The molar mass of the gas can be calculated using the ideal gas law. Given that the gas occupies a volume of 12.620L at a pressure of 92.5kPa and a temperature of 42.6°C, and knowing the mass of the gas is 19.08g, the molar mass can be determined.
To calculate the molar mass, we need to convert the temperature from Celsius to Kelvin by adding 273.15. So, the temperature becomes 42.6°C + 273.15 = 315.75K. We can then rearrange the ideal gas law equation PV = nRT to solve for the molar mass (M):
M = (mRT) / (PV)
where:
m = mass of the gas (19.08g)
R = ideal gas constant (8.314 J/(mol·K))
T = temperature in Kelvin (315.75K)
P = pressure (92.5kPa)
V = volume (12.620L)
Substituting the values into the equation:
M = (19.08g * 8.314 J/(mol·K) * 315.75K) / (92.5kPa * 12.620L)
After performing the calculations, the molar mass of the gas is found to be approximately 31.43 g/mol.
In summary, the molar mass of the gas is calculated using the ideal gas law equation by plugging in the known values for pressure, volume, temperature, and mass of the gas. By rearranging the equation and performing the necessary calculations, we find that the molar mass of the gas is approximately 31.43 g/mol.
for such more questions on temperature
https://brainly.com/question/4735135
#SPJ8
reacts with acid to form hydrogen physical or chemical property
The reactivity of substances with acids is a chemical property. When a substance reacts with an acid, it can produce hydrogen gas.
The reactivity of substances with acids is an important concept in chemistry. When a substance reacts with an acid, it can undergo a chemical reaction that produces hydrogen gas. This reaction is a chemical property of the substance.
Acids are substances that can donate protons (H+) in a chemical reaction. When a substance reacts with an acid, it can accept the protons from the acid and release hydrogen gas. The reaction can be represented by the general equation:
Substance + Acid → Hydrogen gas + Other products
For example, when metals such as zinc or magnesium react with hydrochloric acid (HCl), they produce hydrogen gas:
Zinc + Hydrochloric acid → Zinc chloride + Hydrogen gas
This reaction is a chemical property because it involves a change in the chemical composition of the substance. It is important to note that not all substances react with acids to produce hydrogen gas, as the reactivity depends on the specific chemical properties of the substance.
Learn more:About reacts with acid here:
https://brainly.com/question/29035899
#SPJ11
When a substance reacts with acid to form hydrogen, it is a chemical property.
A physical or chemical property of a substance is a fundamental feature of it. Whether a substance reacts with acid to form hydrogen is a chemical property. Chemical properties are prperties that describe how a substance changes to create new substances. Chemical properties provide information about the substance's molecular structure and how it interacts with other molecules.
Physical properties, on the other hand, refer to properties that can be measured and observed without causing the substance to change. These properties describe the state of matter, such as density, color, boiling point, and melting point.
The answer to the question, "reacts with acid to form hydrogen" is a chemical property. When a substance reacts with an acid to produce hydrogen, it is undergoing a chemical reaction, which means that the bonds between its molecules are being broken and reformed to form new molecules. This is a chemical property because it describes how the substance interacts with other molecules (in this case, an acid) to create a new substance (hydrogen).
To conclude, when a substance reacts with acid to form hydrogen it is a chemical property.
Learn more about physical and chemical properties
https://brainly.com/question/25313141
#SPJ11
In the reaction below state what is being oxidized and what is being reduced.? 4 Fe + 3 O2 → 2 Fe2O3
In the reaction below, the one being oxidized is Iron (Fe) and the one being reduced is oxygen (O₂).
The oxidation and reduction in the given chemical reaction is:
4 Fe + 3 O₂ → 2 Fe₂O₃
Oxidation can be defined as the loss of electrons by a species. Here, oxygen is being reduced. It gains electrons and its oxidation number decreases from 0 to -2. Reduction can be defined as the gain of electrons by a species. Here, iron is being oxidized. It loses electrons and its oxidation number increases from 0 to +3.
Fe is being oxidized
O₂ is being reduced
Therefore, the correct answer is: Iron (Fe) is being oxidized and oxygen (O₂) is being reduced.
Learn more about Oxidation here: https://brainly.com/question/25886015
#SPJ11
Enter your answer in the provided box. Calculate the wavelength of a
photon of electromagnetic radiation with a frequency of 61.7 MHz. m
Be sure to answer all parts. Calculate the energy of a photon of
electromagnetic radiation with a wavelength of 582.8 nm. * 10 Report
your answer in scientific notation using the provided boxes.
we find the energy to be approximately [tex]3.41 * 10^-19[/tex] Joules is the answer.
To calculate the wavelength of a photon with a frequency of 61.7 MHz, we can use the formula: wavelength = speed of light / frequency. The speed of light is approximately[tex]3 * 10^8[/tex] meters per second.
Converting the frequency to Hz ([tex]1 MHz = 10^6 Hz[/tex]), we have [tex]61.7 * 10^6[/tex]Hz.
Plugging these values into the formula, we get: wavelength =[tex](3 * 10^8 m/s) / (61.7 * 10^6 Hz).[/tex]
Simplifying, we find the wavelength to be approximately 4.862 meters.
Now, to calculate the energy of a photon with a wavelength of 582.8 nm, we can use the equation: energy = Planck's constant × speed of light / wavelength.
