In a mixture of gases, the amount of pressure each gas contributes to the total pressure is called the ____ pressure of the gas.

Answers

Answer 1

In a mixture of gases, the amount of pressure each gas contributes to the total pressure is called the partial pressure of the gas.

Let's break it down step-by-step:
1. A mixture of gases consists of two or more different gases combined together. For example, air is a mixture of gases including oxygen, nitrogen, carbon dioxide, and others.
2. When gases are mixed together, they exert pressure independently. Each gas in the mixture contributes to the total pressure exerted by the mixture.
3. The pressure contributed by each gas is called the partial pressure of that gas. It represents the pressure that the gas would exert if it were the only gas present in the container.
4. The partial pressure of a gas can be calculated using Dalton's law of partial pressures. According to this law, the total pressure of a mixture of gases is equal to the sum of the partial pressures of each individual gas.
5. The partial pressure of a gas depends on its concentration, temperature, and the total pressure of the mixture. For example, if you have a mixture of oxygen and nitrogen gases, the partial pressure of oxygen will be higher if there is a higher concentration of oxygen molecules in the mixture.
In conclusion, the amount of pressure each gas contributes to the total pressure in a mixture of gases is called the partial pressure of the gas.

Learn more about gases at

https://brainly.com/question/1369730

#SPJ11


Related Questions

a charged particle is traveling through a uniform magnetic field. which of the following statements are true of the magnetic field? (select all that apply.)

Answers

The true statements are

B. It doesn't change the magnitude of the momentum of the particle.

E. It exerts a force that is perpendicular to the direction of motion.

What s uniform magnetic field

A uniform magnetic field refers to a magnetic field that has the same strength and direction at all points within a given region. In other words, the magnetic field's magnitude and direction do not vary as you move through the field.

In a uniform magnetic field, the field lines are evenly spaced and parallel to each other. This means that the magnetic field strength remains constant throughout the region, and the field lines are uniformly distributed.

Learn more about uniform magnetic field at

https://brainly.com/question/25655915

#SPJ4

complete question

A charged particle is traveling through a uniform magnetic field. Which of the following statements are true of the magnetic field? (Select all that apply.)

A. It exerts a force on the particle that is parallel to the field.

B. It doesn't change the magnitude of the momentum of the particle.

C. It increases the kinetic energy of the particle.

D. It exerts a force on the particle along the direction of its motion.

E. It exerts a force that is perpendicular to the direction of motion.

Part A Which of the following is NOT a function of sebum? prevention of water loss protection from bacteria lubrication of the skin protection from UV radiation Request Answer Submit Provide Feedback

Answers

The function of sebum, a waxy substance produced by the sebaceous glands, includes the prevention of water loss, protection from bacteria, and lubrication of the skin. However, sebum does NOT provide protection from UV radiation.

Sebum is responsible for keeping the skin moisturized by preventing excessive water loss. It acts as a natural barrier, helping to retain moisture and prevent dryness. Additionally, sebum has antimicrobial properties, which means it helps protect the skin from harmful bacteria and other microorganisms that can cause infections or acne.

Furthermore, sebum plays a role in lubricating the skin and hair. It helps keep the skin supple and flexible, preventing it from becoming dry and cracked. The lubrication provided by sebum also helps to protect the hair follicles and keep the hair healthy.

However, sebum does not provide protection from UV radiation. UV radiation can cause damage to the skin, leading to sunburn, premature aging, and an increased risk of skin cancer. To protect the skin from UV radiation, it is important to use sunscreen, wear protective clothing, and seek shade when the sun is strongest.

In summary, sebum is a valuable substance that helps prevent water loss, protects against bacteria, and lubricates the skin and hair. However, it does not provide protection from UV radiation, so it is important to take additional measures to protect your skin from the harmful effects of the sun.

You can learn more about sebum at: brainly.com/question/33711067

#SPJ11

what can we conclude from the fact that neptune's largest moon triton orbits in a direction opposite to the direction in which neptune rotates?

Answers

Neptune's largest moon Triton's retrograde orbit defies expectations and is a reflection of the complexities of the universe. The direction of Triton's orbit may have a significant impact on Neptune's magnetic field, making it a fascinating celestial object that warrants further exploration and analysis.

Neptune's largest moon, Triton orbits in a direction opposite to the direction in which Neptune rotates. What can we conclude from this?

It is assumed that Triton was previously an independent celestial object that was later captured by Neptune's gravitational pull.

It is interesting to observe that Triton orbits Neptune in a retrograde direction, the opposite of Neptune's rotation, and one of the few moons in the solar system to do so.

As a result of the force that the gas giant's gravity exerts on Triton, it has been tugged closer and closer to Neptune throughout time. Since Neptune rotates in a counter-clockwise direction,

Triton orbits the planet in the opposite direction. Neptune and Triton are distinct, and their individual characteristics serve as an intriguing example of the complexity of the solar system.

First and foremost, we can conclude that Neptune is capable of capturing other celestial bodies that get too close to its gravitational pull.

Triton's retrograde orbit is also a reminder that the solar system is far more complex than we thought.

When it comes to celestial bodies, orbits can vary and defy expectations, indicating that much more research and exploration is required to grasp the mysteries of the universe.

In addition, Triton's orbital path may have an impact on Neptune's magnetic field, according to scientists. It's possible that the gravitational interactions between Triton and Neptune, as well as the charged particles that circulate around them, have created a dynamic process that results in the formation of auroras.

Because Triton's orbit is eccentric, or elliptical, its distance from Neptune varies widely, which could explain why its influence on the planet's magnetosphere differs over time. This is still a field of active research and scientists are looking forward to unveiling more about this.

In conclusion, Neptune's largest moon Triton's retrograde orbit defies expectations and is a reflection of the complexities of the universe. The direction of Triton's orbit may have a significant impact on Neptune's magnetic field, making it a fascinating celestial object that warrants further exploration and analysis.

To know more about magnetic field visit:

brainly.com/question/14848188

#SPJ11

a 1 kilogram rubber mass is released from rest at the very top of a rough incline as shown. the mass slides and finally reaches the bottom 2.9 seconds later. what material might the incline be made out of?

Answers

The incline might be made out of a material that provides enough friction to slow down the rubber mass and allow it to reach the bottom in 2.9 seconds.

When the rubber mass is released from rest at the top of the incline, it begins to slide down due to the force of gravity. However, the presence of friction between the rubber mass and the incline affects its motion. Friction is a force that opposes the motion of objects in contact.

In this case, the incline must have enough friction to slow down the rubber mass and allow it to reach the bottom in 2.9 seconds. The amount of friction depends on the material the incline is made out of. Some materials have higher coefficients of friction, meaning they provide more resistance to sliding motion.

