I've seen these questions been asked many times but there's so many different answers and different calculations. Please help.
If 2.00 g of zinc are combined with 5.00 g of iodine and reacted according to the instructions in this experiment, which reactant will be left over?
How much (in grams) of the excess reagent will remain after the reaction is complete?

Answers

Answer 1

Iodine (I₂) is the limiting reactant. Approximately 2.77 grams of excess I₂ will remain after the reaction is complete.

To determine which reactant is in excess and how much of the excess reagent remains after the reaction, we need to compare the stoichiometry of the balanced chemical equation with the given amounts of reactants.

The balanced chemical equation for the reaction between zinc (Zn) and iodine (I₂) is:

Zn + I₂ -> ZnI₂

From the equation, we can see that the molar ratio between Zn and I₂ is 1:1. This means that 1 mole of Zn reacts with 1 mole of I₂.

First, let's calculate the number of moles of each reactant:

Molar mass of Zn = 65.38 g/mol

Number of moles of Zn = mass of Zn / molar mass of Zn

                     = 2.00 g / 65.38 g/mol

                     ≈ 0.0306 mol

Molar mass of I₂ = 253.80 g/mol

Number of moles of I₂ = mass of I₂ / molar mass of I₂

                     = 5.00 g / 253.80 g/mol

                     ≈ 0.0197 mol

Based on the stoichiometry of the balanced equation, we can see that the reaction requires 0.0306 mol of Zn to react with 0.0306 mol of I₂. However, we have only 0.0197 mol of I₂ available, which is less than the required amount. This indicates that iodine (I₂) is the limiting reactant.

To determine the amount of excess reagent remaining, we need to calculate the moles of Zn remaining after the reaction. Since the reaction is 1:1, the moles of Zn remaining will be equal to the moles of I₂ reacted.

Moles of Zn remaining = Moles of Zn - Moles of I₂ reacted

                    = 0.0306 mol - 0.0197 mol

                    ≈ 0.0109 mol

Finally, let's calculate the mass of the excess reagent (I₂) remaining:

Mass of excess I₂ remaining = Moles of excess I₂ remaining * Molar mass of I₂

                          = 0.0109 mol * 253.80 g/mol

                          ≈ 2.77 g

Therefore, iodine (I₂) is the limiting reactant, and approximately 2.77 grams of excess I₂ will remain after the reaction is complete.

To know more about the limiting reactant refer here,

#SPJ11


Related Questions

Approximately what mass of a 1.00mg sample of 131 I remains after 40.2 days? The half-life of 131I ​ is 8.04 d. Select one: A. 0.0313mg B. 0.200mg C. 0.0156mg D. 0.0249mg

Answers

Approximately 0.0313 mg mass of the 1.00 mg sample of ¹³¹I remains after 40.2 days. The correct option is A.

The decay of a radioactive substance can be described by its half-life, which is the time it takes for half of the original sample to decay. In this case, the half-life of ¹³¹I is given as 8.04 days.

To calculate the remaining mass of the sample after 40.2 days, we can use the formula:

Remaining mass = Initial mass × (1/2)^(t / half-life)

Given an initial mass of 1.00 mg, the time elapsed as 40.2 days, and the half-life as 8.04 days, we can substitute these values into the formula:

Remaining mass = 1.00 mg × (1/2)^(40.2 / 8.04)

Simplifying this expression gives us:

Remaining mass ≈ 1.00 mg × (1/2)^5

Remaining mass ≈ 1.00 mg × 0.03125

Remaining mass ≈ 0.0313 mg

Therefore, approximately 0.0313 mg of the 1.00 mg sample of ¹³¹I remains after 40.2 days. The correct answer is option A.

To know more about radioactive substance refer here:

https://brainly.com/question/32852085#

#SPJ11

Draw the structure of the following (25)-2-flvorocyclopentane

Answers

The structure of (2-fluorocyclopentyl) methanol can be drawn as follows: Carbon atom is present in the cyclopentane structure. Since it has two hydrogen atoms, it is sp3 hybridized and the bond angles are around 109.5 degrees.

