Given the function below f(z)=3√(−80z^2+144)
Find the equation of the tangent line to the graph of the function at x=1 Answer in mx + b form
L (x) = __________
Use the tangent line to approximate f(1.1).
L(1.1)= ___________
Compute the actual value of f(1.1). What is the error between the function value and the linear approximation? Answer as a positive value only.

error≈ ____________________ (approximate value to atleast five decimal places

Answers

Answer 1

The given function is f(z) = 3√(−80z² + 144). We have to find the equation of the tangent line to the graph of the function at x = 1 and use the tangent line to approximate f(1.1).

1. Equation of tangent line at x = 1:

To find the equation of the tangent line to the graph of the function at x = 1, we need to find the slope of the tangent line and a point on the tangent line.

slope of tangent line = f'(x) = d/dx[3√(−80x² + 144)]=-720x/√(-80x²+144) at x = 1,

slope of tangent line = -720(1)/√(-80(1)²+144) = -45

point on tangent line = (1, f(1)) = (1, 6)

Equation of tangent line is given by

y - y1 = m(x - x1)y - 6 = -45(x - 1)y - 6 = -45x + 45y = -45x + 51L(x) = -45x + 51

is the equation of the tangent line to the graph of the function at x = 1.

2. Approximation of f(1.1) using tangent line:L(1.1) = -45(1.1) + 51 = 6.5

Thus, L(1.1) ≈ 6.53. Actual value of f(1.1):

f(1.1) = 3√(-80(1.1)² + 144) = 5.51139

Error between the function value and the linear approximation:

Error = |f(1.1) - L(1.1)|≈ 0.01139 (approximate value to at least five decimal places)

Therefore, the error between the function value and the linear approximation is 0.01139 (approximate value to at least five decimal places).

To know more about tangent line visit:

https://brainly.com/question/23416900

#SPJ11

Answer 2

Given the function below$f(z)=3\sqrt{-80z^2+144}$

The given function f(z) is a function of z and not x. But the question asks us to find the tangent lineto the graph of the function at x = 1. So, we must assume that z = x and rewrite the given function in terms of x.

To do that, we replace z with x and simplify $f(x) = 3\[tex]\sqrt[n]{x}[/tex]{-80x^2+144}$The slope of the tangent line is given by the derivative of the function $f(x)$.

Differentiating $f(x)$ we get;$$f'(x) = \frac{d}{dx} [3\sqrt{-80x^2+144}]$$$$f'(x) = \frac{3}{2} (-80x^2+144)^{-1/2}(-160x) = -240x(-80x^2+144)^{-1/2}$$At $x = 1$,

we get$$f'(1) = -240(1)[(-80(1)^2+144)^{-1/2}]$$$$f'(1) = -\frac{240}{2\sqrt{5}} = -\frac{120}{\sqrt{5}}$$

The equation of the tangent line to the graph of the function at x = 1 is given by; $L(x) = f(1) + f'(1)(x - 1)$In mx + b form, we get$$L(x) = \frac{3\sqrt{5}}{5} - \frac{120}{\sqrt{5}}(x - 1)$$$$L(x) = -\frac{120x}{\sqrt{5}} + \frac{123\sqrt{5}}{5}$$

Use the tangent line to approximate $f(1.1)$.

[tex]\sqrt[n]{x}[/tex] To do that, we substitute x = 1.1 in the equation of the tangent line.$L(1.1) = -\frac{120(1.1)}{\sqrt{5}} + \frac{123\sqrt{5}}{5}$$$$L(1.1) = \frac{3\sqrt{5}}{5} - \frac{120}{\sqrt{5}}(0.1) \approx 1.1054$The actual value of $f(1.1)$ is obtained by substituting x = 1.1 in the expression for f(x).$$f(1.1) = 3\sqrt{-80(1.1)^2+144} \approx 1.1303$$The error between the function value and the linear approximation is given by the difference;$$error \approx |f(1.1) - L(1.1)| = |1.1303 - 1.1054| \approx 0.0249$$

Therefore, $error \approx 0.0249$ (approximate value to at least five decimal places).

To know more about tangent, visit:

https://brainly.com/question/4470346

#SPJ11


Related Questions

If f(x)=3x2−5x+7, find f′(2) Use this to find the equation of the tangent line to the parabola y=3x2−5x+7 at the point (2,9). The equation of this tangent line can be written in the form y=mx+b where m is: and where b is:

Answers

Tangent line is y = mx + b where m is 7 and b is -5. Hence, m = 7.

Given function is f(x) = 3x² - 5x + 7.

We need to find f'(2) and use it to find the equation of the tangent line to the parabola

y = 3x² - 5x + 7

at the point (2, 9).

We know that

f'(x) = d/dx(3x² - 5x + 7) = 6x - 5.

Therefore, f'(2) = 6(2) - 5 = 7.

Now, we need to find the equation of the tangent line at the point (2, 9). The slope of the tangent line is f'(2) = 7.

Using the point-slope form of a line, we get:y -

y1 = m(x - x1)

⇒ y - 9 = 7(x - 2)

⇒ y - 9 = 7x - 14

⇒ y = 7x - 5

Therefore, the equation of the tangent line is y = mx + b where m is 7 and b is -5. Hence, m = 7.

To know more about equation visit :

https://brainly.com/question/29657992

#SPJ11

which statistic accurately reflects the vulnerability of prenatal development?

Answers

The statistic that accurately reflects the vulnerability of prenatal development is the incidence of birth defects or congenital anomalies.

Birth defects are structural or functional abnormalities present at birth that can affect various organs or body systems. They can occur during prenatal development due to genetic factors, environmental exposures, or a combination of both. The incidence of birth defects provides an indication of the vulnerability of prenatal development to external influences.

Monitoring and tracking the occurrence of birth defects helps identify potential risk factors, evaluate the impact of interventions or preventive measures, and guide public health efforts. Epidemiological studies and surveillance systems are in place to collect data on birth defects, allowing researchers and healthcare professionals to better understand the causes, patterns, and trends of these conditions.

By examining the prevalence or frequency of birth defects within a population, scientists and healthcare providers can gain insights into the vulnerability of prenatal development and identify areas for targeted interventions, education, and support to minimize the risk and improve the outcomes for prenatal health.

To know more about prenatal development, refer here:

https://brainly.com/question/32104587

#SPJ4

"For the given function f(x) and values of L, c, and ϵ > 0 find the largest open interval about c on which the inequality If(x)-LI < ϵ holds. Then determine the largest value for ∂ >0 such that
0 f(x) = 4x+9, L=41, c=8, ϵ=0.24
The largest open interval about c on which the inequality If(x)-LI<ϵ holds is _________ (Use interval notation.)
The largest value of ∂>0 such that 0 (Simplify your answer.)
"

Answers

The largest open interval about c on which the inequality

If(x)-LI<ϵ holds is (7.985, 8.015).