Planck's constant is approximately [tex]6.63 * 10^-34[/tex] Joule-seconds.
Converting the wavelength to meters ([tex]1 nm = 10^-9 m[/tex]), we have [tex]582.8 * 10^-9 m.[/tex]
Plugging these values into the equation, we get: energy =[tex](6.63 * 10^-34J·s) * (3 * 10^8 m/s) / (582.8 * 10^-9 m).[/tex]
Simplifying, we find the energy to be approximately [tex]3.41 * 10^-19[/tex] Joules.
know more about wavelength
https://brainly.com/question/31143857
#SPJ11
The average person breathes out 1 kg of CO₂ every day. There are 7.9 billion people on earth. If 43 billion tons of CO₂ are emitted globally every day by all sources, what percentage does human breathing contribute? (5 points)
Human breathing contributes approximately 1.837% of the total global CO₂ emissions.
To calculate the percentage of CO₂ emitted by human breathing out of the total global emissions, we first need to convert the values to the same unit.
1 kg of CO₂ is equivalent to 0.001 metric tons (1 metric ton = 1000 kg).
So, the total CO₂ emissions from human breathing per day can be calculated as:
Number of People * CO₂ emitted per person per day
= 7.9 billion * 0.001 metric tons
= 7.9 million metric tons
To find the percentage contribution, we divide the emissions from human breathing by the total global emissions and multiply by 100:
Percentage Contribution = (Emissions from Human Breathing / Total Global Emissions) * 100
= (7.9 million metric tons / 43 billion metric tons) * 100
= (0.0079 / 43) * 100
= 0.01837 * 100
= 1.837%
Therefore, human breathing contributes approximately 1.837% of the total global CO₂ emissions.
Learn more about CO₂ emissions from the given link!
https://brainly.in/question/824641
#SPJ11
Consider the following reaction: C2H6 + 3O2 -->2CO2 + 3H2O What is being oxidized?
The substance being oxidized in the given reaction is C2H6 (ethane).
In the given reaction, C2H6 (ethane) is reacting with O2 (oxygen) to form CO2 (carbon dioxide) and H2O (water). To determine what is being oxidized, we need to identify the substance that is losing electrons. In this case, the carbon atoms in C2H6 are going from an oxidation state of 0 to +4 in CO2, indicating that they are losing electrons and undergoing oxidation.
Learn more:About oxidation here:
https://brainly.com/question/15578795
#SPJ11
what is the difference between glutamic acid and valine?
The main difference between glutamic acid and valine is that glutamic acid is a non-essential amino acid, while valine is an essential amino acid. Glutamic acid is involved in various physiological processes and is a precursor for the synthesis of the neurotransmitter GABA. Valine, on the other hand, is primarily involved in protein synthesis and is an important component of muscle tissue.
glutamic acid and valine are both amino acids, which are the building blocks of proteins. Glutamic acid is a non-essential amino acid, meaning it can be synthesized by the body, while valine is an essential amino acid, meaning it must be obtained from the diet.
Glutamic acid is involved in various physiological processes, including the synthesis of proteins, neurotransmission, and the metabolism of other amino acids. It is also a precursor for the synthesis of the neurotransmitter gamma-aminobutyric acid (GABA). Valine, on the other hand, is primarily involved in protein synthesis and is an important component of muscle tissue.
In terms of their chemical structures, glutamic acid is an acidic amino acid, while valine is a neutral amino acid. Glutamic acid has a carboxyl group (-COOH) and an amino group (-NH2) attached to a central carbon atom, along with a side chain. Valine, on the other hand, has a methyl group (-CH3) attached to a central carbon atom, along with a side chain.
Overall, the main difference between glutamic acid and valine lies in their chemical structures and their roles in the body.
Learn more:About glutamic acid here:
https://brainly.com/question/29807201
#SPJ11
Valine and glutamic acid are two different amino acids with distinct characteristics and roles.
Glutamic acid is a polar, acidic amino acid, with a side chain containing a carboxyl group, an amino group, and a carboxylic acid functional group. It acts as a neurotransmitter and affects metabolism and protein synthesis. In contrast, valine is a hydrophobic, nonpolar amino acid with a branched-chain alkyl side chain.
It is important for protein synthesis and helps to stabilize proteins. Valine must come from the diet as the body is unable to produce it. Finally, valine is nonpolar and important for protein synthesis while glutamic acid is polar and acidic, which has a function in neurotransmission.
Learn more about Amino acids, here:
https://brainly.com/question/31872499
#SPJ4
Which statement describes the chemical properties of the element Iodine?
1-It's crystals are a metallic a gray
2-It dissolves in alcohol
3-It forms a violet colored gas
4-It reacts with hydrogen to form a gas
The statement that describes the chemical properties of the element Iodine is that "it reacts with hydrogen to form a gas."
Explanation: The chemical properties of Iodine: Iodine is a non-metal element that is located in the halogen family of the periodic table. Iodine is a purple-black, lustrous, solid, and brittle substance that evaporates readily at room temperature to form a violet gas. Iodine's crystal structure is metallic a gray, and it has a density of 4.93 grams per cubic centimeter. Iodine is an essential component of thyroid hormones in humans and animals, which control metabolic processes.
Lack of iodine in the diet may result in goiter and thyroid malfunction. Iodine dissolves in alcohol, as well as in organic solvents such as chloroform, ether, and carbon disulfide, but is insoluble in water. Iodine reacts with hydrogen to produce hydrogen iodide, which is a gas that is colorless and has a strong odor: I2 + H2 → 2HI.