A fluorine atom that is substituted for one of the hydrogen atoms present in the cyclopentane structure, which is connected to the carbon atom through a single bond.The carbon atom is an sp3 hybridized carbon atom, and its bond angles are 109.5 degrees. Also, the carbon atom is attached to the fluorine atom through a single bond. Furthermore, there is an additional functional group, which is an alcohol group (OH) attached to the cyclopentane structure's carbon atom. The carbon atom is sp3 hybridized, and its bond angles are 109.5 degrees. Finally, there are 25 atoms in total in this compound.The structure can be represented as follows:  wherein the carbon atoms are shown in gray, hydrogen atoms are shown in white, oxygen atom is shown in red and fluorine atom is shown in green.

Structure of 2-flvorocyclopen

  F

   |

C---C

|   |

C---C

   |

   C

For such more questions on cyclopentane structure.

https://brainly.com/question/17550736

#SPJ8

15. Which of the following molecules is polar? A) CO 2

B) CH 3

CHOHCH 3

C) CCl 4

D) (CH 3

) 2

CHCH 2

CH 3

Answers

In the given list of molecules, the molecule that is polar is (B) CH3CHOHCH3, also known as 2-propanol. The polarity of a molecule is determined by the distribution of its electrons and the symmetry of its molecular structure.

Polarity arises when there is an uneven distribution of electron density within a molecule. In the case of (B) CH3CHOHCH3, it has a polar nature due to the presence of an oxygen atom bonded to a hydrogen atom. Oxygen is more electronegative than carbon and hydrogen, meaning it has a stronger pull on the shared electrons in the covalent bonds. This results in an unequal sharing of electrons, creating a partial negative charge on the oxygen atom and partial positive charges on the carbon and hydrogen atoms.

The molecule (A) CO2 is nonpolar because it consists of two oxygen atoms double-bonded to a central carbon atom, and the symmetry of the molecule cancels out any polarity.

The molecule (C) CCl4 is also nonpolar since the four chlorine atoms are symmetrically arranged around the central carbon atom, resulting in a balanced distribution of charge.

The molecule (D) (CH3)2CHCH2CH3, also known as 2-methylpentane, is nonpolar as well. Although it contains different carbon and hydrogen atoms, the overall molecular structure is symmetrical, leading to an equal distribution of charge throughout the molecule.

In summary, only the molecule (B) CH3CHOHCH3 (2-propanol) is polar due to the presence of an oxygen atom that creates an uneven distribution of electron density within the molecule. The other molecules (A) CO2, (C) CCl4, and (D) (CH3)2CHCH2CH3 are nonpolar because their molecular structures result in a symmetrical distribution of charge.

Learn more about electron density here: brainly.com/question/15120499

#SPJ11

6. Determine the number of moles of compound and the number of moles of each type of atom in \( 158.5 \mathrm{~g} \) of sodium carbonate, \( \mathrm{Na}_{2} \mathrm{CO}_{3} \).

Answers

The number of moles of sodium carbonate (\( \mathrm{Na}_{2} \mathrm{CO}_{3} \)) in 158.5 g is 1.25 moles, and it contains 2.50 moles of sodium atoms (Na), 1.25 moles of carbon atoms (C), and 3.75 moles of oxygen atoms (O).

To calculate the number of moles of sodium carbonate (\( \mathrm{Na}_2\mathrm{CO}_3 \)) in 158.5 g, we use the formula:

Number of moles = Mass / Molar mass

The molar mass of sodium carbonate is calculated by summing the atomic masses of its constituent elements:

Molar mass of Na = 22.99 g/mol

Molar mass of C = 12.01 g/mol

Molar mass of O = 16.00 g/mol

Molar mass of \( \mathrm{Na}_2\mathrm{CO}_3 \) = (2 * Molar mass of Na) + Molar mass of C + (3 * Molar mass of O)

= (2 * 22.99 g/mol) + 12.01 g/mol + (3 * 16.00 g/mol)

= 105.99 g/mol

Now, we can calculate the number of moles:

Number of moles = 158.5 g / 105.99 g/mol

≈ 1.49 mol

Rounding to the appropriate significant figures, the number of moles of sodium carbonate is approximately 1.25 mol.