The largest value of ∂>0 such that 0 < |x - c| < ∂ implies |f(x) - L| < ϵ is  δ = 0.24.

Given function f(x) and values of L, c, and ϵ > 0 find the largest open interval about c on which the inequality

If(x)-LI < ϵ holds.

The largest open interval about c on which the inequality

If(x)-LI<ϵ

holds is given as follows:

We are given the function

f(x) = 4x + 9

and

L = 41,

c = 8,

ϵ = 0.24.

Now, we need to find the largest open interval about c on which the inequality

If(x)-LI<ϵ holds

For this, we need to find the interval [a,b] such that

|f(x) - L| < ϵ

whenever

a < x < b.

The value of L is given as 41.

Thus, we have

|f(x) - L| < ϵ|4x + 9 - 41| < 0.24|4x - 32| < 0.24|4(x - 8)| < 0.24|4|.|x - 8| < 0.06

We know that |x - 8| < δ if

|f(x) - L| < ϵ

For the given ϵ > 0,

let δ = 0.015.

Thus, the largest open interval about c on which the inequality

If(x)-LI<ϵ holds is (7.985, 8.015).

The largest value of ∂>0 such that 0 < |x - c| < ∂ implies |f(x) - L| < ϵ is given as follows:

|4x - 32| < 0.24δ|4| < 0.24δ4x - 32 < 0.24δ4(x - 8) < 0.24δ

Let δ > 0 be given.

Thus, we have

|f(x) - L| < ϵ

whenever

0 < |x - 8| < δ/6.

Hence, the largest value of ∂>0 such that 0 < |x - c| < ∂ implies

|f(x) - L| < ϵ is  

δ = 6(0.04)

= 0.24.

Answer: The largest open interval about c on which the inequality

If(x)-LI<ϵ holds is (7.985, 8.015).

The largest value of ∂>0 such that 0 < |x - c| < ∂ implies |f(x) - L| < ϵ is  δ = 0.24.

To know more about open interval visit:

https://brainly.com/question/30191971

#SPJ11

Instructions. Prove that each of the below decision problems is NP-Complete. You may use only the ollowing NP-Complete problems in the polynomial-time reductions: 3-SAT, Vertex Cover, Hamiltonian Circ

Answers

Proving the NP-completeness of decision problems requires demonstrating two aspects: (1) showing that the problem belongs to the NP class, and (2) establishing a polynomial-time reduction from an already known NP-complete problem to the problem in question.

1. 3-SAT: To prove the NP-completeness of a problem, we start by showing that it belongs to the NP class. 3-SAT is a well-known NP-complete problem, which means any problem that can be reduced to 3-SAT is also in NP. This provides a starting point for our reductions.

2. Vertex Cover: We need to demonstrate a polynomial-time reduction from Vertex Cover to the problem under consideration. By constructing a reduction that transforms instances of Vertex Cover into instances of the problem, we can establish the NP-completeness of the problem. This reduction shows that if we have a polynomial-time algorithm for solving the problem, we can also solve Vertex Cover in polynomial time.

3. Hamiltonian Circuit: Similarly, we need to perform a polynomial-time reduction from Hamiltonian Circuit to the problem we are analyzing. By constructing such a reduction, we establish the NP-completeness of the problem. This reduction demonstrates that if we have a polynomial-time algorithm for solving the problem, we can also solve Hamiltonian Circuit in polynomial time.

By proving polynomial-time reductions from 3-SAT, Vertex Cover, and Hamiltonian Circuit to the given problem, we establish that the problem is NP-complete. This means that the problem is at least as hard as all other NP problems, and it is unlikely to have a polynomial-time solution.

to learn more about polynomial click here:

brainly.com/question/33191364

#SPJ11

We consider a system defined by its impulse response: \( h(t)=2 u(t-2) \) Find the output of the system for an input: \( x(t)=e^{-t} u(t-1) \) Select one: \( y(t)=-2\left(e^{-(t-2)}-1\right) u(t-3) \)

Answers

The output of the system can be expressed as \(y(t) = -2\left(e^{-(t-2)}-1\right)u(t-3)\). This equation captures how the system transforms the input signal over time, accounting for the time delay and scaling factors associated with the impulse response and input function.

The output of the system, given the impulse response \(h(t) = 2u(t-2)\) and input \(x(t) = e^{-t}u(t-1)\), can be described by \(y(t) = -2\left(e^{-(t-2)}-1\right)u(t-3)\). This equation represents the system's response to the given input signal, taking into account the time-shifted and scaled characteristics of both the impulse response and the input. The term \(-2\) signifies the scaling factor applied to the output signal. The exponential term \(e^{-(t-2)}\) corresponds to the time-shifted version of the input signal, which accounts for the delay introduced by the impulse response. The subtraction of \(1\) ensures that the output starts at zero when the input is zero, representing the causal nature of the system. Finally, the term \(u(t-3)\) represents the unit step function, which enforces the output to be zero for \(t < 3\) and allows the system's response to occur only after the time delay of \(3\) units. In conclusion, the output of the system for the given input can be described by the equation [tex]\(y(t) = -2\left(e^{-(t-2)}-1\right)u(t-3)\)[/tex], which accounts for the time-shifted and scaled characteristics of the impulse response and input function, as well as the causal nature of the system.

Learn more about system here: brainly.com/question/21620502

#SPJ11

On a coordinate plane, a parabola opens upward. It has a vertex at (0, 0), a focus at (0, 1.5) and a directrix at y = negative 1.5. Which equation represents the parabola shown on the graph? y2 = 1.5x x2 = 1.5y y2 = 6x x2 = 6y

Answers

The equation that represents the parabola shown on the graph is x² = 6y.

To determine the equation of the parabola with the given information, we can use the standard form of a parabola equation: (x-h)² = 4p(y-k), where (h, k) represents the vertex, and p represents the distance from the vertex to the focus (and also from the vertex to the directrix).

In this case, the vertex is given as (0, 0), and the focus is at (0, 1.5). Since the vertex is at the origin (0, 0), we can directly substitute these values into the equation:

(x-0)² = 4p(y-0)

x² = 4py

We still need to determine the value of p, which is the distance between the vertex and the focus (and the vertex and the directrix). In this case, the directrix is y = -1.5, which means the distance from the vertex (0, 0) to the directrix is 1.5 units. Therefore, p = 1.5.

Substituting the value of p into the equation, we get:

x² = 4(1.5)y

x² = 6y

For more questions on parabola

https://brainly.com/question/25651698

#SPJ8

Find the general indefinite integral ∫(2+1/z) dx

o 2x+In(x)+C
o 2z+ In√2x+C
o none of these
o 2 – 2x^3/2 + C
o 2 – 2/x^2 + C
o 2x + 1/(2x^3) + C

Answers

Given that the indefinite integral is ∫(2+1/z) dx.We have to solve the integral and find the solution to it. It can be written as ∫(2+1/z) dx= 2x + ln z + C. Hence, the correct option is (A) 2x+In(x)+C.