Know more about chemical properties here:
https://brainly.com/question/1728902
#SPJ11
How many grams of water will form if 10.54 g H2 reacts with 95.10 g O2?
g H2O
Approximately 53.55 grams of water will form when 10.54 grams of [tex]H_2[/tex]reacts with 95.10 grams of [tex]O_2[/tex].
To determine the grams of water formed in the reaction between hydrogen ([tex]H_2[/tex]) and oxygen ([tex]O_2[/tex]), we need to calculate the limiting reagent and use the stoichiometry of the balanced chemical equation.
First, let's write the balanced equation for the reaction:
2[tex]H_2[/tex] + [tex]O_2[/tex]→ 2[tex]H_2O[/tex]
The molar mass of [tex]H_2[/tex]is 2.016 g/mol, and the molar mass of [tex]O_2[/tex]is 31.998 g/mol. We can use these values to convert the given masses of [tex]H_2[/tex]and O2 into moles.
Moles of [tex]H_2[/tex]= 10.54 g / 2.016 g/mol ≈ 5.221 mol
Moles of [tex]O_2[/tex]= 95.10 g / 31.998 g/mol ≈ 2.972 mol
According to the balanced equation, the ratio of [tex]H_2[/tex]to [tex]O_2[/tex]is 2:1. Therefore, we can determine that [tex]O_2[/tex]is the limiting reagent since there is less [tex]O_2[/tex]available compared to the stoichiometric ratio.
To find the moles of water formed, we use the stoichiometry of the balanced equation. From the equation, we see that for every 2 moles of , 2 moles of water are formed.
Moles of water formed = (2 mol [tex]H_2O[/tex]/ 2 mol [tex]H_2[/tex]) * 2.972 mol [tex]H_2[/tex]≈ 2.972 mol [tex]H_2O[/tex]
Now, we can calculate the mass of water formed using the molar mass of water, which is 18.015 g/mol.
Mass of water formed = 2.972 mol [tex]H_2O[/tex]* 18.015 g/mol ≈ 53.55 g
For more such questions on water visit:
https://brainly.com/question/19491767
#SPJ8
Which of the following is a/are covalent compounds?
choose all that apply
- CaCI2
- KNO3
- H2S
- LiH
- LiOH
- C2H2 or
The covalent compounds among the options provided are:
H₂S (Hydrogen sulfide)
LiH (Lithium hydride)
C₂H₂ (Acetylene)
Covalent compounds are chemical compounds formed by the sharing of electrons between atoms. In a covalent bond, two or more nonmetal atoms share one or more pairs of electrons in their outermost energy levels. This shared electron pair creates a strong bond that holds the atoms together.
Covalent compounds are formed when atoms share electrons, typically between nonmetals. Calcium chloride (CaCl₂) and potassium nitrate (KNO₃) are ionic compounds, while lithium hydroxide (LiOH) is an ionic compound as well but contains some covalent character due to the polar nature of the hydroxide (OH⁻) ion.
Learn more about Covalent compounds from the link given below.
https://brainly.com/question/11632372
#SPJ4
Copper has the highest conductivity of any metal used in electronics. True False Question 54 (1 point) Express the number .000000as9? using the powers of ten. A) \( 3597 \times 10^{-9} \) B) \( 35.97
Copper has the highest conductivity of any metal used in electronics. The statement is false.
Silver is the element that conducts electricity the best, followed by copper and gold.
The earth's most conductive metal is by far silver. Silver only has one valence electron, which explains this. This one electron can also go about freely and encounter little opposition. As a result, some of the metals with this particular property are silver and copper.
Silver is the metal with the highest thermal and electrical conductivity because of its distinctive crystal structure and lone valence electron.
Since copper is the non-precious metal with the highest conductivity, it has a higher electrical current carrying capacity than other non-precious metals. The strength of the metal rises when tin, magnesium, chromium, iron, or zirconium are added to copper to create alloys, but its conductivity decreases.
To know about electrical conductivity
https://brainly.com/question/13322537
#SPJ4
NEED HELP WITH THIS
A solution of hydrated sodium carbonate was titrated with 1.6800 M nitric acid solution. It was found that 30.00 cm³ of the solution required 28.75 cm³ of the nitric acid for a complete reaction. If the solution was prepared by dissolving 138.14 g of the carbonate to make 600.00 cm³ of solution, determine the number of molecules of water of crystallisation in the hydrated sodium carbonate, and write its correct formula.
To determine the number of molecules of water of crystallization in the hydrated sodium carbonate and write its correct formula, we can use the given information and perform a calculation.
First, let's calculate the number of moles of nitric acid used in the titration:
Volume of nitric acid used = 28.75 cm³
Concentration of nitric acid = 1.6800 M
Number of moles of nitric acid = concentration × volume
= 1.6800 M × 0.02875 L
= 0.04824 moles
Since the reaction between nitric acid and hydrated sodium carbonate is 1:1, the moles of nitric acid used are equal to the moles of hydrated sodium carbonate.
