Answer:
Oppressors have a repressive attitude toward others. They have a need for power and dominance.
Explanation:
Oppression is the painful experience of deliberate arbitrariness, violence and abuse of power inflicted on an individual, society or group of people. The term repression is often used synonymously for this.
Oppression arises from the general, also unconscious, assumption that a certain group of people is inferior or without rights. Oppression is seldom limited to governmental activities. Individuals can also be victims of oppression if they lack the solidarity of a social group.
Oppressive individuals, in turn, are those who exert repression on others. They are generally narcissistic and megalomaniacal people, who have a wrong self-perception of their virtues and negatively weigh the virtues of other people.
How to detect beta rays
Answer:
For the detection of beta particles, organic scintillators can be used. Pure organic crystals include crystals of anthracene, stilbene, and naphthalene. The decay time of this type of phosphor is approximately 10 nanoseconds. This type of crystal is frequently used in the detection of beta particles.
- Hope this helps!
Water is entering the prism at a rate of A m^3/hr. The prism is empty at time 0. Express the depth d of the water in meters in terms of A, the length of time t the water has been entering the trough, and the length L of the prism.
This question is incomplete, the complete question is;
The picture shows a triangular prism. The end of prism are equilateral triangles with x meters. the other dimension of the prism is L meters
a) Find the volume V in terms of x and L
b) Water is entering the prism at a rate of A m³/hr. The prism is empty at time 0. Express the depth d of the water in meters in terms of A, the length of time t the water has been entering the trough, and the length L of the prism.
Answer:
a) the volume V in terms of x and L is ((√3/4)x²L) m³
b) required expression is (2/(3)^(1/u))√(At/L)
Explanation:
Given that;
form the question and image below;
triangular prism ends are equilateral triangle
side length = x meter
Dimension of the prism = L meter
Area of the equilateral triangle = √3/4 (side)² = √3/4 (x)² meter
Volume of the triangular prism = Area × height
= √3/4 (x)² × L
V = ((√3/4)x²L) m³
Therefore, the volume V in terms of x and L is ((√3/4)x²L) m³
b)
Rate of water entering = A m³/hr
Depth of water tank = d meter
Time = t
Length of prism = L
now Rate of water entering is A m³/hr
dv/d = A [ V = ((√3/4)x²L) m³ ]
and
dv/dt = √3/4 [2x dx/dt ] L { L is constant }
so
A = √3/4 [2x dx/dt ] L
∫A dt = √3/2 [ Lx dx ] { Integrate both sides}
At = √3/2 × Lx × x²/2
x² = uAt / √3L { we find square root of both sides}
x = √( uAt / √3L )
x = (2/(3)^(1/u))√(At/L)
Therefore; required expression is (2/(3)^(1/u))√(At/L)
A 45-year-old man is meeting his doctor for his annual physical. He suffers from Type 2 diabetes and has a family history of coronary disease. Recently his job has become more stressful and he has been eating cookies and drinking soda to cope. What state of change is this man in?
Answer:
The man is on the verge of having a heart attack or a stroke.
Explanation:
If he has a family history of coronary (heart) disease, it means it could normally affect. Normally here means without anything aggravating it. It's already in his lineage so he could have it.
Now, he's past middle age - he's 45. He's past the growing stages of life. His organs are fully developed herefore.
Now also, he suffers from Type 2 diabetes. Although this is sometimes milder than Type 1 diabetes, it increases the risk of having a heart disease or a stroke!
Soda, especially sweetened one, is not to be taken too often because it can cause Diabetes Mellitus. For a diabetes patient, this should be a "no-go-area". Taking this constantly (everyday at work) will now put this 45-year-old man in harm's way.
He is no more at risk of having complications but already on the path to a heart disease or a stroke.
A 12 N force and a 21 N force are acting from a single point in opposite directions. What additional force must be
added to produce equilibrium?