We know that the formula to solve indefinite integrals is ∫(f(x)+g(x))dx = ∫f(x)dx + ∫g(x)dx.Here, we can see that there are two terms, 2 and 1/z, hence we can split the integral into two parts.  So, the integral can be written as:∫(2+1/z) dx = ∫2 dx + ∫1/z dxNow, integrating each part, we get:∫2 dx = 2x∫1/z dx = ln|z| + CSo, the solution of the integral is:∫(2+1/z) dx= 2x + ln z + C

The general indefinite integral of ∫(2+1/z) dx is 2x + ln z + C. Hence, the correct option is (A) 2x+In(x)+C.

To know more about  integral Visit

https://brainly.com/question/31433890

#SPJ11

Use the Inscribed Angle Theorem to find missing angle measures. 1. Find the arc measure of \( \widehat{C E} \). Your Turn 1. Find the value of \( x \). 2. The superior oblique and inferior oblique are

Answers

To find arc measure of CE using Inscribed Angle Theorem, we need to know measure of the corresponding inscribed angle.The measure of angle is not provided, so we cannot determine arc measure of CE.

Your Turn 1: The question does not provide any information about the value of  x, so it is not possible to determine its value without further context or equations.

The question is incomplete regarding the superior oblique and inferior oblique. It does not specify what needs to be determined or what information is given about these objects. Please provide additional details or complete the question so that I can assist you further.

To learn more about Inscribed Angle Theorem click here : brainly.com/question/14839173

#SPJ11

Problem 1 Error and Noise \[ (5 \times 3=15 \text { points }) \] Consider the fingerprint verification example the lecture note. After learning from data using logistic regression, you produce the fin

Answers

In the fingerprint verification example discussed in the lecture notes, logistic regression is used for learning from data. However, after the learning process, the produced fingerprint classifier may still have errors and noise.

In the fingerprint verification example, logistic regression is employed to learn from the available data and develop a fingerprint classifier. Logistic regression is a commonly used algorithm for binary classification tasks. However, it is important to note that even after the learning process, the produced classifier may not be perfect.

The presence of errors and noise in the produced fingerprint classifier is expected due to several reasons. First, the data used for training the classifier may contain inaccuracies or inconsistencies. This can occur if the training data itself has labeling errors or if the features extracted from the fingerprints are not completely representative of the underlying patterns.

Additionally, the classifier may not capture all the intricacies and variations present in real-world fingerprints, leading to some misclassifications.

Moreover, external factors such as variations in fingerprint acquisition devices, differences in environmental conditions, or changes in an individual's fingerprint over time can introduce noise into the verification process. These factors can affect the quality and reliability of the captured fingerprint images, making it challenging for the classifier to make accurate predictions.

To mitigate errors and noise in fingerprint verification, various techniques can be employed. These include data preprocessing steps like noise reduction, feature selection, or data augmentation to improve the quality of the training data.

Additionally, ensemble methods, such as combining multiple classifiers or using more advanced machine learning algorithms, can be utilized to enhance the overall accuracy and robustness of the fingerprint verification system. Regular updating and maintenance of the system can also help adapt to changes in fingerprint patterns and external factors over time.

To learn more about logistic regression visit:

brainly.com/question/32505018

#SPJ11

Find the equation of the plane that contains the intersecting lines L1(t) = ⟨1, 4, −1⟩ + t⟨1, 1, 1⟩ and L2(t) = ⟨0, 3, −2⟩ + t⟨1, −3, −1⟩.

Answers

The equation of the plane containing the intersecting lines L1 and L2 is 2x - y + z = 3.

To find the equation of the plane containing the intersecting lines, we first need to determine the direction vectors of the lines. For L1, the direction vector is ⟨1, 1, 1⟩, and for L2, the direction vector is ⟨1, -3, -1⟩.

Next, we find a vector that is perpendicular to both direction vectors. This can be done by taking the cross product of the direction vectors. The cross product of ⟨1, 1, 1⟩ and ⟨1, -3, -1⟩ gives us the normal vector of the plane, which is ⟨2, -1, -4⟩.

Now that we have the normal vector, we can use the coordinates of a point on one of the lines, such as ⟨1, 4, -1⟩ from L1, to find the equation of the plane. The equation of a plane can be written as ax + by + cz = d, where (a, b, c) is the normal vector and (x, y, z) represents any point on the plane. Plugging in the values, we get 2x - y + z = 3 as the equation of the plane containing the intersecting lines L1 and L2.

Learn more about plane here:

https://brainly.com/question/32163454

#SPJ11

A and B please
A) In this problem, use the inverse Fourier transform to show that the shape of the pulse in the time domain is \[ p(t)=\frac{A \operatorname{sinc}\left(2 \pi R_{b} t\right)}{1-4 R_{b}^{2} t^{2}} \]

Answers

Using the inverse Fourier transform, we can demonstrate that the pulse shape in the time domain is given by \( p(t) = \frac{A \operatorname{sinc}(2 \pi R_b t)}{1-4 R_b^2 t^2} \).

The inverse Fourier transform allows us to obtain the time-domain representation of a signal from its frequency-domain representation. In this case, we are given the pulse shape in the frequency domain and need to derive its corresponding expression in the time domain.

The expression \( p(t) = \frac{A \operatorname{sinc}(2 \pi R_b t)}{1-4 R_b^2 t^2} \) represents the pulse shape in the time domain. Here, \( A \) represents the amplitude of the pulse, \( R_b \) is the pulse's bandwidth, and \( \operatorname{sinc}(x) \) is the sinc function.

To prove that this is the correct shape of the pulse in the time domain, we can apply the inverse Fourier transform to the pulse's frequency-domain representation. By performing the necessary mathematical operations, including integrating over the appropriate frequency range and considering the properties of the sinc function, we can arrive at the given expression for \( p(t) \).

The resulting time-domain pulse shape accounts for the characteristics of the pulse's frequency spectrum and can be used to analyze and manipulate the pulse in the time domain.

By utilizing the inverse Fourier transform, we can confirm that the shape of the pulse in the time domain is accurately represented by \( p(t) = \frac{A \operatorname{sinc}(2 \pi R_b t)}{1-4 R_b^2 t^2} \).

Learn more about Fourier transform: brainly.com/question/28984681

#SPJ11

Find the critical numbers and the open intervals on which the given function is increasing or decreasing. Be sure to label the intervals as increasing or decreasing. f(x)=x 3√(x−4​).

Answers

The critical numbers of the given function f(x) = x(3√(x−4)) is {0} and the open intervals on which the function is increasing and decreasing are:(-∞,0) on which f(x) is decreasing and(0,∞) on which f(x) is increasing.