Now, let's calculate the number of moles of hydrated sodium carbonate:
Mass of hydrated sodium carbonate used = 138.14 g
Molar mass of hydrated sodium carbonate = 105.99 g/mol ([tex]Na_2CO_3[/tex])
Volume of solution prepared = 600.00 cm³ = 0.6 L
Number of moles of hydrated sodium carbonate = mass / molar mass
= 138.14 g / 105.99 g/mol
= 1.302 moles
Since the moles of nitric acid and hydrated sodium carbonate are equal, we can determine the number of water molecules of crystallization in the hydrated sodium carbonate.
The molar ratio between hydrated sodium carbonate and water can be found from the balanced chemical equation. Let's assume the formula of hydrated sodium carbonate is [tex]Na_2CO_3[/tex] · x[tex]H_2O.[/tex]
From the balanced equation:
1 mole of[tex]Na_2CO_3[/tex] · x[tex]H_2O.[/tex] reacts with x moles of water.
Therefore, in this case:
1.302 moles of [tex]Na_2CO_3[/tex] · x[tex]H_2O.[/tex] reacts with x moles of water.
Since the number of moles of water is equal to the number of moles of hydrated sodium carbonate, we can conclude that the correct formula for the hydrated sodium carbonate is [tex]Na_2CO_3[/tex] ·[tex]1.302 H_2O.[/tex]
So, the number of water molecules of crystallization in the hydrated sodium carbonate is 1.302.
Know more about crystallization here:
https://brainly.com/question/30670227
#SPJ8
11.19 Let x[n] = 1 + en and y[n] = 1 + 2n be periodic signals of fun- damental period wo = 27/N, find the Fourier series of their product z[n] = x[n]y[n] by (a) calculating the product x[n]y[n] (b) using the periodic convolution of length N = 3 of the Fourier series coefficients of x[n] and y[n]. Is the periodic convolution equal to x[n]y[n] when N = 3? Explain.
The periodic convolution is equal to x[n]y[n] when N = 3, the answer depends on the specific values of x[n] and y[n].
To find the Fourier series of the product z[n] = x[n]y[n], we can follow these steps:
(a) Calculate the product x[n]y[n]:
z[n] = x[n]y[n] = (1 + en)(1 + 2n)
Expanding the product:
z[n] = 1 + 2n + en + 2en^2
(b) Use the periodic convolution of length N = 3 of the Fourier series coefficients of x[n] and y[n]:
To find the Fourier series coefficients of z[n], we convolve the Fourier series coefficients of x[n] and y[n] over a period of length N = 3. Let's denote the Fourier series coefficients as X[k] and Y[k].
The periodic convolution of length N is defined as:
Z[k] = (1/N) * sum(X[l] * Y[k-l], l=0 to N-1)
For N = 3, we have:
Z[k] = (1/3) * sum(X[l] * Y[k-l], l=0 to 2)
Now we need to calculate the individual Fourier series coefficients of x[n] and y[n] in order to perform the convolution.
Given that the fundamental period wo = 27/N, the fundamental frequency is w0 = 2π/wo = 2πN/27.
For x[n]:
x[n] = 1 + en
The Fourier series coefficients are given by:
X[k] = (1/N) * sum(x[n] * exp(-jkw0n), n=0 to N-1)
Substituting the values:
X[k] = (1/3) * sum((1 + en) * exp(-jkw0n), n=0 to 2)
Similarly, for y[n]:
y[n] = 1 + 2n
The Fourier series coefficients are given by:
Y[k] = (1/N) * sum(y[n] * exp(-jkw0n), n=0 to N-1)
Substituting the values:
Y[k] = (1/3) * sum ((1 + 2n) * exp(-jkw0n), n=0 to 2)
Now we can evaluate the convolution expression to obtain the Fourier series coefficients of z[n].
Regarding whether the periodic convolution is equal to x[n]y[n] when N = 3, the answer depends on the specific values of x[n] and y[n].
The periodic convolution is a mathematical operation that combines the Fourier series coefficients of two signals to obtain the Fourier series coefficients of their product. It may or may not be equal to the product of the original signals, depending on their specific properties and the chosen value of N.
To determine if the periodic convolution is equal to x[n]y[n] when N = 3, we need to perform the calculations and compare the results.
Learn more about periodic convolution from the given link!
https://brainly.in/question/9541
#SPJ11
all of the following are terms that describe chemical services that can change tightly curled hair to curly or wavy hair except:
All of the following are terms that describe chemical services that can change tightly curled hair to curly or wavy hair except d. double-process perm.
The chemical treatments that are used to change tightly curled hair to curly or wavy hair are called chemical services. There are different types of chemical services, such as curl reforming, relaxer retouch, and double-process perm, but not all of these treatments are used to change tightly curled hair to curly or wavy hair. The term that does not describe a chemical service that can change tightly curled hair to curly or wavy hair is double-process perm.
A double-process perm is a chemical treatment that is used to create a more defined, tight curl pattern in hair that is already curly or wavy. This process involves two separate chemical treatments, the first of which is designed to soften the hair and break down the existing curl pattern, while the second treatment is designed to re-form the hair into a new, tighter curl pattern. So the correct answer is d. double-process perm.
To know more about hair visit:
https://brainly.com/question/30581856
#SPJ11
how many orbitals are contained in the third principal level
The n = 3 shell consists of nine orbitals, with one orbital in the 3s subshell and three orbitals in the 3p subshell.
The orbital's size is defined by the primary amount number( n). For illustration, orbitals with n = 2 are larger than those with n = 1. Electrons are drawn to the snippet's nexus because their electrical charges are in opposition to one another.
