically equivalent to (p' ∨ q) ^ (p ∨ r) = p' ∨ (q ^ r) or p' ∨ q ∧ r = p' ∨ q ∧ r. Hence, the proof is completed.
We have to use the laws of propositional logic to prove the following:
1.) ¬P→ ¬qq→P (Given)⇒P→ ¬¬q (By definition of double negation)⇒P→q (By negation rule)
Therefore, ¬P→ ¬q is logically equivalent to q→P
2.) (p→q) ^ (pr) =p → (q^r)
To prove the logical equivalence of the given statement, we have to show that both statements imply each other.
Let's start by proving (p→q) ^ (pr) =p → (q^r) using the laws of propositional logic
(p→q) ^ (pr) =p→(q^r) (Given)⇒ (p' ∨ q) ^ (p ∨ r) = p' ∨ (q ^ r) (Implication law)
⇒ (p' ^ p) ∨ (p' ^ r) ∨ (q ^ p) ∨ (q ^ r) = p' ∨ (q ^ r) (Distributive law)
⇒ p' ∨ (q ^ r) ∨ (q ^ p) = p' ∨ (q ^ r) (Commutative law)
⇒ p' ∨ q ∧ (r ∨ p') = p' ∨ q ∧ r (Distributive law)
⇒ p' ∨ q ∧ r = p' ∨ q ∧ r (Commutative law)
Therefore, (p→q) ^ (pr) =p → (q^r) is logically equivalent to (p' ∨ q) ^ (p ∨ r) = p' ∨ (q ^ r) or p' ∨ q ∧ r = p' ∨ q ∧ r. Hence, the proof is completed.
More on logical equivalence: https://brainly.com/question/17363213
#SPJ11
The boxplot below represents annual salaries of attorneys in thousands of dollars in Los Angeles. About what percentage of the attorneys have salaries between $267,000 and $342, 000? OA. 50% OB. 45% OC. 95% OD. 15% O E. None of the Above 1
50 250 300 350 200
Based on the provided boxplot, the percentage of attorneys with salaries between $267,000 and $342,000 is estimated to be approximately 50%.
To determine the percentage of attorneys with salaries between $267,000 and $342,000, we can analyze the boxplot. The boxplot shows the distribution of salaries and includes the median, quartiles, and any outliers.
In this case, the boxplot does not provide specific information about the quartiles or median. However, we can infer that the box represents the interquartile range (IQR), which contains approximately 50% of the data. Since the salaries of interest ($267,000 and $342,000) fall within the box, it can be estimated that around 50% of the attorneys have salaries in that range.
Therefore, the correct answer is option (OA) 50%.
To learn more about boxplot, refer:
brainly.com/question/31641375
#SPJ11