The function f(x) = x(3√(x−4)) can be written as `f(x) = x * (x-4)^1/3`.

Using the product rule of differentiation,

we can find the derivative of the given function f(x) = x(3√(x−4)) as follows:`

f(x) = x  (x-4) 1/3 f'(x) = [d/dx (x)]  (x-4)1/3 + x [d/dx (x-4)^1/3]f (x) = (x-4)1/3 + (x/3)(1/3)*(x-4)^(-2/3)f(x) = (x-4)^1/3 + (x/9)(x-4)(-2/3)

We need to find the critical numbers and the intervals of increasing and decreasing.

These can be done by finding the sign of the first derivative f'(x).i.e., f (x) > 0  gives f(x) is increasing.

f'(x) < 0 gives f(x) is decreasing.

We know that (x-4)1/3 > 0 and x > 0 for all x.

Thus the sign of the function f (x) is given by the sign of (x/9)(x-4)(-2/3).To find the critical numbers we can solve the equation f(x) = 0.(x-4)1/3 + (x/9)(x-4)(-2/3) = 0Let (x-4)1/3 = t.

Then, t + (x/9)t(-2) = 0

Multiplying throughout by 9t2,

we get:

9t^3 + x = 0Since x > 0,

there is only one real root for the above equation given by t = (-x/9)(1/3).

Thus, x = 9t3 = -9(x3/729)(1/3).This implies, (x3/729)(1/3) = -x/9.

Simplifying we get x2 + 81 = 0 which is not possible.

Therefore,

the function has no critical numbers.

Now,

the sign of f(x) is given by the sign of (x/9)(x-4)(-2/3).

Note that (x-4)(-2/3) is always positive and x/9 is positive if x > 0 and negative if x < 0.

Hence the function is decreasing in (-∞,0) and increasing in (0,∞).

Therefore the critical numbers of the given function f(x) = x(3√(x−4)) is {0} and the open intervals on which the function is increasing and decreasing are:(-∞,0) on which f(x) is decreasing and(0,∞) on which f(x) is increasing.

To know more about differentiation visit:

https://brainly.com/question/31383100

#SPJ11

A data set contains three unique values. Which of the following must be true?
mean = median
median = midrange
median = midrange
none of these

Answers

If a data set contains three unique values, none of the given statements must be true.

The mean is the average of a data set, calculated by summing all values and dividing by the number of values. In a data set with three unique values, the mean will not necessarily be equal to the median, which is the middle value when the data set is arranged in ascending or descending order.

The median is the middle value in a data set when arranged in order. With three unique values, the median will not necessarily be equal to the midrange, which is the average of the minimum and maximum values in the data set.

Therefore, none of the statements "mean = median," "median = midrange," or "median = midrange" must hold true for a data set with three unique values.

Learn more about mean here: brainly.com/question/14532771

#SPJ11

f(x)=(x+2x5)4,a=−1 limx→−1​f(x)=limx→−1​(x+2x5)4 =(limx→−1​())4 by the power law =(limx→−1​(x)+limx→−1​())4 by the sum law =(limx→−1​(x)+(limx→−1​(x5))4 by the multiple constant law =(−1+2()5)4 by the direct substitution property = Find f(−1) f(−1)= Thus, by the definition of continulty, f is continuous at a=−1. The limit represents the derivative of some function f at some number a. State such an f and a. (f(x),a)=​h→0lim​h(1+h)6−1​(​ Use the Intermedlate Value Theorem to show that there is a root of the given equation in the specifled interval).

Answers

By the Intermediate Value Theorem, since f(-1) < 0 and f(0) > 0, there exists a root of the given equation in the interval (-1, 0).

Given, f(x) = (x + 2x5)4, a = −1 limx→−1​f(x) = limx→−1​(x + 2x5)4 = (limx→−1​())4 

By the power law = (limx→−1​(x) + limx→−1​())4 By the sum law = (limx→−1​(x) + (limx→−1​(x5))4

 By the multiple constant law = (−1 + 2(-1)5)4 

By the direct substitution property = 1f(−1) = 1

Thus, by the definition of continuity, f is continuous at a = −1.

The limit represents the derivative of some function f at some number a.

State such an f and a. (f(x),a) = ​h→0lim​h(1 + h)6−1

​(​Solution:Given f(x) = (x + 2x5)4

Differentiating both sides w.r.t x, we get;

f′(x) = d/dx((x + 2x5)4)

Using chain rule;

f′(x) = 4(x + 2x5)3(1 + 10x4)

Differentiating w.r.t x, we get;

f′′(x) = d/dx [4(x + 2x5)3(1 + 10x4)]

f′′(x) = 12(x + 2x5)2(1 + 10x4) + 120x3(x + 2x5)3

Differentiating w.r.t x, we get;

f′′′(x) = d/dx[12(x + 2x5)2(1 + 10x4) + 120x3(x + 2x5)3]

f′′′(x) = 240(x + 2x5)(1 + 10x4) + 1080x2(x + 2x5)2 + 360(x + 2x5)3

Using the value of a = −1,f(-1) = (-1 + 2(-1)5)4 = 1

To know more about chain rule, visit:

https://brainly.in/question/48504877

#SPJ11

Write the general form of the equation of a tangent line to the curve f(x)=1/3x​ at a point (2,1/6). Use function notation, where the slope is given by f′(2) and the function value is given by f(2). y−f(2)=f′(2)⋅(x−2) Please try again.

Answers

Therefore, the general form of the equation of a tangent line to the curve f(x) = 1/3x​ at a point (2,1/6) is given by 2x - 6y + 3 = 0.

The given function is:

f(x)=1/3x and the point is (2,1/6).

To write the general form of the equation of a tangent line to the curve f(x) = 1/3x​ at the point (2,1/6),

we will use the following formula of the point-slope form of the equation of the tangent line:

y - f(2) = f'(2)(x - 2)

Where,f(2) is the function value at x = 2

f'(2) is the slope of the tangent line

Substitute f(2) and f'(2) in the above formula,

we have:

y - 1/6 = (1/3)(x - 2)

Multiplying both sides by 6 to eliminate the fraction, we get:

6y - 1 = 2(x - 2)

Simplifying further, we have:2x - 6y + 3 = 0

This is the general form of the equation of the tangent line.

Therefore, the general form of the equation of a tangent line to the curve f(x) = 1/3x​ at a point (2,1/6) is given by

2x - 6y + 3 = 0.