Answer:
We need to add 9 N in the direction of F(1)
Explanation:
We know that in equilibrium the total force is equal to zero, so we have:
[tex]F_{total}=F_{1}+F_{2}+F_{3}=0[/tex]
F(1) is 12 N
F(2) is 21 N in the opposite direction
F(3) is the additional force.
Then, using these values into the total force equation we have:
[tex]12-21+F_{3}=0[/tex]
[tex]-9+F_{3}=0[/tex]
[tex]F_{3}=9\: N[/tex]
Therefore, we need to add 9 N in the direction of F(1)
I hope it helps you!
The existence of the dwarf planet Pluto was proposed based on irregularities in Neptune's orbit. Pluto was subsequently discovered near its predicted position. But it now appears that the discovery was fortuitous, because Pluto is small and the irregularities in Neptune's orbit were not well known. To illustrate that Pluto has a minor effect on the orbit of Neptune compared with the closest planet to Neptune:
Required:
a. Calculate the acceleration due to gravity at Neptune due to Pluto when they are 4.50x10^12 m apart, as they are at present. The mass of Pluto is 1.4x10^22 kg.
b. Calculate the acceleration due to gravity at Neptune due to Uranus, presently about 2.50x10^12 m apart, and compare it with that due to Pluto. The mass of Uranus is 8.62x10^25 kg.
Answer:
4.61 * 10^-14 m/s ; 9.20 * 10^-10 m/s
Explanation:
To acceleration due to gravity, a
a = GM / r²
Mass of pluto = 1.4x10^22 kg
Distance apart, r = 4.50x10^12 m
G = Gravitational constant = 6.67 * 10^- 11
a = (6.67*10^-11 * 1.4x10^22) / (4.50x10^12)²
a = 9.338 * 10^(-11 + 22) / 20.25x10^24
a = 0.461 * 10^(11 - 24)
a = 0.461 * 10^-13
a = 4.61 * 10^-14 m/s
B.)
Mass of Uranus = 8.62x10^25 kg
Distance apart, r = 2.50x10^12 m
a = (6.67*10^-11 * 8.62x10^25 ) / (2.50x10^12 )²
a = 57.4954 * 10^(-11 + 25) / 6.25x10^24
a = 9.199264 * 10^(14 - 24)
a = 9.199264 * 10^-10
a = 9.20 * 10^-10 m/s
what is work??
ASAP who pls
The charge per unit length on a long, straight filament is 290.0 mC/m. Find the electric field a) 10.0 cm andb) 100 cm from the filament, where distances are measured perpendicular to the length of the filament.
Answer:
Explanation:
given linear charge density λ = 290 x 10⁻³ C / m
Expression for electric field at distance d is given as follow .
E = λ / 2πε₀r
1 / 4πε₀ = 9 x 10⁹
1 / 2πε₀ = 18 x 10⁹
E = λ / 2πε₀r = 290 x 10⁻³ x 18 x 10⁹ / r
= 5220 x 10⁶ / r
For r = 10 x 10⁻² m = .1 m
E = 5220 x 10⁶ / .1
= 5.22 x 10¹⁰ N/m
For r = 100 x 10⁻² m = 1 m
E = 5220 x 10⁶ / 1
= 5.22 x 10⁹ N/m .
An inductor, battery, resistance, and ammeter and switch are connected in series. If the switch, initially open, is now closed, what is the current's final value
The question is incomplete. Here is the complete question.
An inductor, battery, resistance and ammeter and switch are connected in series. If the switch, initially open, is now closed, what is the current's final value?
a. zero
b. Battery voltage divided by inductance
c. battery voltage times inductance
d. battery voltage divided by resistance
Answer: d. battery voltage divided by resistance
Explanation: Resistance, voltage and current are related by Ohm's Law, which is explained as the current that passes through a conductor is directly proportional to the applied voltage. The constant of proportionality between them is Resistance.
Ohm's Law is represented by [tex]V=R.I[/tex]
Inductor is a component that stores magnetic energy when electricity is applied to it.