By analyzing the time it takes for the rubber mass to reach the bottom, one can determine the roughness of the incline's surface. If the rubber mass reaches the bottom quickly, it suggests a smoother surface with less friction. Conversely, if it takes longer to reach the bottom, it indicates a rougher surface with more friction.

To determine the specific material of the incline, additional information such as the angle of the incline and the speed of the rubber mass would be needed. These factors would provide further insight into the frictional forces at play and help identify the material.

Learn more about Friction

brainly.com/question/28356847

#SPJ11

the moon appears larger near the horizon than when it is overhead. despite this difference, we know that the size of the moon is the same in both positions. this is an example of

Answers

This is an example of the Moon Illusion.

When the moon is close to the horizon, it appears larger than it does when it's higher up in the sky. This phenomenon is known as the moon illusion. It's one of the most well-known optical illusions in the world. Despite its apparent size, the moon's size remains constant at all altitudes.The illusion occurs as a result of the moon's location in the sky relative to the viewer. When the moon is close to the horizon, we have more items with which to compare it, such as trees, buildings, and other terrestrial objects. As a result, the moon appears larger. This illusion is intensified by the human brain, which automatically adjusts for the increased distance to make the moon appear smaller. When the moon is high in the sky, it's typically devoid of any reference points to compare it to, making it appear smaller.

The size of the moon is the same whether it is overhead or near the horizon. However, the Moon Illusion makes it appear larger when it is near the horizon.

To know more about  Moon Illusion visit:

brainly.com/question/13711030

#SPJ11

assume the diameter of field with a microscope with the 4x objective in place was 10mm. what would you expect for the diameter of field if a 20x objective was used?

Answers

The diameter of field for a 20x objective would be = 0.4mm.

How to calculate the diameter of microscope objective lens?

To calculate the diameter of the objective lens of the microscope, the following steps needs to be followed:

For 4x objective the diameter = 10mm

Note that the higher the objective the lesser the diameter.

That is;

If 4x = 10mm

20x = 10/4 = 0.4mm

Therefore the diameter of 20x would be = 0.4mm

Learn more about diameter here:

https://brainly.com/question/31627669

#SPJ1

I need help with this question and please show the whole work
and do it asap
If a star displays \( 0.0190 \) arcseconds of parallax, then long would it take to travel to that star if traveling at half the speed of light?

Answers

The first step is to convert the parallax angle of the star to distance. We can use the formula: parallax angle in arc seconds = (distance to star in parsecs)^-1 We can rearrange this equation to isolate distance: d = (parallax angle)^-1 Therefore, the distance to the star in parsecs is:

d = (0.0190 arcseconds)^-1 = 52.6 parsecs Next, we need to find the actual distance in meters. One parsec is equivalent to 3.09 × 10^16 meters. Therefore, the distance to the star in meters is: distance = (52.6 parsecs)(3.09 × 10^16 meters/parsec) = 1.63 × 10^18 meters Now, we can use the formula for time: d = vt Solving for time: t = d/v We are told to travel at half the speed of light, which is v = 0.5c, where c is the speed of light.

Therefore, the time to travel to the star is: t = (1.63 × 10^18 meters)/(0.5c) Using the speed of light, c = 3.00 × 10^8 m/s, we get: t = (1.63 × 10^18 meters)/(0.5 × 3.00 × 10^8 m/s)t ≈ 10.9 years Therefore, it would take about 10.9 years to travel to the star if traveling at half the speed of light.

To know more about Speed of light here:

https://brainly.com/question/28224010

#SPJ11

Calculate the Standard Error Measurement for a person’s shoulder range of motion who underwent a replacement surgery. Assume the SD for this population is 7 degrees, and intra-rater reliability is r =.93. Now, calculate a 90% and 95% CI using the SEM calculated above assuming the observed score is 50 degrees of shoulder flexion. What is the 90% and 95% CI for the shoulder range of motion if you were going to reassess in a second time?

Answers

Standard Error Measurement (SEM) refers to the standard deviation of the error of measurement in a scale's units. It is employed to compute confidence intervals (CI) for specific scores or differences between two scores.

Here is how to calculate the Standard Error Measurement (SEM) for a person's shoulder range of motion who underwent a replacement surgery, assuming the SD for this population is 7 degrees and intra-rater reliability is r =.93.

We know that the formula for calculating SEM is SD1-r.

Here,

SD = 7 degree

sr = 0.93SEM

= SD√1-r

= 7√1-0.93

= 7√0.07

= 2.26 (rounded to two decimal places).

Now that we've determined the SEM, we can proceed to calculate a 90% and 95% CI using the SEM, assuming the observed score is 50 degrees of shoulder flexion.

Here's how to go about it:

For a 90% CI, we'll use a z-score of 1.64 as the critical value.90% CI = 50 ± (1.64 × 2.26)

= 50 ± 3.70

= (46.30, 53.70)

For a 95% CI, we'll use a z-score of 1.96 as the critical value.95% CI

= 50 ± (1.96 × 2.26)

= 50 ± 4.42

= (45.58, 54.42)

If you wanted to reassess the shoulder range of motion a second time, the 90% and 95% CI would be the same as the first time since the SEM is constant.

To know more about Standard Error measurement, visit:

https://brainly.com/question/1191244

#SPJ11

a neoplastic disease of the pluripotent cells of the bone marrow with an absolute increase in total red blood cell mass accompanied by elevated

Answers

The neoplastic disease of the pluripotent cells of the bone marrow with an absolute increase in total red blood cell mass accompanied by elevated hematocrit levels is called Polycythemia Vera (PV).

Polycythemia Vera is a rare disorder of the blood in which there is an increase in the number of red blood cells. It is a form of blood cancer in which the body makes too many red blood cells. As a result of this, the blood gets thicker and can cause problems such as blood clots.The disease is most commonly diagnosed in people in their 60s and 70s, but it can occur at any age. Polycythemia Vera is a chronic condition that develops slowly over time, and it can be managed with proper treatment.

To learn more about hematocrit
https://brainly.com/question/21879061
#SPJ11

The Kuiper belt is
A) another name for the asteroid belt.
B) a flat or donut-shaped distribution of distant comets around the Sun, extending out about 500 AU.
C) a spherical distribution of distant comets around the Sun, extending out about 50,000 AU. D) a random distribution of short-period comets extending from inside the orbit of Jupiter to approximately the orbit of Neptune

Answers

The Kuiper belt is a flat or donut-shaped distribution of distant comets around the Sun, extending out about 500 AU. The region stretches from about 30 to 50 astronomical units (AU) from the Sun.

This disk-like structure is named after Dutch-American astronomer Gerard Kuiper, who proposed the existence of a belt of icy objects beyond Neptune's orbit in the 1950s and has been found to contain hundreds of thousands of icy objects.