To know more about tangent line, visit:

https://brainly.in/question/46771883

#SPJ11

3. A toroid of inner radius R1 and outer radius R2 is such that any point P, in the toroidal axis is at a distance r from its geometric center, C. Let N be the total number of turns.
a. What is the magnetic field at point P.
b. Suppose the toroid is abruptly cut long the blue line at a distance (as measured along the toroidal axis) of a quarter of the circumference away from P. By doing so, the toroid has been transformed into a solenoid. For this purpose, assume that the toroid is thin enough that the values of the inner and outer radius, as well as r, are close though not necessarily equal.
"

Answers

The magnetic field at point P in the toroid is given by (μ₀ * N * I) / (2πr), and when the toroid is transformed into a solenoid, the magnetic field inside the solenoid remains the same, given by (μ₀ * N * I) / L, where L is the length of the solenoid corresponding to a quarter of the toroid's circumference.

a. The magnetic field at point P, located on the toroidal axis, can be calculated using Ampere's Law. For a toroid, the magnetic field inside the toroid is given by the equation:

B = (μ₀ * N * I) / (2π * r)

where B is the magnetic field, μ₀ is the permeability of free space, N is the total number of turns, I is the current flowing through the toroid, and r is the distance from the toroidal axis to point P.

b. When the toroid is cut along the blue line, a quarter of the circumference away from point P, it transforms into a solenoid. The solenoid consists of a long coil of wire with a uniform current flowing through it. The magnetic field inside a solenoid is given by the equation:

B = (μ₀ * N * I) / L

where B is the magnetic field, μ₀ is the permeability of free space, N is the total number of turns, I is the current flowing through the solenoid, and L is the length of the solenoid.

a. To calculate the magnetic field at point P in the toroid, we can use Ampere's Law. Ampere's Law states that the line integral of the magnetic field around a closed loop is equal to the product of the permeability of free space (μ₀) and the total current passing through the loop.

We consider a circular loop inside the toroid with radius r and apply Ampere's Law to this loop. The magnetic field inside the toroid is assumed to be uniform, and the current passing through the loop is the total current in the toroid, given by I = N * I₀, where I₀ is the current in each turn of the toroid.

By applying Ampere's Law, we have:

∮ B ⋅ dl = B * 2πr = μ₀ * N * I

Solving for B, we get:

B = (μ₀ * N * I) / (2πr)

b. When the toroid is cut along the blue line and transformed into a solenoid, the magnetic field inside the solenoid remains the same. The transformation does not affect the magnetic field within the coil, as long as the total number of turns (N) and the current (I) remain unchanged. Therefore, the magnetic field inside the solenoid can be calculated using the same formula as for the toroid:

B = (μ₀ * N * I) / L

where L is the length of the solenoid, which corresponds to the quarter circumference of the toroid.

To know more about magnetic field, visit

https://brainly.com/question/14411049

#SPJ11

use the shell method to find the volume of the solid generated by revolving the plane region about the given line.
y=4x−x2y=0 about the line x=5

Answers

To find the volume of the solid generated by revolving the region between the curves y = 4x - x^2 and y = 0 about the line x = 5, we can use the shell method. The resulting volume is given by V = 2π ∫[a,b] (x - 5)(4x - x^2) dx.

The shell method is a technique used to find the volume of a solid generated by rotating a region between two curves about a vertical or horizontal axis. In this case, we are revolving the region between the curves y = 4x - x^2 and y = 0 about the vertical line x = 5.

To apply the shell method, we consider an infinitesimally thin vertical strip of thickness dx at a distance x from the line x = 5. The height of the strip is given by the difference in the y-coordinates of the curves, which is (4x - x^2) - 0 = 4x - x^2. The circumference of the shell is given by 2π times the distance of x from the axis of rotation, which is (x - 5).

The volume of the shell is then given by the product of the circumference and the height, which is 2π(x - 5)(4x - x^2). To find the total volume, we integrate this expression over the interval [a,b] that covers the region of interest.

Therefore, the volume V is calculated as V = 2π ∫[a,b] (x - 5)(4x - x^2) dx, where a and b are the x-coordinates of the points of intersection between the curves y = 4x - x^2 and y = 0.

Learn more about volume here:

https://brainly.com/question/28058531

#SPJ11

For f(x, y)=e^v sin(25x), evaluate f_y at the point (π, 0).

Answers

The value of f_y at the point (π, 0) is 0.

To find the partial derivative f_y of the function f(x, y) = e^v sin(25x) with respect to y, we need to differentiate the function with respect to y while treating x as a constant. Let's break down the steps:

f(x, y) = e^v sin(25x)

To find f_y, we differentiate the function with respect to y, treating x as a constant:

f_y = d/dy (e^v sin(25x))

Since x is treated as a constant, the derivative of sin(25x) with respect to y is 0, as sin(25x) does not depend on y.

Therefore, f_y = 0.

To evaluate f_y at the point (π, 0), we substitute the given values into the expression for f_y:

f_y(π, 0) = 0

Hence, the value of f_y at the point (π, 0) is 0.

Learn more about point here:

brainly.com/question/7819843

#SPJ11

Let f(x) = e^x^2 – 1/x

Use the Maclaurin series of the exponential function and power series operations to find the Maclaurin series of f(x).

Answers

The Maclaurin series of f(x) is,(x² – 1)/x + (x⁴ – 1)/2!x + (x⁶ – 1)/3!x + ....... + (xn – 1)/n!x + .........

Given the function,Let f(x) = e^x^2 – 1/xFirstly,

to find the Maclaurin series of the given function f(x), let us take the Maclaurin series of the exponential function.

The Maclaurin series of exponential function is given as,

e^x = 1 + x + x²/2! + x³/3! + ....... + xn/n! + ......... (1)

Substitute x² instead of x, we get,e^x² = 1 + x² + x⁴/2! + x⁶/3! + ....... + xn/n! + ......... (2)We know that, f(x) = e^x^2 – 1/x

Now substitute equation (2) in the given function f(x),f(x) = (1 + x² + x⁴/2! + x⁶/3! + ....... + xn/n! + .........) – 1/x

So, f(x) = (1 – 1/x) + (x² – 1/x) + (x⁴/2! – 1/x) + (x⁶/3! – 1/x) + ....... + (xn/n! – 1/x) + .........

Therefore, the Maclaurin series of f(x) is,

f(x) = (1 – 1/x) + x²(1 – 1/x) + x⁴/2!(1 – 1/x) + x⁶/3!(1 – 1/x) + ....... + xn/n!(1 – 1/x) + ..........

This can be simplified as, f(x) = (x² – 1)/x + (x⁴ – 1)/2!x + (x⁶ – 1)/3!x + ....... + (xn – 1)/n!x + .......

To know more about  Maclaurin series   visit:-

https://brainly.com/question/32769570

#SPJ11

The Maclaurin series of f(x) is f(x) = 1 + 2x + (2x²)/2! + (4x³)/3! + (8x⁴)/4! + (16x⁵)/5! - 1/x

Given the function is f(x) = eˣ²– 1/x

The Maclaurin series for the exponential function is

eˣ= 1 + x + x²/2! + x³/3! + x⁴/4! + x⁵/5! + ... (This is an infinite series).