Ammeter is an object constructed to measure electric current of a circuit and it is always connected in serie.
So, in the circuit, when the switch is closed, the "only way" for current to pass through is because of Ohm's Law, which means its magnitude will be:
[tex]I=\frac{V}{R}[/tex]
Then, the correct alternative is d. voltage divided by resistance.
21. Which substance is a gas at 45 degrees C?* A. Ethanol O B. Hexane C. Methane O D. Methanol
Answer:
C. Methane
Explanation:
A chemical equation can be defined as a reaction between two chemical elements.
For a chemical reaction (equation) to be balanced, the condition which must be met is that the number of atoms contained in the reactants must be equal to the number of atoms in the products.
This ultimately implies that, the mass and charge of the chemical equation are both balanced properly.
Methane is a hydrocarbon compound formed by the reaction between four (4) hydrogen atoms with a carbon atom. It belongs to the alkane group of hydrocarbons and has the following physical and chemical properties; colorless, highly flammable, non-toxic and odorless gas. The empirical formula for Methane is CH4.
Methane is a gas at 45 degrees celsius. This ultimately implies that, at 45°C methane is a gas because it is still within the range of standard temperature and pressure.
One of the strongest emission lines observed from distant galaxies comes from hydrogen and has a wavelength of 122 nm (in the ultraviolet region). (a) How fast must a galaxy be moving away from us in order for that line to be observed in the visible region at 366 nm
Answer:
[tex]v=2.4*10^8m/s[/tex]
Explanation:
From the question we are told that
Wavelength of emission [tex]\lambda=122nm[/tex]
Observation distance [tex]d=366nm[/tex]
Generally the s equation is given as
[tex]f'=f\sqrt{\frac{(1-\frac{v}{c} )}{1+\frac{v}{c} }[/tex]
where
F is inversely proportional to T
[tex]d=\lambda\sqrt{\frac{(1-\frac{v}{c} )}{1+\frac{v}{c} }[/tex]
[tex]\frac{v}{c} =\frac{(1-\frac{\lambda}{d})}{(1+\frac{\lambda}{d}}[/tex]
[tex]\frac{v}{c}=\frac{1-(\frac{122}{366} )^2}{1+(\frac{122}{366})^2}[/tex]
[tex]\frac{v}{c}=\frac{0.8888888889}{1.11111111}[/tex]
[tex]\frac{v}{c}=0.80[/tex]
[tex]v=0.80*3*10^6[/tex]
[tex]v=2.4*10^8m/s[/tex]
Suppose you have a total charge qtot that you can split in any manner. Once split, the separation distance is fixed. How do you split the charge to achieve the greatest force
Answer:
Answer is explained in the explanation section below.
Explanation:
Solution:
We know from the Coulomb's Law that, Coulomb's force is directly proportional to the product of two charges q1 and q2 and inversely proportional to the square of the radius between them.
So,
F = [tex]\frac{Kq1q2}{r^{2} }[/tex]
Now, we are asked to get the greatest force. So, in order to do that, product of the charges must be greatest because the force and product of charges are directly proportional.
Let's suppose, q1 = q
So,
if q1 = q
then
q2 = Q-q
Product of Charges = q1 x q2
Now, it is:
Product of Charges = q x (Q-q)
So,
Product of Charges = qQ - [tex]q^{2}[/tex]
And the expression qQ - [tex]q^{2}[/tex] is clearly a quadratic expression. And clearly its roots are 0 and Q.
So, the highest value of the quadratic equation will be surely at mid-point between the two roots 0 and Q.
So, the midpoint is:
q = [tex]\frac{Q + 0}{2}[/tex]
q = Q/2 and it is the highest value of each charge in order to get the greatest force.
If there is an outlier on your graph, you should ignore it.
O True
O False
Answer:
false
Explanation:
Carlota does 2000 J of work on a machine. The machine does 500 J of work. What is the efficiency of the
machine?