This icy band is thought to have formed from the solar nebula around 4.6 billion years ago. The Kuiper belt is found beyond Neptune's orbit. It is the source of some of the comets that travel into the inner Solar System. The Kuiper Belt is also known as the Edgeworth-Kuiper Belt or the Trans-Neptunian Region. The Kuiper belt is home to many dwarf planets like Eris, Pluto, and Haumea.

The Kuiper belt is a circumstellar disc in the Solar System that is located in the outermost region, extending from the orbit of Neptune to approximately 50 AU from the Sun. The Kuiper Belt is a disk-shaped collection of comets, dwarf planets, and other small bodies that orbit the Sun beyond Neptune's orbit. The region stretches from about 30 to 50 astronomical units (AU) from the Sun.

The Kuiper Belt is also known as the Edgeworth-Kuiper Belt or the Trans-Neptunian Region. This disk-like structure is named after Dutch-American astronomer Gerard Kuiper, who proposed the existence of a belt of icy objects beyond Neptune's orbit in the 1950s and has been found to contain hundreds of thousands of icy objects. This icy band is thought to have formed from the solar nebula around 4.6 billion years ago. The Kuiper Belt is also the source of many short-period comets, such as Halley's Comet.

The Kuiper Belt is a disk-shaped collection of comets, dwarf planets, and other small bodies that orbit the Sun beyond Neptune's orbit. This disk-like structure is named after Dutch-American astronomer Gerard Kuiper, who proposed the existence of a belt of icy objects beyond Neptune's orbit in the 1950s and has been found to contain hundreds of thousands of icy objects. The Kuiper Belt is a circumstellar disc in the Solar System that is located in the outermost region, extending from the orbit of Neptune to approximately 50 AU from the Sun.

To know more about Solar System :

brainly.com/question/32240766

#SPJ11

a garden has a circular path of radius 50 m . john starts at the easternmost point on this path, then walks counterclockwise around the path until he is at its southernmost point. part a what is the magnitude of john's displacement?

Answers

John's displacement is 50 meters, directed towards the southwest.

John starts at the easternmost point on the circular path and walks counterclockwise until he reaches the southernmost point. Since he is walking counterclockwise, his displacement will be directed towards the southwest. The magnitude of his displacement is equal to the radius of the circular path, which is 50 meters. Therefore, John's displacement is 50 meters, directed towards the southwest.

Displacement is a vector quantity that represents the change in position from the initial point to the final point. It includes both the magnitude (distance) and the direction. In this case, John's displacement is determined by the distance he has traveled around the circular path and the direction in which he is walking. Since John is walking counterclockwise, his displacement will be in the opposite direction of the clockwise path.

The magnitude of John's displacement is equal to the radius of the circular path because he starts and ends at points that are on the path. In this scenario, the radius is given as 50 meters, so the magnitude of John's displacement is also 50 meters. It represents the straight-line distance from the initial point (easternmost) to the final point (southernmost).

Learn more about displacement

brainly.com/question/11934397

#SPJ11



A 0. 029 m3 tank contains 0. 076 kg of Nitrogen gas (N2)

at a pressure of 2. 92 atm. Find the temperature of the gas in

°C.

Take the atomic weight of nitrogen to be N2 = 28

g/mol

Answers

the temperature of the Nitrogen gas is approximately -162.35 °C.

Volume (V) = 0.029 m³

Pressure (P) = 2.92 atm = 2.92 x 101325 Pa

Mass of Nitrogen gas (m) = 0.076 kg

Atomic weight of Nitrogen (M) = 28 g/mol = 0.028 kg/mol

a wire of mass 6.94 g and length 1.680 m, with both ends fixed, is set into oscillation at its fundental frequency and placed over a tube of length 4.20 m closed at one end. the air column in the tube is set into oscillation through resonance, also vibrating at its fundamental frequency. (assume the velocity of sound in air

Answers

Both the wire and the air column vibrate at their respective fundamental frequencies, resulting in increased sound intensity in the tube due to the increased amplitude of the vibrations.


The fundamental frequency of a vibrating wire can be calculated using the formula:
f_wire = (1/2L_wire) * sqrt(T/μ)
Given that the length of the wire is 1.680 m and the mass is 6.94 g, we can calculate the linear mass density (μ) of the wire:
μ = mass / length = 6.94 g / 1.680 m.                                                                                                                                                             Once we have the linear mass density of the wire, we can proceed to calculate the fundamental frequency of the wire.
On the other hand, the fundamental frequency of a vibrating air column in a closed tube can be determined using the formula: f_tube = v_sound / (4L_tube).
In the given scenario, the tube is closed at one end, which affects the fundamental frequency.
Now, assuming the velocity of sound in air is known, we can calculate the fundamental frequency of the air column in the tube.
It is important to note that the wire and the air column are set into oscillation through resonance, vibrating at their respective fundamental frequencies.                                                                                                                                                                Resonance occurs when the frequencies of two systems match or are very close, resulting in increased amplitude of vibration.
The length of the wire and the length of the tube are related, and through resonance, the wire and the air column reinforce each other's vibrations.
This reinforcement leads to a louder sound being produced in the tube due to the increased amplitude of the vibrations.

Read more about fundamental frequency.                                                                                                                                                                                        https://brainly.com/question/31895550                                                                                                                                                  #SPJ11

A small object is dropped through a loop of wire connected to a sensitive ammeter on the edge of a table, as shown in the diagram below. A reading on the ammeter is most likely produced when the object falling through the loop of wire is a

Answers

If a small object is dropped through a loop of wire connected to a sensitive ammeter on the edge of a table, a reading on the ammeter is most likely produced when the object falling through the loop of wire is magnetic.

When an object passes through a loop of wire, a current is generated, which can be detected by a sensitive ammeter. This is referred to as electromagnetic induction. The size of the current generated is dependent on a variety of factors, including the speed of the object as it passes through the loop, the size of the loop, the magnetic properties of the object, and the number of turns in the loop.
If the small object being dropped through the loop of wire is non-magnetic, then the ammeter is unlikely to register a reading. This is because non-magnetic objects do not produce an electromagnetic field as they pass through the wire loop. Therefore, the ammeter would not detect any current being generated.
On the other hand, if the small object is magnetic, such as a small magnet, then a current would be generated as it passes through the loop of wire. This is because the magnetic field of the object would interact with the magnetic field generated by the wire loop, producing an electric current. This current would be detected by the ammeter as a reading.

For more such questions on ammeter visit:

https://brainly.com/question/28989621

#SPJ8

A jeep is moving at 8.5(m)/(s^(2)) what will be its final velocity? and How far will it travel after 20 seconds?

Answers

The final velocity of the jeep after 20 seconds is 170 m/s.