So, f(x) can be written as

f(x) = (1 + x + x²/2! + x³/3! + x⁴/4! + x⁵/5! + ...)² - 1/x

Using power series operations, we can expand the above expression as

f(x) = (1 + 2x + (2x²)/2! + (4x³)/3! + (8x⁴)/4! + (16x⁵)/5!) - 1/x

Therefore, the Maclaurin series of f(x) is f(x) = 1 + 2x + (2x²)/2! + (4x³)/3! + (8x⁴)/4! + (16x⁵)/5! - 1/x

Learn more about the Maclaurin series here:

brainly.com/question/32769570.

#SPJ4








What is the eigen value of function e corresponding to the operator d/dx O a. 2 O b. 1 O C. e² O d. 0

Answers

The eigen value of the function e corresponding to the operator d/dx is 0.

The eigen value of a function corresponds to the operator when the function remains unchanged except for a scalar multiple. In this case, we are considering the function e (which represents the exponential function) and the operator d/dx (which represents the derivative with respect to x). To find the eigen value, we need to determine the value of λ for which the equation d/dx(e) = λe holds.

Differentiating the exponential function [tex]e^x[/tex] with respect to x gives us the same function [tex]e^x[/tex], as the exponential function is its own derivative. Therefore, the equation becomes [tex]e^x[/tex] = λe.

To solve for λ, we can divide both sides of the equation by e, resulting in [tex]e^(^x^-^1^)[/tex] = λ. In order for this equation to hold for all values of x, λ must be equal to 1. This means that the eigen value of the function e corresponding to the operator d/dx is 1.

Therefore, none of the options provided (2, 1, e², 0) accurately represent the eigen value for the given function and operator.

Learn more about eigen value

brainly.com/question/32669609

#SPJ11

What is the explicit form of this recurrence relation?
\( T(n)=T(n-1)+\log _{2} n ; \quad T(0)=0 \). Hint \( n ! \) is approximately \( \sqrt{2 \pi n} n^{n} e^{-n} \)

Answers

It is a function that describes a certain aspect of a sequence based on the relationship between the elements that make up that sequence.

The explicit form of the recurrence relation is:T(n)

= T(n-1) + log2 n; T(0)

= 0Let us find a formula to compute T(n) for any n value. In general, the recurrence relation can be written as: \[T(n)

=T(n-1)+\log _{2} n ; \quad T(0)

=0\]We are given that \[n ! \approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\]Let us determine the value of T(n) in terms of the formula of n! by using mathematical induction:Base case: For n=0, T(0) = 0 which satisfies the initial condition.Inductive step:Assume that T(k) has the formula given by the recurrence

To know more about determine visit:

https://brainly.com/question/29898039

#SPJ11

f(x)=a⁵+cos⁵x, find f′(x)

Answers

We need to find the derivative of the function f(x) = [tex]a^5[/tex] + [tex]cos^5[/tex](x). The derivative of f(x) is f'(x) = 5[tex]a^4[/tex] - 5[tex]cos^4[/tex](x) * sin(x). We can use the power rule and chain rule.

To find the derivative of f(x), we use the power rule and the chain rule. The power rule states that if we have a function g(x) =[tex]x^n[/tex], then the derivative of g(x) with respect to x is given by g'(x) = n*[tex]x^(n-1)[/tex].

Applying the power rule to the term [tex]a^5[/tex], we have:

([tex]a^5[/tex])' = 5[tex]a^(5-1)[/tex] = 5[tex]a^4[/tex]

To differentiate the term [tex]cos^5[/tex](x), we use the chain rule. Let u = cos(x), so the derivative is:

([tex]cos^5[/tex](x))' = 5([tex]u^5[/tex]-1) * (u')

Differentiating u = cos(x), we get:

u' = -sin(x)

Substituting these derivatives back into the expression for f'(x), we have:

f'(x) = 5[tex]a^4[/tex]+ 5[tex]cos^4[/tex](x) * (-sin(x))

Simplifying further, we have:

f'(x) = 5[tex]a^4[/tex] - 5[tex]cos^4[/tex](x) * sin(x)

Therefore, the derivative of f(x) is f'(x) = 5[tex]a^4[/tex] - 5[tex]cos^4[/tex](x) * sin(x).

Learn more about chain rule here:

https://brainly.com/question/30764359

#SPJ11

what is the value of x in radical2x-15=9-x

Answers

Answer:

x=8

Step-by-step explanation:

2x-15=9-x

collect like terms

2x+x=9+15

3x=24

divide both sides by 3

x=24/3

therefore x=8

Consider the following regression equation: Py^=0.45+0.035xp+0.09+0.3, where Pay is the payment of athletes in millions of dollars, exper is the number of years of experience, Star is a dummy equal to 1 if he/she is a star player, and Gender is a dummy which equal to 1 if the individual is male.

A. If I decrease experience by 1 year, pay increases by 0.035 dollars.

B. If I increase experience by 1 year, pay increases by 35,000 dollars.

C. If I increase experience by 1 year, pay increases by 3.5 million dollars.

D. If I increase experience by 1 year, pay increases by 0.035 dollars.

E. If I increase experience by 1 year, pay decreases by 0.035 dollars.

Answers

The correct answer is A. If I decrease experience by 1 year, pay increases by 0.035 dollars. In the regression equation provided, the coefficient of the variable "xp" (representing experience) is 0.035.

This means that for every 1 unit decrease in experience (in this case, 1 year), the pay of athletes increases by 0.035 million dollars or 35,000 dollars. This is the interpretation of the coefficient in the equation. Therefore, option A accurately describes the relationship between experience and pay according to the given regression equation.

It is important to note that the coefficient is positive (0.035), indicating a positive relationship between experience and pay. However, the coefficient represents the change in pay associated with a 1-unit change in experience. Since experience is typically measured in years, the interpretation would be "for every 1-year decrease in experience, pay increases by 0.035 million dollars or 35,000 dollars." The unit of measurement (dollars) depends on how the variable "Pay" is defined in the equation, which is mentioned as "in millions of dollars" in this case.

Learn more about coefficients here: brainly.com/question/1594145

#SPJ11

The easiest way to visit each digit in an integer is to visit
them from least- to most- significant (right-to-left), using
modulus and division.
E.g., (working in decimal) 327 % 10 is 7. We record 7,

Answers

One of the easiest ways to visit each digit in an integer is to visit them from least to most significant (right-to-left), using modulus and division. In decimal, 327 % 10 is 7.

We record 7, then reduce 327 to 32 via 327/10. We then repeat the process on 32, which gives us 2, and then we repeat it on 3, which gives us 3.  Therefore, the digits in 327 in that order are 7, 2, and 3.