4%
O 25%
O 75%
O 400%
Answer:
25%
Explanation:
500 J out of 2000 J is 25%
⚠️Pls help me this is due soon!⚠️
professional is the answer
3rd
Lou’s latest invention, aimed at urban dog owners, is the X-R-Leash. It is made of a rubber-like material that exerts a force Fx = (−5.7 N/m) x − (78 N/m2 ) x 2 when it is stretched a distance x. The ad claims, "You’ll never go back to your old dog leash after you’ve had the thrill of an X-R-Leash experience. And you’ll see a new look of respect in the eyes of your proud pooch." Find the work done on a dog by the leash if the person remains stationary, and the dog bounds off, stretching the X-R-Leash from x = 0 m to x = 22 m. Answer in units of kJ.
Answer:
W = 29.06 KJ
Explanation:
The work done while stretching the leash can be calculated by the following formula:
[tex]W = \int\limits^b_a {F_{x}} \, dx \\[/tex]
whee,
W = Work Done = ?
Fₓ = Forcing Function = (-5.7 N/m)x - (78 N/m²)x²
a = starting point of x = 0 m
b = end point of x = 22 m
Therefore,
[tex]W = \int\limits^{22\ m}_{0\ m} {(-(5.7\ N/m)x - (7.8\ N/m^{2})x^{2}}) \, dx \\Integrating\ we\ get:\\W = -\frac{(5.7\ N/m)x^{2}}{2} - \frac{(7.8\ N/m^{2})x^{3}}{3}\\Applying\ limits:\\W = -\frac{(5.7\ N/m)(22\ m)^{2}}{2} - \frac{(7.8\ N/m^{2})(22\ m)^{3}}{3} - 0\\W = - 1379.4\ J - 27684.8\ J\\W = 29064.2\ J[/tex]
W = 29.06 KJ
A baseball is hit high into the upper bleachers of left field. Over its entire flight the work done by gravity and the work done by air resistance respectively are:
A. positive; positive
B. positive; negative
C. negative; positive
D. negative; negative
E. unknown since vital information is lacking
Answer:
B. positive; negative.
Explanation:
From the viewpoint of Principle of Energy Conservation and Work-Energy Theorem, we notice that gravity represents a conservative force, associated with gravitational potential energy, whereas air resistance is a non-conservative force, associated with dissipated work. Therefore, the work done by gravity is positive and work done by air resistance is negative. Therefore, the correct answer is B.
When light bulbs are connected in parallel and you unscrew one light bulb, the other light bulbs will
a. All go out
b. All get dimmer
c. All get brighter
d. All stay on
a. All go out
b. All get dimmer
c. All get brighter
d. All stay on
A car has a weight of 10,000 N. What is the mass of the car on Earth (g = 10
N/kg)?
A. 1000 kg
B.1000 N
C. 10,000 kg
D. 10,000N
Given :
Weight of car is, W = 10000 N.
Acceleration due to gravity, g = 10 N/kg.
To Find :
The mass of car on Earth.
Solution :
We know, mass of an object is given by :
[tex]m = \dfrac{W}{g}\\\\m = \dfrac{10000}{10}\ kg\\\\m = 1000\ kg[/tex]
Therefore, mass of the car on Earth is 1000 kg.
A student throws a ball upward with a velocity of 35 m/s. What is the acceleration of the ball as it rises to the top of its arc?
Answer:
The acceleration of the ball as it rises to the top of its arc equals 9.807 meters per square second.
Explanation:
Let suppose that maximum height of the arc is so small in comparison with the radius of the Earth.
Since the ball is launched upwards, then the ball experiments a free-fall motion, that is, an uniform accelerated motion in which the element is accelerated by gravity. Then, the acceleration experimented by the motion remains constant at every instant and position.