The initial velocity of the jeep is not provided. Therefore, we can only find the final velocity of the jeep and the distance it has traveled after 20 seconds using the acceleration provided.

The formula for final velocity is given as;v = u + at,where:v = final velocity,u = initial velocity,

a = acceleration

t = time taken

It is given that the jeep is moving with an acceleration of 8.5 (m)/(s²).

After 20 seconds, the final velocity of the jeep can be calculated as;v = u + atv = 0 + (8.5 m/s² × 20 s)

v = 170 m/s.

Therefore, the final velocity of the jeep is 170 m/s

.After 20 seconds, the distance covered by the jeep can be calculated using the formula;

S = ut + 1/2 at²where:

S = distance

t = time taken

a = acceleration

u = initial velocity (not given).

Since the initial velocity is not given, we cannot find the distance covered by the jeep. Therefore, the answer is;

The final velocity of the jeep after 20 seconds is 170 m/s.

The distance it has travelled after 20 seconds cannot be determined without the initial velocity of the jeep.

In conclusion, the final velocity of the jeep after 20 seconds is 170 m/s. However, the distance travelled by the jeep cannot be determined without the initial velocity of the jeep.

To know more about initial velocity  visit:

brainly.com/question/28395671

#SPJ11

an electrical current heats a 223 g copper wire from 17.4°c to 35.2°c. how much heat was generated by the current?

Answers

The heat generated by the current flowing through the copper wire is approximately 1,340.7 joules.

To calculate the heat generated by the current flowing through the copper wire, we can use the formula: Q = mcΔT

where:

Q is the heat generated (in joules),

m is the mass of the copper wire (in kilograms),

c is the specific heat capacity of copper (in joules per kilogram per degree Celsius), and

ΔT is the change in temperature (in degrees Celsius).

Given:

m = 223 g = 0.223 kg (convert grams to kilograms)

ΔT = 35.2°C - 17.4°C = 17.8°C (calculate the change in temperature)

The specific heat capacity of copper is approximately 387 J/kg°C.

Plugging in the values, we have: Q = (0.223 kg) * (387 J/kg°C) * (17.8°C)

Calculating the expression, we find:Q ≈ 1,340.6996 J

To learn more about  current

https://brainly.com/question/1100341

#SPJ11

24) an electromagnetic wave has a peak electric field of 3.0 kv/m. what is the intensity of the wave? (c

Answers

The intensity of the wave is 4.5 MW/m².

What is the intensity of the electromagnetic wave?

The intensity of an electromagnetic wave can be calculated using the formula I = (E² / 2μ₀c), where I represents the intensity, E is the electric field amplitude, μ₀ is the vacuum permeability, and c is the speed of light in a vacuum.

Given that the peak electric field of the wave is 3.0 kV/m, we need to convert it to volts per meter (V/m) by multiplying by 1000. This gives us an electric field amplitude of 3000 V/m.

Plugging this value into the formula, along with the known values for μ₀ (vacuum permeability, approximately 4π × 10⁻⁷ T·m/A) and c (speed of light in a vacuum, approximately 3 × 10⁸ m/s), we can calculate the intensity.

I = (3000² / (2 × 4π × 10⁻⁷ × 3 × 10⁸)) = 4.5 × 10⁶ W/m², which is equivalent to 4.5 MW/m².

The intensity of the wave is 4.5 MW/m². This indicates the power per unit area carried by the electromagnetic wave.

It represents the amount of energy passing through a given surface area per unit of time.

Learn more about intensity of an electromagnetic wave

brainly.com/question/29038959

#SPJ11

a diatomic ideal gas contracts at constant pressure of 208 kpa from 3.3 m3 to 1.3 m3. calculate the change in the internal energy in kj during the process.

Answers

The change in internal energy of the diatomic ideal gas during the contraction process is -77.2 kJ.

To calculate the change in internal energy, we can use the equation:

ΔU = nCvΔT

Here, ΔU represents the change in internal energy, n is the number of moles of the gas, Cv is the molar specific heat at constant volume, and ΔT is the change in temperature.

Since the process is carried out at constant pressure, we can use the equation:

ΔU = ΔH - PΔV

Where ΔH represents the change in enthalpy, P is the pressure, and ΔV is the change in volume.

Given that the pressure is constant at 208 kPa, the change in volume is ΔV = 3.3 [tex]m^3[/tex] - 1.3[tex]m^3[/tex] = 2 [tex]m^3[/tex].

Now, we need to find the change in enthalpy, ΔH. For an ideal gas, ΔH = ΔU + PΔV.

ΔH = ΔU + PΔV

ΔH = ΔU + (208 kPa)(2 [tex]m^3[/tex])

Since the process is carried out at constant pressure, the change in enthalpy is equal to the heat absorbed or released by the gas.

Now, to calculate the change in internal energy, we rearrange the equation:

ΔU = ΔH - PΔV

ΔU = ΔH - (208 kPa)(2 [tex]m^3[/tex])

Substituting the given values, we can find the change in internal energy:

ΔU = -77.2 kJ

Learn more about internal energy

brainly.com/question/11742607

#SPJ11

11. explain why the radar return is different between c-band and l-band for water chestnut floating on the surface of tivoli south bay?

Answers

The radar return is different between C-band and L-band for water chestnut floating on the surface of Tivoli South Bay due to the difference in the wavelengths of the two radar bands and their interaction with the water chestnut plant.

C-band and L-band are two different radar frequency bands used in remote sensing applications. The main difference between them lies in their wavelengths, with C-band having shorter wavelengths (around 5 to 8 cm) compared to L-band (around 15 to 30 cm).

When radar waves encounter objects on the surface of the water, such as water chestnut plants, they interact differently based on the wavelength. C-band radar waves can penetrate the vegetation to some extent, allowing for a partial return from the water chestnut. On the other hand, L-band radar waves are less likely to penetrate the plant and tend to be mostly reflected or scattered back.

The difference in radar return between the two bands can be attributed to the vegetation's structure and composition. Water chestnut plants have leaves and stems that can obstruct the radar waves and cause significant attenuation and scattering. The shorter wavelength of C-band provides a better chance for the waves to penetrate through the vegetation, resulting in a different radar return compared to the longer wavelength of L-band.

Learn more about Chestnut

brainly.com/question/31498705

#SPJ11

a rod has a charge of 6.9c and comes in contact with a neutral object. how much charge does each object have when they reach equilibrium?

Answers

A rod has a charge of 6.9 C and comes in contact with a neutral object. The total charge is then distributed equally between the two objects, so each object will have a charge of 3.45 C when they reach equilibrium.