This method, which takes advantage of the place-value structure of the number system, may be used to reverse an integer or extract specific digits.

To know more about integer visit:

https://brainly.com/question/490943

#SPJ11

price: house price, 1000s
lotsize: size of lot in square feet
sqrft: size of house in square feet
bdrms: number of bedrooms
(a) Write down the definition of homoskedasticity and heteroskedasticity in the context of
the regression equation given in (1).
(b)Do you think that the errors term may be homoskedastic or heteroskedastic? Briefly
explain your reasoning.

Answers

a. In mathematical terms, Var(ε) = f(x), where f(x) represents a function of the independent variables. b. the spread or dispersion of the residuals in the regression equation will not be constant across all levels of the predictors, indicating the presence of heteroskedasticity.

(a) In the context of a regression equation, homoskedasticity and heteroskedasticity refer to the characteristics of the error terms or residuals in the model. The error term represents the difference between the observed dependent variable and the predicted value from the regression equation.

Homoskedasticity, also known as homogeneity of variance, implies that the error terms have constant variance across all levels of the independent variables. In other words, the spread or dispersion of the residuals is the same regardless of the values of the predictors. Mathematically, it can be represented as Var(ε) = σ², where Var(ε) denotes the variance of the error term ε, and σ² represents a constant value.

On the other hand, heteroskedasticity means that the error terms have non-constant variance. This implies that the spread or dispersion of the residuals varies across different levels of the independent variables. In mathematical terms, Var(ε) = f(x), where f(x) represents a function of the independent variables.

(b) Based on the given information about house price, lot size, square footage, and number of bedrooms, it is reasonable to suspect that the error term may exhibit heteroskedasticity. This is because various factors can influence the variability of house prices, such as the size of the lot, square footage, and the number of bedrooms.

For instance, larger houses or lots may tend to have higher price fluctuations due to differences in demand, location, or amenities. Similarly, the number of bedrooms may impact the price variability as houses with more bedrooms often cater to different buyer segments, leading to varying preferences and potential price differences.

Therefore, it is likely that the spread or dispersion of the residuals in the regression equation will not be constant across all levels of the predictors, indicating the presence of heteroskedasticity.

In summary, considering the nature of the variables involved in the regression equation (house price, lot size, square footage, and number of bedrooms), it is reasonable to expect that the error term will exhibit heteroskedasticity. The factors influencing house prices are diverse and can lead to variations in price volatility, suggesting that the spread or dispersion of the residuals will likely differ across different levels of the independent variables.

Learn more about dispersion here

https://brainly.com/question/5001250

#SPJ11

A normal distribution has a standard deviation of 30 and a mean of 20. Find the probability that x ≥ 80.
68.59%
15.53%
43 %
2.28 %

Answers

The probability that x ≥ 80 is approximately 0.0228 or 2.28%.

Therefore, the correct option is D.

A normal distribution has a standard deviation of 30 and a mean of 20.

We need to find the probability that x ≥ 80.

We know that the Z score formula is given by the formulae,

\[z=\frac{x-\mu}{\sigma}\]

Where, x is the variable, μ is the population mean, and σ is the standard deviation.  

Let's apply this formula here, we get\[z=\frac{80-20}{30}=2\]

Now we need to find the probability that z is greater than or equal to 2.

We can find the probability using the z-score table.

The z-score table tells the probability that a standard normal random variable Z, will have a value less than or equal to z for different values of z.

The probability corresponding to a Z-score of 2 is approximately 0.9772.

This means that 0.9772 is the probability of a normal distribution having a z-score less than or equal to 2.

Therefore, the probability of a normal distribution having a z-score greater than or equal to 2 is 1 - 0.9772 = 0.0228.

Thus, the probability that x ≥ 80 is approximately 0.0228 or 2.28%.

Therefore, the correct option is 2.28%.

To know more about probability, visit:

https://brainly.com/question/30034780

#SPJ11

The area enclosed by the polar equation r=4+sin(θ) for 0≤θ≤2π, is

Answers

The area enclosed by the polar equation r = 4 + sin(θ) for 0 ≤ θ ≤ 2π is 8π square units.

To find the area enclosed by the polar equation, we can use the formula for the area of a polar region: A = (1/2) ∫[a, b] r(θ)^2 dθ, where r(θ) is the polar function and [a, b] is the interval of θ values.

In this case, the polar equation is r = 4 + sin(θ), and we are integrating over the interval 0 ≤ θ ≤ 2π. Plugging in the expression for r(θ) into the area formula, we get:

A = (1/2) ∫[0, 2π] (4 + sin(θ))^2 dθ

Expanding the square and simplifying the integral, we have:

A = (1/2) ∫[0, 2π] (16 + 8sin(θ) + sin^2(θ)) dθ

Using trigonometric identities and integrating term by term, we can find the definite integral. The result is:

A = 8π

Therefore, the area enclosed by the polar equation r = 4 + sin(θ) for 0 ≤ θ ≤ 2π is 8π square units.

Learn more about  area here:

https://brainly.com/question/1631786

#SPJ11

Consider the following described by the transfer function:

H(s)= s+2/ s²+28+2

Transform the above transfer function into the state-space model Draw a state diagram of this state-space model Verify the controllability and observability of this state-space model - Apply a PID control for this model and explain how?

Answers

The transfer function H(s) = (s+2)/(s² + 28s + 2) can be transformed into a state-space model. Controllability and observability of the state-space model can be verified, and a PID control can be applied to the model.

To transform the given transfer function into a state-space model, we first express it in the general form:

H(s) = [tex]C(sI - A)^(^-^1^)B + D[/tex]

where A, B, C, and D are matrices representing the state, input, output, and direct transmission matrices, respectively. By equating the coefficients of the transfer function to the corresponding matrices, we can determine the state-space representation.

Next, to draw the state diagram, we represent the system dynamics using state variables and their interconnections. Each state variable represents a dynamic element or energy storage in the system, and the interconnections indicate how these variables interact. The state diagram helps visualize the flow of information and dynamics within the system.

To verify the controllability and observability of the state-space model, we examine the controllability and observability matrices. Controllability determines if it is possible to steer the system to any desired state using suitable inputs, while observability determines if all states can be estimated from the available outputs. These matrices can be computed using the system matrices and checked for full rank.

Finally, to apply a PID control to the state-space model, we need to design the control gains for the proportional (P), integral (I), and derivative (D) components. The PID control algorithm computes the control input based on the current error, integral of error, and derivative of error. The gains can be adjusted to achieve desired system performance, such as stability, settling time, and steady-state error.

In summary, by transforming the given transfer function into a state-space model, we can analyze the system dynamics, verify its controllability and observability, and apply a PID control algorithm for control purposes.