Besides, the gravitational acceleration in the Earth and, in consequence, the acceleration of the ball as it rises to the top of its arc equals 9.807 meters per square second.
what color is my socks? :0
A color.......................................................................yeah the color of your socks is a color :}
I NEED HELP WITH THE LAST QUESTION PLS HELP!! (The one below 8)
Answer:
I. 6 cells .
II. Series connection.
Explanation:
I. Determination of the number of cells needed.
From the question given above,
Total voltage (V) = 9 V
1.5 V = 1 cell
Number of cells needed =?
The number of cells needed to make the 9V battery can be obtained as follow:
1.5 V = 1 cell
Therefore,
9 V = 9 V × 1 cell / 1.5 V
9 V = 6 cells
Thus, 6 cells of 1.5 V each is needed
II. Determination of the connection line
Total voltage (Vₜ) = 9 V
Cell 1 (V₁) = 1.5 V
Cell 2 (V₂) = 1.5 V
Cell 3 (V₃) = 1.5 V
Cell 4 (V₄) = 1.5 V
Cell 5 (V₅) = 1.5 V
Cell 6(V₆ ) = 1.5 V
For parrall connection:
Vₜ = V₁ = V₂ = V₃ = V₄ = V₅ = V₆
9 V = 1.5 V =... = 1.5 V
For series connection:
Vₜ = V₁ + V₂ + V₃ + V₄ + V₅ + V₆
9 = 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5
9 V = 9 V
From the illustration above, we can see that series connection of each cells will give a total volt of 9 V unlike the parallel connection which resulted to 1.5 V.
Therfore, the cells should be arranged in series connection
PLEASE HELP!! THIS IS DUE RN!!
Answer:
know on car wright now
Explanation:
You kick a soccer ball with a speed of 12 m/s at an angle of 21. How long does it take the ball to reach the top of its trajectory?
Answer:
Time, t = 0.439 seconds
Explanation:
Given the following data;
Angle, x = 21°
Initial velocity, u = usinx = 12Sin21° = 4.3004m/s
We know that acceleration due to gravity is equal to 9.8m/s
Final velocity = 0m/s since it reached its highest trajectory.
To find the time, we would use the first equation of motion;
V = U + gt
0 = 4.3004 + (-9.8)t
0 = 4.3004 - 9.8t
9.8t = 4.3004
t = 4.3004/9.8
t = 0.439 seconds
Therefore, it will take the ball 0.439 seconds to reach the top of its trajectory.
Answer: 0.44 s
Explanation:
that’s what I got correct on my test in physics ;)
Is Obesity primarily due to Genetics?
If the coefficient of static friction is 0.35 and the normal force is 80 newtons, what is the maximum frictional force of the surface acting on the object? A. 9.8 newtons B. 28 newtons C. 80 newtons D. 23 newtons E. 35 newtons
Answer:
Option B. 28 N
Explanation:
From the question given above, the following data were obtained:
Coefficient of static friction (μ) = 0.35
Normal force (N) = 80 N
Frictional force (F) =?
The coefficient of static friction, frictional force and the normal force are related according to the following equation:
Coefficient of friction = frictional force / normal force
μ = F/N
With the above formula, we can obtain the frictional force as follow:
Coefficient of static friction (μ) = 0.35
Normal force (N) = 80 N
Frictional force (F) =?
μ = F/N
0.35 = F / 80
Cross multiply
F = 0.35 × 80
F = 28 N
Thus the frictional force is 28 N
Answer:
Option B. 28 N
Explanation:
A 1210 kg car is driving NE
(at 45.0°) at 15.2 m/s when it is
struck by a moving 1540 kg car.
Afterward, they stick together and
move directly east (at 0°) at 23.3
m/s. What was the x-component
of the second car's initial velocity?