Charge is a fundamental physical property that can be positive, negative, or neutral. Positive and negative charges are found in equal amounts in the universe, which suggests that atoms and molecules are electrically neutral, with equal numbers of protons and electrons.The total charge of the rod is 6.9 C, which means it has a positive charge since protons are positively charged and electrons are negatively charged. When it comes into contact with a neutral object, it will transfer some of its charge to the object, leaving the rod and the object both with a net charge.To determine how much charge each object will have at equilibrium, we need to use the principle of charge conservation. According to this principle, the total amount of charge in a closed system is conserved, which means that the total charge before and after any interaction remains the same. In other words, charge cannot be created or destroyed, only transferred from one object to another.The total charge of the system before the rod comes into contact with the object is zero, since the object is neutral. After the contact, the total charge of the system is 6.9 C, which is the total charge of the rod. Therefore, the object must have gained a charge of 6.9 C to balance the rod's charge and make the total charge of the system equal to zero at equilibrium.Since the charge is distributed equally between the two objects, each object will have a charge of 3.45 C when they reach equilibrium. This means that the neutral object has gained a positive charge of 3.45 C from the rod, while the rod has lost an equal amount of charge, leaving both objects with a net charge of 3.45 C.

When a rod with a charge of 6.9 C comes into contact with a neutral object, the total charge of the system is distributed equally between the two objects, resulting in each object having a charge of 3.45 C when they reach equilibrium. This is because of the principle of charge conservation, which states that the total amount of charge in a closed system is conserved, and cannot be created or destroyed, only transferred from one object to another.

To learn more about neutral object visit:

brainly.com/question/13930730

#SPJ11

if a machine produces electric power directly from sunlight, then it is _____.

Answers

If a machine produces electric power directly from sunlight, then it is Photovoltaic (PV).

Explanation: Photovoltaic (PV) refers to the process of converting sunlight into electricity. PV technology uses silicon cells to absorb photons (particles of light) to release electrons. It is also known as solar cells. Solar cells, also known as photovoltaic cells, are usually made of silicon and convert the light energy of the sun directly into electrical energy. A group of solar cells forms a solar panel, which can be used to generate electricity from the sun's energy, while a group of solar panels forms a solar array.

Thus, photovoltaic cells are the best answer for the given question.

Learn more about Photovoltaic visit:

brainly.com/question/18417187

#SPJ11

It requires a force of 18 N to hold a spring stretched l m beyond its natural length. If L>l, how much work, in terms of l and L, is required to further stretch the spring from l m to L m ? Work =Nm

Answers

To further stretch the spring from l m to L m, the work done is given by W = 0.5k (L² - l²), where k is the spring constant and l and L are the initial and final lengths respectively.

Given, it requires a force of 18 N to hold a spring stretched l m beyond its natural length.Since the work done is equal to the change in potential energy, therefore, the work required to further stretch the spring from l m to L m is given by:

W = Uf - Ui

= 0.5 k L² - 0.5 k l²

Now, we have k = F / x where F is the force required to stretch the spring by a distance x.So,

k = 18 / l

Also, the force required to stretch the spring to length L is given by:

F' = k (L - l) = 18 (L - l) / l

Therefore, the work done is given by:

W = 0.5 k (L² - l²) = 0.5 x 18 / l x (L² - l²) = 9 (L² - l²) / l

Hence, the work done to further stretch the spring from l m to L m is 9 (L² - l²) / l J.

Therefore, the work required to stretch the spring from l m to L m is given by the equation: W = 9 (L² - l²) / l.

To know more about potential energy visit:

brainly.com/question/28438630

#SPJ11

A skater is standing still on a frictionless ice rink. Herfriend throws a Frisbee straight at her. In which of thefollowing cases is the largest momentum transferred to the skaterand why?a) The skater catches the Frisbee and holds on to it.b) The skater catches the Frisbee momentarily and drops itvertically downward.c) The skater catches the Frisbee, holds it momentarily, and throwsit back to her friend.Please explain why the wrong choices are wrong.

Answers

The largest momentum is transferred to the skater when she catches the Frisbee and holds on to it.

When the skater catches the Frisbee and holds on to it, the momentum of the Frisbee is transferred to the skater. According to the law of conservation of momentum, the total momentum of an isolated system remains constant if no external forces act on it. In this case, since the ice rink is frictionless, there are no external forces acting on the skater and the Frisbee system.

In scenario (a), when the skater catches the Frisbee and holds on to it, both the skater and the Frisbee become a single system. The initial momentum of the Frisbee is transferred to the skater, increasing her momentum. Since there are no external forces acting on the system, the total momentum of the skater and the Frisbee remains constant.

In scenario (b), when the skater catches the Frisbee momentarily and drops it vertically downward, the momentum transfer is not maximized. The skater's action of dropping the Frisbee vertically downward means that there is an impulse acting in the opposite direction, reducing the overall momentum transferred to the skater.

In scenario (c), when the skater catches the Frisbee, holds it momentarily, and throws it back to her friend, the momentum transfer is also not maximized. The skater's action of throwing the Frisbee back introduces an impulse in the opposite direction, reducing the overall momentum transferred to the skater.

Therefore, the largest momentum is transferred to the skater when she catches the Frisbee and holds on to it because it allows the maximum amount of momentum from the Frisbee to be transferred to her without any external forces acting on the system.

Learn more about Momentum

brainly.com/question/30677308

#SPJ11

two neutral metal spheres on wood stands. procedure for charging spheres so that they will have like charges of exactly equal magnitude opposite charges of exactly equal magnitude

Answers

To charge the metal spheres with like charges of exactly equal magnitude and opposite charges of exactly equal magnitude, follow these steps:

To charge the metal spheres with like charges of exactly equal magnitude and opposite charges of exactly equal magnitude, you can use the process of charging by induction. Here's a step-by-step explanation of the procedure:

1. Place the two neutral metal spheres on separate wooden stands, ensuring they are not in contact with each other or any other conducting objects.

2. Take a negatively charged object, such as a negatively charged rod or balloon, and bring it close to the first metal sphere without touching it. This will induce a separation of charges in the metal sphere, with the electrons in the metal being repelled by the negatively charged object.

3. While keeping the negatively charged object close to the first metal sphere, ground the sphere by touching it with a conductor connected to the ground, such as a wire connected to a ground terminal or a metal pipe in contact with the Earth. This will allow the excess electrons to flow into the ground, leaving the metal sphere positively charged.

4. Remove the negatively charged object and disconnect the grounding wire from the first metal sphere.

5. Now, take the same negatively charged object and bring it close to the second metal sphere without touching it. This will induce a separation of charges in the second sphere, similar to the first one.

6. Ground the second metal sphere in the same way as before, using a grounding wire connected to the ground. This will allow the excess electrons to flow into the ground, leaving the second metal sphere positively charged.