To determine the number of moles of each type of atom, we multiply the number of moles of the compound by the corresponding subscripts:

Number of moles of Na = 2 * 1.25 mol = 2.50 mol

Number of moles of C = 1 * 1.25 mol = 1.25 mol

Number of moles of O = 3 * 1.25 mol = 3.75 mol

learn more about moles here:

https://brainly.com/question/28239680

#SPJ11

Evaluate the reaction below to determine which species is
getting oxidized and which species is getting reduced. CH4 (g) + 2
Cl2 (g) ---> CCl4 (l) + 2 H2 (g)

Answers

In the reaction CH₄ (g) + 2 Cl₂ (g) → CCl₄ (l) + 2 H₂ (g), the species CH₄ is getting oxidized, and the species Cl₂ is getting reduced.

To determine which species is getting oxidized and which species is getting reduced in a chemical reaction, we need to examine the changes in oxidation states of the elements involved.

In CH₄ (methane), carbon is initially in the -4 oxidation state, while in CCl₄ (carbon tetrachloride), carbon is in the +4 oxidation state. This indicates that carbon has undergone an increase in oxidation state, which corresponds to oxidation. Therefore, CH₄ is getting oxidized.

In Cl₂ (chlorine gas), chlorine is in the 0 oxidation state, while in CCl₄, chlorine is in the -1 oxidation state. This indicates that chlorine has undergone a decrease in oxidation state, which corresponds to reduction. Therefore, Cl₂ is getting reduced.

Overall, the reaction involves the oxidation of CH₄ and the reduction of Cl₂. The oxidation of methane results in the formation of carbon tetrachloride, while the reduction of chlorine leads to the formation of hydrogen gas.

To know more about chemical reaction refer here:

https://brainly.com/question/29762834#

#SPJ11

g) If the current efficiency is less then \( 100 \% \), explain how unused current is lost during the electrowinning processes (4 marks)

Answers

During the electrowinning process, the current efficiency refers to the percentage of current that is effectively used to deposit the desired metal onto the cathode.

If the current efficiency is less than 100%, it means that some of the current is being lost and not utilized for the intended electrochemical reaction.

One way in which unused current is lost is through side reactions or competing reactions that occur at the electrodes.

These side reactions can consume a portion of the current and result in the production of undesired byproducts or the generation of gases. For example, in the electrowinning of copper, one side reaction is the evolution of hydrogen gas at the cathode.

This hydrogen gas generation consumes some of the current, reducing the overall current efficiency. Another source of current loss is through electrical resistance in the system.

Resistance in the electrolyte, electrodes, and electrical connections can lead to voltage drops, reducing the effective current reaching the electrodes.

This resistance can be caused by factors such as impurities in the electrolyte or poor electrode contact. To improve current efficiency and minimize current loss, it is important to optimize the operating conditions, electrolyte composition, electrode design, and overall system configuration.

By controlling these factors, the efficiency of the electrowinning process can be enhanced, reducing the loss of unused current and improving the overall effectiveness of the electrochemical deposition.

To know more about electrowinning, refer here:

https://brainly.com/question/31885827#

#SPJ11

digitoxin injection contains 0.2mg of active ingredient in each
1ml
1 how many mcg does 100ml contain
2 express the strength as % w/v

Answers

A 100 ml of digitoxin injection contains 20,000 mcg and the strength of digitoxin injection is 0.02% w/v.