Please help
Answer:
[tex]V_2_X=33.16m/s[/tex]
Explanation:
From the question we are told that
Mass of car [tex]M_1=1210kg \\Angle1=\theta _1 45\textdegree NE[/tex]
Velocity of car [tex]v_1= 15m/s[/tex]
Mass of Truck [tex]M_2= 1540kg \\Angle 2=\theta_2 0\textdegree E[/tex]
Final velocity [tex]v_2= 23.3m/s[/tex]
Generally the the equation of the law of conservation of momentum is mathematically given by
Given the x direction
[tex]m_1v_1cos\theta+m_2v_2=(m_1+m_2)v[/tex]
[tex]1210*15.2cos45+1540*V_2=(1210+1540)*23.3[/tex]
[tex]V_2=\frac{(1210+1540)*23.3}{210*15.2cos45+1540}[/tex]
[tex]V_2=33.16m/s[/tex]
The x-component of the second car's initial velocity is
[tex]V_2_X=33.16m/s[/tex]
An RLC series circuit has an applied voltage of 277 volts. The current through the resistor is 3.5 A. What is the apparent power of the circuit
Answer:
the apparent power of the circuit is 969.5 VA.
Explanation:
Given;
Applied voltage, E = 277 V
current flowing in the circuit, I = 3.5 A
Apparent occurs when the applied voltage and current are out of phase because of reactance. This apparent power of the circuit is calculated as;
[tex]P = EI\\\\P= 277 \ \times \ 3.5 \\\\P = 969.5 \ VA[/tex]
Therefore, the apparent power of the circuit is 969.5 VA.
PLEASE HELPPPPPP!!!!
Answer:
b
Explanation:
i just did that question
A ballet dancer spins with 2.4 rev/s with her arms outstretched,when the moment of inertia about axis of rotation is 1 .With her arms folded,the moment of inertia about the same axis becomes 0.61 . calculate the new rate of spin.
Correct question is;
A ballet dancer spins with 2.4 rev/s with her arms outstretched,when the moment of inertia about axis of rotation is I. With her arms folded,the moment of inertia about the same axis becomes 0.6I about the same axis. Calculate the new rate of spin.
Answer:
4 rev/s
Explanation:
We are given;
Initial Angular velocity; ω_i = 2.4 rev/s
Initial moment of inertia; I_i = I
Final moment of inertia; I_f = 0.6I
From conservation of angular momentum, we have;
I_i × ω_i = I_f × ω_f
Where ω_f is the new rate of spin.
Thus, let's make it the subject to get;
ω_f = (I_i × ω_i/I_f)
Plugging in relevant values, we have;
ω_f = (I × 2.4/0.6I)
I will cancel out to give;
ω_f = 2.4/0.6
ω_f = 4 rev/s
A satellite is in orbit 3.117106 m from the center of Earth. The mass of Earth is 5.9821024 kg. Calculate the orbital
period of the satellite.
Answer:
T = 1733.16 s = 28.88 min
Explanation:
The orbital velocity of a satellite about Earth is given as follows:
[tex]v = \sqrt{\frac{GM}{R}}[/tex]
where,
v = orbital speed = ?
G = Gravitational Constant = 6.67 x 10⁻¹¹ Nm²/kg²
M = Mass of Earth = 5.982 x 10²⁴ kg
R = Orbit Radius = 3.117 x 10⁶ m
Therefore,
[tex]v = \sqrt{\frac{(6.67\ x\ 10^{-11}\ Nm^{2}/kg^{2})(5.982\ x\ 10^{24}\ kg)}{(3.117\ x\ 10^{6}\ m)}}\\\\v = 11.3\ x\ 10^{3}\ m/s[/tex]
but the velocity is given as:
[tex]v = \frac{distance}{time}[/tex]
for distance = circumference = 2πR
time = time period = T = ?
Therefore,
[tex]11.3\ x\ 10^{3}\ m/s = \frac{2\pi(3.117\ x\ 10^{6}\ m)}{T}\\\\T = \frac{2\pi(3.117\ x\ 10^{6}\ m)}{11.3\ x\ 10^{3}\ m/s}\\\\[/tex]
T = 1733.16 s = 28.88 min