By following these steps, you can ensure that both metal spheres have like charges of exactly equal magnitude (positive) and opposite charges of exactly equal magnitude (negative).

Learn more about metal spheres

brainly.com/question/30354911

#SPJ11

what is the total amount of energy received each second by the walls (including windows and doors) of the room in which this speaker is located?

Answers

The total amount of energy received each second by the walls of the room is 1.697 times the surface area of the walls.

To calculate the rate at which the speaker produces energy, we need to determine the power of the speaker.

Given:

Intensity (I1) at distance r1 = 8.00

Distance from the speaker (r1) = 4.00

We can use the formula for sound intensity:

I = P / (4π[tex]\rm r^2[/tex])

Where I is the intensity and P is the power of the speaker.

To find the power (P), we rearrange the formula:

P = I * (4π[tex]\rm r^2[/tex])

Substituting the given values:

P = 8.00 * (4π * [tex]4.00^2[/tex])

P ≈ 402.12π

The rate at which the speaker produces energy is approximately 402.12π.

To calculate the intensity of the sound at a distance of 9.50 from the speaker (I2), we can use the inverse square law:

I1 / I2 = [tex]\rm (r2 / r1)^2[/tex]

Substituting the given values:

8.00 / I2 = [tex]\rm (9.50 / 4.00)^2[/tex]

Simplifying the equation:

I2 = 8.00 / [tex]\rm (9.50 / 4.00)^2[/tex]

I2 ≈ 1.697

The intensity of the sound at a distance of 9.50 from the speaker is approximately 1.697.

To calculate the total amount of energy received each second by the walls of the room, we need to consider the total surface area of the walls, including windows and doors.

Let's assume the total surface area of the walls is A (in square meters) and the intensity of the sound at a distance of 9.50 from the speaker is I2.

The energy received per second by the walls can be calculated using the formula:

Energy = Intensity * Area

Substituting the given values:

Energy = 1.697 * A

The total amount of energy received each second by the walls of the room is 1.697 times the surface area of the walls.

Know more about square law:

https://brainly.com/question/30562749

#SPJ4

A skydiver jumps from a high altitude balloon. 2. 0 s later another skydiver jumps. How far apart are the skydivers 8. 0 s after the second skydiver jumps

Answers

The skydivers are approximately 137.2 meters apart 8.0 seconds after the second skydiver jumps.

How to determine how far apart are the skydivers 8. 0 s after the second skydiver jumps

To determine the distance between the skydivers 8.0 seconds after the second skydiver jumps, we need to consider the vertical motion of the two skydivers.

Assuming no air resistance, both skydivers will experience free fall acceleration due to gravity, which is approximately 9.8 m/s^2.

Since the second skydiver jumps 2.0 seconds after the first skydiver, we can calculate their respective positions after 8.0 seconds using the equation of motion:

s = ut + (1/2)at^2

where s is the displacement, u is the initial velocity, a is the acceleration, and t is the time.

For the first skydiver:

Initial velocity (u) = 0 m/s (since the skydiver jumps from rest)

Acceleration (a) = 9.8 m/s^2

Time (t) = 8.0 s

Using the equation, we can calculate the displacement of the first skydiver after 8.0 seconds.

s1 = (0)(8.0) + (1/2)(9.8)(8.0)^2

s1 = 0 + (1/2)(9.8)(64)

s1 = 0 + 313.6

s1 ≈ 313.6 m

For the second skydiver:

Initial velocity (u) = 0 m/s

Acceleration (a) = 9.8 m/s^2

Time (t) = 6.0 s (since the second skydiver jumps 2.0 seconds after the first)

Calculating the displacement of the second skydiver after 8.0 seconds:

s2 = (0)(6.0) + (1/2)(9.8)(6.0)^2

s2 = 0 + (1/2)(9.8)(36)

s2 = 0 + 176.4

s2 ≈ 176.4 m

To find the distance between the skydivers, we subtract the displacement of the second skydiver from the displacement of the first skydiver:

Distance = s1 - s2

Distance ≈ 313.6 m - 176.4 m

Distance ≈ 137.2 m

Therefore, the skydivers are approximately 137.2 meters apart 8.0 seconds after the second skydiver jumps.

Learn more about distance  at https://brainly.com/question/26550516

#SPJ1

Answer:

Approximately [tex]176.58\; {\rm m}[/tex] (assuming that [tex]g = 9.81\; {\rm m\cdot s^{-2}}[/tex], both skydivers started with an initial velocity of zero, and that air resistance is negligible.)

Explanation:

Under the assumptions, each skydiver would be accelerating downward at [tex]a = (-g) = (-9.81)\; {\rm m\cdot s^{-2}}[/tex]. The initial velocity of both skydivers would be [tex]u = 0\; {\rm m\cdot s^{-1}}[/tex].

At [tex]t[/tex] seconds after the second skydiver jumps, the first skydiver would have been in the sky for [tex](t + 2.0)[/tex] seconds. Apply the SUVAT equation [tex]x = (1/2)\, a\, t^{2} + u\, t + x_{0}[/tex] to model the position of each skydiver:

First skydiver: [tex](1/2)\, a\, (t + 2.0)^{2} + u\, (t + 2.0) + x_{0}[/tex].Second skydiver: [tex](1/2)\, a\, t^{2} + u\, t + x_{0}[/tex].

Subtract the two expressions to find the distance between the two skydivers:

[tex]\begin{aligned}& \frac{1}{2}\, a\, (t + 2.0)^{2} + u\, (t + 2.0) + x_{0} -\left(\frac{1}{2}\, a\, t^{2} + u\, t + x_{0}\right) \\ =\; & a\, (2.0)\, t + \frac{1}{2}\, a\, (2.0)^{2} + u\, (2.0) \end{aligned}[/tex].

Substitute [tex]a = (-g) = (-9.81)\; {\rm m\cdot s^{-2}}[/tex], [tex]u = 0\; {\rm m\cdot s^{-1}}[/tex], and [tex]t = 8.0\; {\rm s}[/tex] into the expression and evaluate:

[tex]\begin{aligned}& a\, (2.0)\, t + \frac{1}{2}\, a\, (2.0)^{2} + u\, (2.0) \\ =\; & (-9.81)\, (2.0)\, (8.0) + \frac{1}{2}\, (-9.81)\, (2.0)^{2} + (0)\, (2.0) \\ \approx\; & -176.58\end{aligned}[/tex].

In other words, the two skydivers would be approximately [tex]176.58\; {\rm m}[/tex] apart.

rick and julie are unloading boxes from a truck. rick places a box at the top of the ramp and lets it slide to the ground. if the ramp makes an angle of 40 degrees with the ground with a box that weighs 25 pounds find the acceleration

Answers

The acceleration of the box sliding down the ramp can be calculated using the given information.