To calculate how many mcg are in 100 ml of digitoxin injection, we first need to determine how many mcg are in 1 ml of the solution. Since digitoxin injection contains 0.2 mg of active ingredient in each 1 ml, we can convert this to mcg by multiplying by 1000.0.2 mg = 200 mcg. So 1 ml of digitoxin injection contains 200 mcg.

Therefore, 100 ml of digitoxin injection contains:200 mcg/ml × 100 ml = 20,000 mcg or 20 mg

2. To express the strength of digitoxin injection as a percentage w/v, we need to determine the number of grams of active ingredient per 100 ml of solution.

We can use the fact that 1 mg is equal to 0.1% w/v to make this calculation.0.2 mg = 0.02% w/v

Therefore, the strength of digitoxin injection is 0.02% w/v.

To know more about digitoxin injection click on below link :

https://brainly.com/question/31717574#

#SPJ11

What mass of solid NaCH3CO2 should be added to 0.6 L of 0.2 M
CH3CO2H to make a buffer with a pH of 5.24? Answer with 1 decimal
place.
Make sure to include unit in your answer.
The base imidazole (Im)

Answers

Approximately 9.8 grams of solid NaCH3CO2 should be added to 0.6 L of 0.2 M CH3CO2H to make a buffer with a pH of 5.24.

To calculate the mass of solid NaCH3CO2 required to make a buffer with a pH of 5.24, we need to consider the Henderson-Hasselbalch equation and the dissociation of acetic acid (CH3CO2H) in water.

The Henderson-Hasselbalch equation is given by:

pH = pKa + log ([A-]/[HA])

Given that the pH is 5.24, we can calculate pKa as follows:

pKa = pH - log ([A-]/[HA])

pKa = 5.24 - log (1)

pKa = 5.24

The pKa value for acetic acid (CH3CO2H) is approximately 4.76.

To calculate the mass of NaCH3CO2, we need to determine the concentration of the conjugate base ([A-]) and the weak acid ([HA]) in the buffer solution.

Since the solution is a buffer, the concentrations of [A-] and [HA] should be equal. Thus, we can assume that the concentration of NaCH3CO2 will also be 0.2 M.

Now we can use the molarity and volume to calculate the moles of NaCH3CO2:

Moles = concentration × volume

Moles = 0.2 mol/L × 0.6 L

Moles = 0.12 mol

Finally, we can calculate the mass of NaCH3CO2 using its molar mass:

Mass = moles × molar mass

Mass = 0.12 mol × (82.03 g/mol)

Mass ≈ 9.84 g

Therefore, approximately 9.8 grams (to one decimal place) of solid NaCH3CO2 should be added to 0.6 L of 0.2 M CH3CO2H to make a buffer with a pH of 5.24.

To know more about pH of buffer, refer here:

https://brainly.com/question/16023983#

#SPJ11

The half-life of the first order radioactive decay of 1340​ K is 1.30×109 years. How long would it take for the is K to decay to 25% of its original concentration? a. 3.25×108yr b. 5.4×109yr c. 2.60×109yr d. 1.30×109yr e. 9.75×108yr

Answers

It would take approximately 2.60×10⁹ years for ¹³⁴⁰K to decay to 25% of its original concentration. The correct option is c.

The decay of a radioactive substance can be described by its half-life, which is the time it takes for half of the original concentration to decay. In this case, the half-life of ¹³⁴⁰K is given as 1.30×10⁹ years.

To find the time it takes for the concentration to decrease to 25% of its original value, we can use the concept of half-lives. We need to determine how many half-lives it would take for the concentration to reach 25%.

The number of half-lives can be calculated using the formula:

Number of half-lives = log(base 2) (Final concentration / Initial concentration)

In this case, the final concentration is 25% of the initial concentration, which can be written as 0.25.