In order to excite an electron from an orbital where it's close to the nexus( n = 1) to an orbital where it's distant from the nexus( n = 2), energy must be absorbed. therefore, the energy of an orbital is laterally described by the primary amount number.
The orbital's form is described by the angular amount number( l). The stylish descriptions for the forms of orbitals are globular( l = 0), polar( l = 1), or crossroad( l = 2).
To know more about orbitals:
https://brainly.com/question/32355752
#SPJ4
For an alloy that consists of 67 at% Zn and 33 at% Cu, what are the concentrations of (a) Zn and (b) Cu in weight percent? The atomic weights of Zn and Cu are 65.39 and 63.54 g/mol, respectively.
(a) CZn = %
(b) CCu = %
The weight percentages of Zn and Cu in the given alloy are 47.67% and 52.33%
Given: an alloy that consists of 67 at% Zn and 33 at% Cu
Atomic weights: Zn = 65.39 g/mol, Cu = 63.54 g/mol
Converting atomic percentage to weight percentage for an alloy
To calculate weight percentage from atomic percentage, the atomic weights of the elements are needed.
The total number of atoms present in the alloy will be considered as 100 atoms.
Therefore, percentage of each metal is calculated as follows;
Percentage of Zn = 67/100 * 65.39/((67/100 * 65.39) + (33/100 * 63.54))
Percentage of Cu = 33/100 * 63.54/((67/100 * 65.39) + (33/100 * 63.54))
Concentration of Zn in weight percent isCZn = Percentage of Zn = 47.67%
Concentration of Cu in weight percent isCCu = Percentage of Cu = 52.33%
Therefore, the weight percentages of Zn and Cu in the given alloy are 47.67% and 52.33% respectively.
Learn more about weight from the given link
https://brainly.in/question/27839304
#SPJ11
Scientists estimate that a single chlorine molecule in the CFC structure can destroy as many as ___________ ozone molecules.
100,000
10,000
1,000
100
Scientists estimate that a single chlorine molecule in the CFC structure can destroy as many as 100,000 ozone molecules. So The correct answer is 100,000.
CFCs are fully halogenated paraffin hydrocarbons that contain only carbon, chlorine, and fluorine atoms. These organic compounds were discovered by scientists in 1928 and were initially used as a refrigerant, solvents, and aerosol propellants.
CFCs are known to be the primary cause of the depletion of the ozone layer. When these chemicals are exposed to ultraviolet light, they break down and release chlorine atoms. The chlorine atoms then react with ozone molecules, resulting in the destruction of the ozone layer.
Ozone is critical to the Earth's atmosphere because it helps protect it from the sun's harmful ultraviolet radiation. Ozone depletion exposes the planet to harmful UV radiation, which has been linked to skin cancer, cataracts, and other health problems.
To know more about chlorine molecule please refer to:
https://brainly.com/question/20485611
#SPJ11
The cathodic protection of Cu(s) can be provided, if Cu(s) is
galvanically connected to.
A) Zn
B) Ag
C) Au
Answer is A, but why??
The cathodic protection of Cu(s) can be provided if it is connected galvanically to Zn.
The metal with the more reduction potential will act as the anode and undergo oxidation, while the metal with the more positive standard reduction potential will act as the cathode and undergo reduction.
As Cu has a greater reduction potential than Zn, it has a greater capacity to reduce than that of Zn. So by galvanically connecting to zn, we can say that the cathodic protection of Cu can be obtained.
To learn more about cathodic protection :
brainly.com/question/32659293
which compound when dissolved in water is an arrhenius acid
The compound when dissolved in water which is an Arrhenius acid is (2) HCL
The Arrhenius acid-base hypothesis describes how certain substances behave when they are dissolved in water for example HCL. An Arrhenius acid is a compound that, when dissolved in water, releases hydrogen ions (H⁺). The H⁺ ions released by HCl contribute to the acidic properties of the solution.
This is in accordance with the Arrhenius definition of acids, which states that acids increase the concentration of H⁺ ions in an aqueous solution. Therefore, when HCl is dissolved in water, it acts as an Arrhenius acid by increasing the concentration of H⁺ ions, resulting in the characteristic acidic properties of the solution.
Read more about HCL on:
https://brainly.com/question/3229358
#SPJ4
Complete Question:
Which compound when dissolved in water is an arrhenius acid ?
(1) CH3OH (3) NaCl
(2) HCl
(3) NaCl
(4) NaOH
Which contributed more to sea level rise over the period
2002-2017: glacier melt in Greenland or in Antarctica?
Glacier melt in Greenland contributed more to sea level rise from 2002 to 2017 compared to Antarctica. The melting of the Greenland ice sheet resulted in a greater net loss of ice, leading to a larger contribution to the rise in sea levels.
During the period from 2002 to 2017, both glacier melt in Greenland and Antarctica contributed to sea level rise, but the extent of their contributions differed.
1. Greenland:
Glacier melt in Greenland contributed more to sea level rise than Antarctica during this period. Greenland is home to the second-largest ice sheet in the world, and it experienced significant melting over these years. Warmer temperatures led to increased melting, causing more water to enter the oceans. This contributed to the rise in sea levels.