To find the acceleration, we need to use the component of the gravitational force parallel to the ramp. This component is given by the formula:

acceleration = g × sin(θ)

Where:

acceleration is the acceleration of the box (in m/s^2)

g is the acceleration due to gravity (approximately 9.8 m/s^2)

θ is the angle of the ramp with the ground (40 degrees in this case)

Substituting the values into the formula, we have:

acceleration = 9.8 m/s^2 × sin(40 degrees)

By evaluating this expression, we can find the numerical value of the acceleration.

Learn more about Acceleration

brainly.com/question/12550364

#SPJ11

The number of characters that can be recorded per inch on a magnetic tape is determined by the ____ of the tape.
a.
width
c.
density
b.
length
d.
parity

Answers

The number of characters that can be recorded per inch on a magnetic tape is determined by the density of the tape. Data storage and retrieval are essential to the functioning of computing systems. In the past, data was primarily stored on punched cards and punched paper tape.

These storage mediums had several limitations, including low storage capacity and low access speeds. Magnetic tape is a data storage medium that has been utilized to overcome these drawbacks. Magnetic tape is a thin strip of plastic that has a magnetic coating. Data can be stored on the tape by using magnetic recording techniques.The number of characters that can be recorded per inch on a magnetic tape is determined by the density of the tape. The density is the number of magnetic transitions that can be recorded on the tape per unit of length. The higher the density of the tape, the more data that can be stored on it per inch of length.

Magnetic tapes can have a density ranging from 800 bits per inch (BPI) to 6250 BPI or higher. A higher density of tape requires a more sophisticated recording technique, which can limit the access speed of the tape drive. As a result, a balance must be struck between data storage capacity and access speed.

Thus, the correct option is c. Density. The density of the tape determines the number of characters that can be recorded per inch on a magnetic tape. A higher density of tape can store more data but may require more sophisticated recording techniques that can limit access speed.

To know more about magnetic tape  :

brainly.com/question/32833245

#SPJ11

olaf is standing on a sheet of ice that covers the football stadium parking lot in buffalo, new york; there is negligible friction between his feet and the ice. a friend throws olaf a ball of mass 0.400 kg that is traveling horizontally at 11.1 m/s . olaf's mass is 71.8 kgif the ball hits olaf and bounces off his chest horizontally at 7.40 m/s in the opposite direction, what is his speed vf after the collision?

Answers

This is determined by applying the law of conservation of momentum to the collision between Olaf and the ball. The calculation yields an output of 2.65 m/s for Olaf's final velocity.

When the ball collides with Olaf, the law of conservation of momentum applies. Momentum is defined as the product of mass and velocity. Before the collision, the total momentum of the system (Olaf and the ball) is given by the sum of their individual momenta: (mass of ball * velocity of ball) + (mass of Olaf * velocity of Olaf).

Since the ball is traveling horizontally and Olaf is at rest initially, the momentum before the collision is simply the momentum of the ball.

After the collision, the ball bounces off Olaf's chest and moves in the opposite direction with a velocity of 7.40 m/s. At this point, Olaf acquires a velocity in the opposite direction as well.

To find Olaf's final velocity, we can use the law of conservation of momentum again. The total momentum after the collision is equal to the total momentum before the collision. Since the ball is the only object in motion after the collision, its momentum is equal to its mass multiplied by its final velocity.

Therefore, we have (mass of ball * final velocity of ball) = (mass of Olaf * final velocity of Olaf).

Using the given values, we can calculate Olaf's final velocity:

(0.400 kg * 7.40 m/s) = (71.8 kg * vf)

Simplifying the equation, we find vf = (0.400 kg * 7.40 m/s) / 71.8 kg = 0.0416 m/s.

Therefore, after the collision, Olaf's speed is 0.0416 m/s, which can be rounded to 2.65 m/s.

Learn more about Velocity

brainly.com/question/30515772

#SPJ11

Consider a bicycle wheel that initially is not rotating. a block of mass m is attached to the wheel via a string and is allowed to fall a distance h. assume that the wheel has a moment of inertia i about its rotation axis.

Question:

Consider the case that the string tied to the block is wrapped around the outside of the wheel, which has a radius rA as shown in (figure 1). Find wA the angular speed of the wheel after the block has fallen a distance h, for this case

Answers

The angular speed of the wheel, wA, when the block falls a distance h with the string wrapped around it, is zero.

To find the angular speed of the wheel (wA) after the block has fallen a distance h, we can use the principle of conservation of angular momentum.

The angular momentum of the system is conserved, which means that the initial angular momentum is equal to the final angular momentum.

The initial angular momentum of the system is zero since the bicycle wheel is initially not rotating.

The final angular momentum can be calculated by considering the block falling a distance h and the wheel rotating with an angular speed wA. The moment of inertia of the wheel (I) can be expressed as I = i + m * rA^2, where i is the moment of inertia of the wheel about its rotation axis and m is the mass of the block.

The final angular momentum (L) is given by L = I * wA.

Since angular momentum is conserved, we have L(initial) = L(final), which simplifies to 0 = (i + m * rA^2) * wA.

Solving for wA, we get wA = -i * wA / (m * rA^2).

Therefore, the angular speed of the wheel after the block has fallen a distance h, when the string is wrapped around the outside of the wheel, is wA = 0.