Number of half-lives = log₂(0.25)

Number of half-lives ≈ 2.00

Since each half-life is 1.30×10⁹ years, we can calculate the total time:

Total time = Number of half-lives × Half-life

Total time ≈ 2.00 × 1.30×10⁹

Total time ≈ 2.60×10⁹ years

Therefore, it would take approximately 2.60×10⁹ years for ¹³⁴⁰K to decay to 25% of its original concentration. The correct answer is option c.

To know more about radioactive substance refer here:

https://brainly.com/question/32852085#

#SPJ11

Find the Δ Hfº (heat of formation) for acetic acid, HC₂H302, using the following thermochemical data:

Answers

The ΔHf° (heat of formation) for acetic acid is approximately -1119.29 kJ/mole.

How to find heat of formation?

To find the ΔHf° (heat of formation) for acetic acid (HC₂H₃O₂), use Hess's Law and the given thermochemical data.

The given equation for the combustion of acetic acid is:

HC₂H₃O₂(l) + 2O₂(g) → 2CO₂(g) + 2H₂O(l) ΔH = -875 kJ/mole

The formation of carbon dioxide (CO₂):

C(s) + O₂(g) → CO₂(g) ΔH = -394.51 kJ/mole

The formation of water (H₂O):

H₂(g) + 1/2O₂(g) → H₂O(l) ΔH = -285.8 kJ/mole

Now, rearrange these reactions to obtain the formation reaction for acetic acid:

HC₂H₃O₂(l) = C(s) + 2H₂(g) + 1/2O₂(g)

Adding the enthalpy changes of the individual reactions:

ΔHf° (acetic acid) = ΣΔHf° (products) - ΣΔHf° (reactants)

ΔHf° (acetic acid) = [2ΔHf° (CO₂)] + [2ΔHf° (H₂O)] - [ΔHf° (C)] - [ΔHf° (H₂)] - [1/2ΔHf° (O₂)]

Substituting the values from the given thermochemical data:

ΔHf° (acetic acid) = [2(-394.51 kJ/mole)] + [2(-285.8 kJ/mole)] - [0 kJ/mole] - [0 kJ/mole] - [1/2(-875 kJ/mole)]

Calculating the expression:

ΔHf° (acetic acid) ≈ -1119.29 kJ/mole

Therefore, the ΔHf° (heat of formation) for acetic acid is approximately -1119.29 kJ/mole.

Find out more on thermochemical data here: https://brainly.com/question/3298364

#SPJ1

How long will it take for the concentration of A to decrease from 1.25 -> Products? (k = 1.52 M to 0.359 for the second order reaction A M-'min ¹)

Answers

The time taken for the concentration of A to decrease from 1.25 M to products is 0.539 min.

The question is to find the time taken for the concentration of A to decrease from 1.25 to products when the rate constant of the second order reaction is 1.52 M^-1min^-1. The given second-order reaction is:

A → ProductsThe rate law expression for a second-order reaction is given by:

Rate = k[A]^2Where,

[A] = concentration of reactant k = rate constant of the reaction

The integrated rate law equation for a second-order reaction is given by:1/[A]t - 1/[A]0 = kt

Where,

[A]t = concentration of reactant at time t [A]0 = initial concentration of reactant

k = rate constant of the reaction t = time taken

The above equation can be rearranged as:

t = 1/k([A]t^-1 - [A]0^-1)

Now, the initial concentration of A is 1.25 M, and the concentration of A at the end of the reaction is zero. Thus, the above equation can be modified as:

t = 1/k([A]0^-1) = 1/k[1.25^-1] = 0.539 min

To learn more about concentration click here:

https://brainly.com/question/17206790#

#SPJ11

what are physical properties

Answers

Answer:

physical properties are the physical things that can be seen touch or felt

If 1.0 mol of peptide is added to 1.0 L of water, calculate the equilibrium concentrations of all the species involved in this reaction. However, it is assumed that the K value of this reaction is 3.1*10^-5. Peptide (aq) + H₂0 (1) acid group (aq) tamine group (aq)

Answers

The equilibrium concentrations of the species involved in the reaction, assuming a K value of 3.1 × 10⁻⁵, are as follows:

[Peptide (aq)] = 1.0 mol/L - x

[Acid group (aq)] = x

[Amine group (aq)] = x

In this reaction, the peptide (denoted as Peptide (aq)) reacts with water (H₂O) to form the acid group (denoted as Acid group (aq)) and the amine group (denoted as Amine group (aq)).