2. Antarctica:
Although glacier melt in Antarctica also contributed to sea level rise, it was not as significant as the melt in Greenland. Antarctica has the largest ice sheet in the world and contains a massive amount of ice. While some parts of Antarctica experienced melting, other regions actually gained ice due to increased snowfall. These gains partially offset the sea level rise caused by melting glaciers in other parts of the continent.
Learn more about Glacier here :-
https://brainly.com/question/33486406
#SPJ11
Are Particles of a Pure substance are identical?
Particles of a pure substance can be considered identical under certain conditions, but this is not always the case.
In the context of a pure substance, such as an element or a compound, the term "identical" refers to the fact that all particles of that substance have the same chemical identity. For example, all particles of oxygen gas (O2) in a sample are identical to one another in terms of their chemical composition.
However, when considering the physical properties of particles, they may not be completely identical. Particles can have variations in size, mass, and energy, leading to some differences among them. These differences can arise due to factors such as temperature, pressure, and isotopic composition.
For instance, in a gas sample, the individual gas particles may have slightly different velocities and kinetic energies. In a solid, particles can have different crystal lattice positions, leading to variations in their arrangements. In addition, isotopes of an element have different numbers of neutrons, which can result in slight variations in their masses.
Nevertheless, despite these differences in physical properties, the particles of a pure substance still possess the same chemical identity. They have the same types and numbers of atoms or molecules, and they participate in chemical reactions in the same way.
For more such questions on pure substance visit;
https://brainly.com/question/18634105
#SPJ8
the results of the milgram study are particularly shocking because
The results of the Milgram Study are particularly shocking because approximately 65% of participants were willing to administer the highest level of electric shocks, labeled as 450 volts, to another person despite their apparent distress.
The Milgram Study was a psychological experiment conducted by Stanley Milgram in the 1960s. It aimed to investigate the extent to which individuals would obey authority figures, even if it meant causing harm to others. The study involved participants who were told they were taking part in a study on memory and learning. However, the real focus was on their willingness to administer electric shocks to another person.
What made the results of the Milgram Study particularly shocking was the high percentage of participants who were willing to administer increasingly severe shocks, even when the person being shocked appeared to be in extreme pain or distress. Approximately 65% of participants were willing to administer the highest level of electric shocks, labeled as 450 volts, despite the visible suffering of the other person.
This finding raised ethical concerns and challenged the belief that individuals would resist engaging in harmful behavior towards others. It demonstrated the power of authority and the potential for ordinary people to act in ways that they might find morally objectionable under certain circumstances.
Learn more:About Milgram Study here:
https://brainly.com/question/32815863
#SPJ11
The results of the Milgram study are particularly shocking because they demonstrated the willingness of ordinary individuals to inflict severe harm on others under the influence of authority.
The results of the Milgram study are particularly shocking because they revealed the extent to which ordinary individuals could be influenced to engage in acts of extreme cruelty and obedience.
Conducted by psychologist Stanley Milgram in the 1960s, the study aimed to investigate how people respond to authority figures and their willingness to obey commands, even if they conflicted with their own moral principles.
In the Milgram study, participants were instructed to administer increasingly strong electric shocks to another person (who was actually an actor and not receiving real shocks) whenever they answered a question incorrectly.
The shocks were labeled with voltages ranging from mild to extremely dangerous levels. Despite the potential harm being inflicted, the participants were instructed to continue administering the shocks by an authoritative figure, the experimenter.
The shocking aspect of the study was that a significant majority of participants, around 65%, continued to administer shocks all the way up to the highest voltage, even when the person being shocked expressed extreme pain and pleaded to stop.
These results demonstrated that ordinary individuals, when placed in a situation where they felt compelled to obey an authority figure, were capable of inflicting severe harm on others.
The study challenged the widely held belief that only a small fraction of people would willingly harm others under orders, such as those involved in Nazi war crimes during World War II. Instead, it revealed the potential for obedience to authority to override individual moral judgments, highlighting the disturbing power of social influence and the human tendency to comply with perceived authority figures.
The Milgram study raised profound ethical concerns about the limits of obedience and the potential for individuals to act against their own values when placed in certain social contexts. It emphasized the need for ethical guidelines and safeguards to protect individuals from participating in harmful actions under the guise of obedience to authority.
To know more about Milgram study refer here
https://brainly.com/question/28547725#
#SPJ11
nitrogen dioxide reacts with _____ to form nitric acid.
Nitrogen dioxide (NO2) reacts with water (H2O) to form nitric acid (HNO3). The reaction occurs through a series of steps involving the dissolution of NO2 in water and subsequent chemical reactions.
Initially, when nitrogen dioxide is dissolved in water, it forms nitric acid by undergoing the following reaction:
NO2 + H2O → HNO3
The nitrogen dioxide molecule reacts with a water molecule to produce a molecule of nitric acid. In this reaction, the oxygen atom from the water molecule combines with the nitrogen atom from the nitrogen dioxide molecule to form the nitric acid molecule.
The reaction is facilitated by the presence of water, which acts as a solvent and allows the dissolution and subsequent chemical transformation of nitrogen dioxide into nitric acid.
This reaction is an important step in the formation of nitric acid, which has various industrial applications, including the production of fertilizers, explosives, and certain chemicals.
Learn more about nitric acid from the given link!
https://brainly.com/question/15877686
#SPJ11
Two moles of helium are initially at a temperature of 26.0 ∘C∘C and occupy a volume of 3.40×10−2 m3m3 . The helium first expands at constant pressure until its volume has doubled. Then it expands adiabatically until the temperature returns to its initial value. Assume that the helium can be treated as an ideal gas.