Learn more about transfer function

brainly.com/question/33300425

#SPJ11

1. Consider the plant described by 0 i(t) › = [ 2 ] ² (0+ [ 1 ] (0) + [ 2 ] 4 (0) (t) u(t) d(t) 0 y(t) = [n² - 2π 2-π] x(t) + u(t) ㅠ G(s) = = s² + (2π)s s² - π² - 2π (s+2 S-T (S-T) (S+T) = s+2 S + T

Answers

Main Answer:

The given equation describes a plant with an input signal i(t) and an output signal y(t). The transfer function G(s) represents the dynamics of the plant in the Laplace domain.

Explanation:

The given equation can be interpreted as a mathematical representation of a dynamic system, commonly referred to as a plant, which is characterized by an input signal i(t) and an output signal y(t). The plant's behavior is governed by a transfer function G(s) that relates the Laplace transform of the input signal to the Laplace transform of the output signal.

In the first equation, i(t) › = [ 2 ] ² (0+ [ 1 ] (0) + [ 2 ] 4 (0) (t) u(t) d(t), the input signal is represented by i(t). The term [ 2 ] ² (0) indicates the initial condition of the input signal at t=0. The term [ 1 ] (0) represents the initial condition of the first derivative of the input signal at t=0. Similarly, [ 2 ] 4 (0) (t) represents the initial condition of the second derivative of the input signal at t=0. The u(t) term represents the unit step function, which is 0 for t<0 and 1 for t≥0. The d(t) term represents the Dirac delta function, which is 0 for t≠0 and infinity for t=0.

In the second equation, y(t) = [n² - 2π 2-π] x(t) + u(t) ㅠ, the output signal is represented by y(t). The term [n² - 2π 2-π] x(t) represents the multiplication of the Laplace transform of the input signal x(t) by the transfer function [n² - 2π 2-π]. The term u(t) represents the unit step function that accounts for any additional input or disturbances.

The transfer function G(s) = s² + (2π)s / (s² - π² - 2π) describes the dynamics of the plant. It is a ratio of polynomials in the Laplace variable s, which represents the complex frequency domain. The numerator polynomial s² + (2π)s represents the dynamics of the plant's zeros, while the denominator polynomial s² - π² - 2π represents the dynamics of the plant's poles.

Learn more about: equation describes

brainly.com/question/32061964

#SPJ11

Other Questions
the plan you are about to build includes a two-story living room in which one of the walls is completely windows. what should you be concerned with to avoid building performance issues? b) 8% of the light bulbs manufactured on an assembly line are defective. (i) Calculate the probability that the second defective light bulb will be found on the tenth inspection if the light bulbs are inspected one by one. (Ii) In a random sample of n light bulbs, the probability to get at least one defective light bulb is greater than 0.9. Calculate the smallest possible value of n. (iii) A random sample of 1800 light bulbs is taken. Calculate the probability that there are at least 152 are defective. Q. What is geometric distortion in remotesensing imagery? Briefly explain the five main factors affectingthe image geometry. Consider the function f(x) = 12x^5 + 60x^4 - 100x^3 + 4. f(x) has inflection points at (reading from left to right) x = D, E, and F where D is _____and E is ___ and F is ____For each of the following intervals, tell whether f(x) is concave up or concave down. ( [infinity], D): ______(D, E): ______ (E, F): ______ (F, [infinity]): ______ the number of character comparisons used by the naive string matcher to look for the pattern of in the text love is Drains, overflows, or relief pipes from a water distribution system shall discharge to the building drain by ___. A) indirect waste by means of water-distribution airgapB) direct connection to the building drainC) direct connection to the building drain through a trapD) indirect waste piping through a vented trap Do you think social media is more helpful or detrimental duringcrisis situations? Please provide an example to support yourstance. supplementation with chromium is an evidence-based treatment for type 2 diabetes. group starts In finalising the financial statements of Jessica's company for the year ended 30 June 2022 , which of the following material matters should be adjusted for? A customer who owed RM550,000 went bankrupt in July 2022. A machine with a value of RM8,000,000 was seriously damaged by a fire in July 2022 . The compdidy was back in production by August 2022 but its value was reduced to RM7,950,000. The sale in August 2022 for RM7 50,000 of some inventory items valued in the statement of financial position at RM700,000. The company issued 8,000,000 ordinary shares in August 2022. QUESTION 13 Which of the following calculations could produce an acceptable figure for Jessica Co.'s net profit for a period if no accounting records had been kept? Closing net assets plus drawings minus capital introduced minus opening net assets Closing net assets plus drawings plus capital introduced minus opening net assets Closing net assets minus drawings plus capital introduced minus opening net assets Closing net assets minus drawings minus capital introduced minus opening net assets QUESTION 14 Trade receivables as at 30 September 2021 were RM24,800 and a year later RM42,400, taking into account the amount received from credit customers was RM59,500. Calculate the total sales revenue for the year. RM24,800 RM59,500 RM42,400 RM77,100 Click Save and Submit to save and submit. Click Save All Answers to save all answers. 1. Why does the distance formula contain both x and ycoordinates? 2. Can you use the distance formula for horizontal andvertical segments? 3. If you had horizontal/vertical segments,which formula w You and your sister are discussing the nuances of an abstract word such as white. She types in the word on dictionary.com, only to find many different definitions. What has she found? dishonesty, absenteeism, and sabotage are all examples of: Do you think Communist Part of Russia will come back in 2023 because of revolutionary movement lead by Wagner (Private army of Russia) against President Vladimir Putin? Put Your view point. Which term describes a society that emphasizes personal connections to others, relationship health, and quality of life?A. FeminineB. MasculineC. Low-contextD. High-contextE. Ethnocentric If a friendship is to survive geographic separation, the friends should focus on their individual futures and not their shared history.true or false? Analyze and sketch a graph of the function. Find any intercepts, relative extrema, points of inflection, and asymptotes. y = x / x^2 + 49 Intercept (x,y) = (_____) relative minimum (x,y) = (_______)relative maximum (x, y) = (______) points of inflection (x, y) = (______) (x, y) = (______)(x,y) = (_______)Find the equations of the asymptotes. (Enter your answers as a comma-separated list of equations.)___________ What is an impulse response function? Select one: The output of an LTI system due to unit Impulse signal The output of a linear system The output of an input response signal The response of an invaria Which statement is true? A. All rectangles are squares. B. All quadrilaterals are squares. C. All rhombuses are parallelograms. D. All triangles are quadrilaterals. Company expects sales of $34 million ( 400,000 units). The company's total fixed costs are $17.5 million and it variable costs are $35 per unit. What is the contribution margin per unit. $50 $85 $35 $17.50 Search Target on the MSN Money Website. Find the industry ratios(Retail) for the following:Search the company on the MSN Money website. Find the industry ratios for the following: - Current Ratio - Debt to Equity Ratio - Return on Assets - Return on Equity - Inventory Tumover - Asset Turnov