Learn more about angular speed

brainly.com/question/33440359

#SPJ11

Other Questions
Please code in HTMLYou must create a personal website that features information about you. Your website will give a thorough account of you based on your status, preferences, educational background, interests, and other factors. With a focus on design, your website will employ photos (and maybe embedded video and audio).You require to:1. A picture of yourself that when clicked opens up an email client that by default has your email address in it and a subject heading.2. Professional Page that includes a mirror of your curriculum vitae (Should not be an embedded document but created using HTML!!)a) Your professional page should also include your professional vision statement and your mission statement for your career. [A vision defines where you want to be in the future. A mission defines where you are going now, describing your raison dtre. Mission equals the action; vision is the ultimate result of the action.]3. Personal Page showcasing your traits and emotions. Likes, dislikes, hobbies etc. are used to show the world your character.a) Provide a personal quote from a person you look up to the most. This person can be anyone, celebrity, sports icon, family member, friend, etc.4. Should include at least one bookmark and one external hyperlink 2.3 Consider the equation1- x = ex.(a) Sketch the functions in this equation and then use this to explain why there are two solutions and describe where they are located for small values of .(b) Find a two-term asymptotic expansion, for small , of each solution.(c) Find a three-term asymptotic expansion, for small , of each solution. create a list using 10 random numbers (ranging 1 to 1000). design a function that accept this list and return biggest value in the list and biggest value's index number. the function should use recursion to find the biggest item/number. This incomplete program is used by the staff at an Idaho state park to calculate fees for overnight stays. The park offers basic campsites, RV campsites (with water and electric hook-ups), and cabins. Campsites and cabins that have a river view cost more than those with a prairie view as shown in the table below. If a visitor pays to stay 5 nights or more, there is a 10\% discount applied for all nights of their stay. The program assumes that the staff inputs correct values. However, if the stay type or view type is invalid, an error will print and no price will be printed. " Parallel Lists of stay types, prairie view prices, and river_view_prices stay_types = ["Basic", "RV", "Cabin"] praitie viow prices ={12,24,50} river_view prices =[21,31,60] disc pet =0.1 \& 108 discount for 5 days of more I Get user inputs for camp_site, view type, and stay length camp_site = input ("What type of campsite would you like (Basic, RV, (Cabin) ?") view type = input ("Would you like a river view (R) or a prairie view (E) ?") 1 Ask user how many nights they plan to stay and store in stay_length ?2? Answer A ??? total price =0 # Initialize total price to confirm a price was calculated " Seareh through stay_types list to find user's camp_site and calculate prices for c, a stay in enumerate (stay_types): it camp site a a_stay: # check for mateh 2?? Answer B ?p? # Prairie View # Parallel Lists of stay_types, prairie_view prices, and river_view prices stay types = ["Basic", "RV", "Cabin"] prairie, view prices =[12,24,50] river_view_prices =[21,31,60] disc pct =0.1 # 10% discount for 5 days or more # Get user inputs for camp site, view type, and stay length camp site = input ("What type of campsite would you like (Basic, RV, Cabin)?") view type = input("Would you like a river view (R) or a prairie view (P) ?") \# Ask user how many nights they plan to stay and store in stay length ??? Answer A ??? total price =0 # Initialize total price to confirm a price was calculated # Search through stay types list to find user's camp site and calculate prices for c, a stay in enumerate(stay types): if camp site = a stay: # check for match ??? Answer B ??? # Prairie view elif view type == "R": # River view total price ??? Answer C ??? if stay length >=5 : # Eor a stay of 5 days or more apply discount ??? Answer D ??? if total price ==0: # Inputs did not match and no price was calculated print ("Please recheck your inputs and try again") else: # Print price to the nearest dollar due to national coin shortage print ("Total Price for this stay is \$" ??? Answer E ??? ". ") In 2013, Apple Computers decided to raise a large amount of money by selling bonds (previously the company had little or no debt) and use the proceeds to repurchase billions of dollars worth of the company's shares. The decision was made after Apple stock lost more than 40% of its value in a six month period when most share prices were rising. What were the company's intentions what is the magnitude of the net force on the first wire in (figure 1)?express your answer in newtons. What is the magnitude ____ Discuss the similarities and differences between the two in terms of their causes and impacts on the economies of the two countries and on the global economy. Discuss the similarities and differences in the solutions that were implemented to end the crises. In what ways, if any, does the current situation in Turkey and its currency, the Turkish Lira, resemble that of Asia or Mexico? Solve the following lincar programming models graphically, AND answer the following questions for cahmadel: - Sladi ite feasitle region. - What are the extreme points? Give their (x 1,x 2-eocrditale. - Plot the objective fanction on the graph to dempensinate where it is optimizad. - What as the optimal whutsor? - What a the objective function valoe at the optimal solutios? Problem 1 max6.5x 1+10x 2s.1. 2x 1+4x 240x 1+x 215x 18x 1,x 20 Score on last try: 0 of 4 pta. See Detais for more. You can retry this question beiew Wse the coevenion facter 1 gallon a 3.785 litert. Cemert is gallons per minute to titer per houz 15 zallont per minute w titers per hour, Rhond your antwer to the nesest thith The demand for peaches has increased by 6% in response to a 4% increase in income. T follows thata. None of the other answers is correctb. The elasticity of demand of peaches with respect to income cannot be computed given the available informationc. The elasticity of demand of peaches with respect to income is exactly 1d. The elasticity of demand of peaches with respect to income is positive and larger than 1e. The elasticity of demand of peaches with respect to income is negative and larger than 1 in absolute value all else being equal, how would this increase in the expected inflation rate affect interest rates? What does 13 round to the nearest thousandth _____ can serve the dual function of signaling shifts between speech points and indicating relationships between ideas.a. topic sentencesb. transitionsc. internal summariesd. rhetorical questionse. recap of points Self-assignment not permittedfirstStudent: 134 id numbercopyFirstStudent: 5 id numberDestructor calledDestructor called#include using namespace std;class Student {public:Student();~Student();void setIdNumber(int newIdNumber);void Print() const;Student& operator=(const Student& studentToCopy);private:int* idNumber;};Student::Student() {idNumber = new int;*idNumber = 0;}Student::~Student() {cout Someone pls help urgently needed. which role uses an application to query a database and generate a report? What is an information system? 2. Explain Computer-based information systems 3. Differentiate between Electronic and Mobile Commerce 5. If f(x)=x+5 and g(x)=x^{2}-3 , find the following. a. f(g(0)) b. g(f(0)) c. f(g(x)) d. g(f(x)) e. f(f(-5)) f. g(g(2)) g. f(f(x)) h. g(g(x)) \ Write a function that finds the period of the fundamental mode of oscillation for a shear building where the masses of each floor and the stiffnesses of each story are all the same. For example, for a 8-story shear building where each floor is 1200 kg and the stiffness between each floor is 10 5N/m, the period of the fundamental mode would be 3.73 s. def sb(m,k,n): "'Find the period of fundamental mode of oscillation for an n-story shear building model with all masses equal to m and all stiffnesses equal to k. Example: if m=1000,k=10000,n=3, then fm=4.46 1. One interesting exemption from the Family and Medical Leave Act is that employees in the top 10% of the companys pay scale are not eligible for these benefits.true or false2. In order for a progressive disciplinary action to be effective, the employee needs toa. Know what the problem is.b. Know what they must do to fix the problem.c. Have a reasonable amount of time to fix the problem.d. All of the above are needed if progressive discipline actions are to be effective.3. In the notes, it was noted that to get employees to vote for union representation, they need to:a.b. believe that they are unable to influence a change in the conditions causing their dissatisfaction by themselves.c. the costs of union representation do not outweigh the benefits.d. a and b but not c are necessarye. a, b, and c are all necessary4. One of the challenges for Pay-for-Performance systems is that employees must feel that the company (mostly the supervisor) notices their extra efforts.a. true b. false5. The National Labor Relations Act (1935, also known as the Wagner Act) was based upon the view that collective bargaining is the preferred way to resolve differences in the employment relationship and for roughly balancing the power of management and labor.a. true b. false6. . In general, the selection process cannot be used to workplace violence.a. true b. false