The final conditions of the helium gas are:
Temperature (T3) = 299.15 KVolume (V2) = 6.80 × 10^(-2) m^3To solve this problem, we can use the ideal gas law and the equations for adiabatic expansion.
Number of moles of helium (n) = 2
Initial temperature (T1) = 26.0 °C = 26.0 + 273.15 K = 299.15 K
Initial volume (V1) = 3.40 × 10^(-2) m^3
Expansion at constant pressure until volume doubles
During this step, the pressure remains constant, and the volume doubles from V1 to 2V1.
Using the ideal gas law:
PV = nRT
Since pressure (P) and number of moles (n) are constant, we can rewrite the equation as:
V/T = constant
Applying this equation to the expansion process:
(V1/T1) = (2V1/T2)
Solving for T2:
T2 = 2T1 = 2 * 299.15 K = 598.30 K
Adiabatic expansion until temperature returns to initial value
During this step, the expansion is adiabatic, meaning there is no heat exchange with the surroundings. We can use the equation for adiabatic expansion:
T1 * (V1)^(γ-1) = T2 * (V2)^(γ-1)
where γ is the heat capacity ratio (approximately 5/3 for helium).
We know that T1 = 299.15 K, T2 = 598.30 K, V1 = 2V1, and we need to find V2.
Simplifying the equation:
(2V1)^(γ-1) = (V2)^(γ-1)
Taking the γ-1 power of both sides:
2V1 = V2
Therefore, the final volume (V2) is equal to 2 times the initial volume (V1).
Final volume (V2) = 2 * V1 = 2 * 3.40 × 10^(-2) m^3 = 6.80 × 10^(-2) m^3
The final temperature (T3) is equal to the initial temperature (T1) since the process is adiabatic and the temperature returns to its initial value.
T3 = T1 = 299.15 K
Your question is incomplete but most probably your full question was
Two moles of helium are initially at a temperature of 26.0 ∘C∘C and occupy a volume of 3.40×10−2 m3m3 . The helium first expands at constant pressure until its volume has doubled. Then it expands adiabatically until the temperature returns to its initial value. Assume that the helium can be treated as an ideal gas. what is the final conditions of the helium gas?
Learn more about ideal gas equation, here:
brainly.com/question/28837405
#SPJ11
Explain the physical significance of the different quantum
numbers and used in the vector model of the atom.
The quantum numbers in the vector model of the atom have physical significance as they describe specific properties of electrons, such as their energy, orbital shape, orientation, and spin.
In the vector model of the atom, quantum numbers play a crucial role in describing the behavior and characteristics of electrons within an atom. These numbers provide a way to identify and differentiate between various electron states. There are four quantum numbers: the principal quantum number (n), the azimuthal quantum number (l), the magnetic quantum number (ml), and the spin quantum number (ms).
The principal quantum number (n) represents the energy level or shell in which an electron resides. It determines the average distance of an electron from the nucleus and relates to the overall size of the electron cloud. As the principal quantum number increases, the energy level and distance from the nucleus also increase.
The azimuthal quantum number (l) defines the shape of the electron's orbital or subshell. It can have values ranging from 0 to (n-1) and determines the type of orbital (s, p, d, or f) an electron occupies. For example, when l = 0, it corresponds to an s orbital, while l = 1 corresponds to a p orbital.
The magnetic quantum number (ml) describes the orientation of an orbital in three-dimensional space. It can have values ranging from -l to +l and specifies the number of possible orientations an orbital can have within a particular subshell. Each orbital within a subshell is represented by a different ml value.
The spin quantum number (ms) refers to the intrinsic spin of an electron. It describes the fundamental property of an electron, which can either be spin-up (+1/2) or spin-down (-1/2). The spin quantum number helps account for the magnetic properties and behavior of electrons.
Overall, these quantum numbers provide a comprehensive description of the electron's energy, orbital shape, orientation, and spin within an atom, allowing scientists to understand and predict the behavior of electrons within different atomic systems.
Learn more about Quantum numbers
brainly.com/question/14288557
#SPJ11
which element has the highest ionization energy in period 3
After considering the given the data we conclude that the ionization energy generally increases from left to right across a period. Therefore, the element with the highest ionization energy in period 3 would be located on the right side of the periodic table.
We can also see from the search results that helium has the highest ionization energy of all the elements, while sodium has the lowest ionization energy in period 3. Therefore, we can conclude that the element with the highest ionization energy in period 3 is located to the right of sodium.
Based on the periodic table, we can see that the elements in period 3 are:
Sodium (Na)
Magnesium (Mg)
Aluminum (Al)
Silicon (Si)
Phosphorus (P)
Sulfur (S)
Chlorine (Cl)
Argon (Ar)
Therefore, the element with the highest ionization energy in period 3 is most likely Argon (Ar), which is located on the far right side of the period.
In summary, the element with the highest ionization energy in period 3 is most likely Argon (Ar).
To learn more about periodic table
https://brainly.com/question/25916838
#SPJ4
Can someone answer this problem Thank you!
19 A Translationare What is the molar mass of an ideal gas with me = 342 and an average translational kinetic energy at 6.2 x 10 !? O 0.25 g/ mol 0.089 g/mol O 0.031 g/mol O 0.13 g/mol O 0.064 g/mol S
Tthe molar mass of the ideal gas is approximately 0.089 g/mol.
The average translational kinetic energy of an ideal gas can be related to its molar mass using the equation:
3/2 * k * T = (1/2) * M * v^2
where k is the Boltzmann constant, T is the temperature, M is the molar mass, and v is the root mean square velocity of the gas particles.
Given that the average translational kinetic energy is 6.2 x 10^(-19) J and the molar mass is to be determined, we can rearrange the equation and solve for M:
M = (3 * k * T) / (v^2)
Substituting the given values of k, T, and v, we get:
M = (3 * 1.38 x 10^(-23) J/K * T) / ((6.2 x 10^(-19) J) / (m/s))^2
M = 0.089 g/mol
Therefore, the molar mass of the ideal gas is approximately 0.089 g/mol.
You can learn more about ideal gas at
https://brainly.com/question/27870704
#SPJ11
22.In general which airborne material is not likely to be affected by the filters or indoor air handling equipment? a.particles b.pollen c. soot d.carbon monoxide
The correct option is: d. carbon monoxide is the airborne material that is least likely to be affected by filters or indoor air handling equipment.
Carbon monoxide (CO) is not likely to be affected by filters or indoor air handling equipment. Unlike particles, pollen, and soot, which are physical substances suspended in the air, carbon monoxide is a gas. Filters and air handling equipment are designed to capture and remove solid particles from the air, but they are not effective in removing gases.
Gases, including carbon monoxide, are molecular substances that are smaller and lighter than particles. Filters typically have a mesh or fiber structure that can physically trap solid particles as they pass through, but they are not designed to capture or remove gases. Similarly, air handling equipment, such as ventilation systems or air purifiers, may help circulate and filter the air, but they are not specifically designed to eliminate gases like carbon monoxide.
Carbon monoxide is a toxic gas that is produced by the incomplete combustion of carbon-based fuels, such as gasoline, natural gas, or wood. It can be released from sources such as vehicle exhaust, faulty heating systems, or improperly vented appliances. To address the issue of carbon monoxide, it is necessary to take preventive measures, such as proper ventilation, regular maintenance of fuel-burning equipment, and the installation of carbon monoxide detectors in indoor spaces.
Therefore, the correct answer is: d.carbon monoxide
Learn more about Carbon monoxide
brainly.com/question/30225838?
#SPJ11
which of the following liquids has the greatest viscocity?
The liquid with the greatest viscosity flows the slowest.
Viscosity is a property of fluids that measures their resistance to flow. It is determined by the internal friction between the molecules of the fluid. liquids with high viscosity flow slowly, while liquids with low viscosity flow quickly.
Among the given options, the liquid with the greatest viscosity would be the one that flows the slowest. Unfortunately, the question does not provide a list of liquids to choose from. However, some common liquids and their viscosities can be used as examples to understand the concept.
For instance, honey has a high viscosity, which means it flows very slowly. On the other hand, water has a low viscosity and flows quickly. Motor oil falls in between with a medium viscosity.
Without the specific options mentioned in the question, it is not possible to determine which liquid has the greatest viscosity. However, it is important to note that liquids with higher molecular structures or thicker consistencies tend to have higher viscosities.
Learn more:About liquids here:
https://brainly.com/question/20922015
#SPJ11
Sodium carbonate is a(n) ______ substance because it takes on water molecules, to which it becomes chemically bonded.
Sodium carbonate is a hygroscopic substance because it takes on water molecules, to which it becomes chemically bonded.
Hygroscopic substances have a strong affinity for water and readily absorb moisture from the surrounding environment. When sodium carbonate comes into contact with moisture, it undergoes a reaction called hydration, where water molecules chemically bond with the compound. This process forms hydrated sodium carbonate, commonly known as soda ash or washing soda. The water molecules become an integral part of the crystal structure, leading to changes in the physical and chemical properties of sodium carbonate. The hygroscopic nature of sodium carbonate makes it useful in various applications such as drying agents, pH regulation, and as an ingredient in detergents.
Learn more about Sodium carbonate here:
https://brainly.com/question/31422792
#SPJ11
while heating test tubes in a bunsen burner, move test tubes
It is strongly advised that you use a test tube holder when heating test tubes in a Bunsen burner to avoid any accidents.
While heating test tubes in a Bunsen burner, move test tubes with test-tube holder to avoid any risks of burns.
A test-tube holder is an apparatus designed to hold a test tube while it is being heated or for transferring hot test tubes. This is done to protect oneself from the high temperature of the test tube that can cause burns.
Most test tubes are made of glass and glass is an excellent insulator of heat. This implies that a test tube takes some time before it can get hot to the touch, even when it's boiling.
Nonetheless, it is important to use test-tube holders while heating test tubes in a Bunsen burner to avoid any accidents.Why must test tubes be moved using a holder?
Using a test tube holder to move test tubes from a Bunsen burner is important because test tubes can get very hot, and attempting to move them with bare hands can lead to burns or other injuries.
Test tubes should not be held with tongs while heating because tongs can break the glass and shatter it, resulting in burns and injuries.
As a result, it is strongly advised that you use a test tube holder when heating test tubes in a Bunsen burner to avoid any accidents.
Learn more about bunsen burner with the given link,
https://brainly.com/question/1255361
#SPJ11