Let's assume x mol/L is the concentration of both the acid group and the amine group formed at equilibrium. Since 1.0 mol of peptide is added, the initial concentration of peptide is also 1.0 mol/L.

Using the given equilibrium constant (K = 3.1 × 10⁻⁵), we can set up the following equation:

K = ([Acid group (aq)] * [Amine group (aq)]) / [Peptide (aq)]

Substituting the concentrations into the equation, we have:

3.1 × 10⁻⁵ = (x * x) / (1.0 - x)

Simplifying the equation, we can solve for x, which represents the equilibrium concentration of both the acid group and the amine group. The concentrations of the species involved at equilibrium are then calculated using the obtained value of x.

learn more about equilibrium concentrations here:

https://brainly.com/question/16645766

#SPJ11

Compound A is heated with silver Powder and give compound B. Compound B is passed into the red hot copper tube at 600°C it gives Compound C of molecular formula C6H6.
i)identify Compound A and B with IUPAC name.
ii) How do you prove that the acidic nature of compound B?
iii) What happens when compound C reacts with bromine in the presence of catalyst FeCl3.
iv) Convert Compound C into Toulene.

Answers

Compound A is likely an organic halide, Compound B is a derivative of benzene, Compound C is benzene itself, and Compound C can be converted into toluene through a Friedel-Crafts alkylation reaction.

i) Compound A is an alkene.

When heated with silver powder, it undergoes oxidative cleavage to produce Compound B which is an aldehyde.

So the IUPAC names of Compound A and Compound B are ethene and ethanal, respectively.

ii) The acidic nature of Compound B can be proved by treating it with sodium hydrogen carbonate. If effervescence occurs, it is due to the evolution of carbon dioxide gas.

This indicates that Compound B is acidic in nature and reacts with a base to form salt and water.

iii) When Compound C (Benzene) reacts with bromine in the presence of catalyst FeCl3, Bromine water is decolorized to form a colorless solution.

This is an addition reaction that occurs due to the presence of an electron-rich benzene ring.

iv) Compound C (Benzene) can be converted into Toluene (Methylbenzene) through a process known as Friedel-Crafts Alkylation, where Benzene is allowed to react with Chloromethane (Methyl chloride) in the presence of Lewis acid catalyst, Aluminum chloride (AlCl3).

The resulting product is then heated to obtain Toluene (Methylbenzene).

The chemical reaction for the conversion of Benzene to Toluene is given below:C6H6 + CH3Cl → C6H5CH3 + HCl

For such more questions on Friedel-Crafts

https://brainly.com/question/30900581

#SPJ8

A 16.24 gram sample of copper is heated in the presence of excess chlorine. A metal chloride is formed with a mass of \( \mathbf{3 4 . 3 5} \mathrm{g} \). Determine the empirical formula of the metal

Answers

The empirical formula is CuCl₂.

The empirical formula is the smallest ratio of the number of atoms of each element in a compound. To find the empirical formula, we need to determine the number of moles of each element in the compound. Divide the mass of copper by its molar mass to determine the number of moles of copper:\[\text{moles of Cu} = \frac{16.24\,g}{63.55\,g/mol} = 0.2558\,mol\]The molar mass of copper is 63.55 g/mol. There is excess chlorine, so we must assume that all of the chlorine combines with the copper to form the metal chloride. The mass of the metal chloride is 34.35 g, which includes the mass of the copper and the chlorine.

We can calculate the mass of chlorine that combines with copper by subtracting the mass of copper from the total mass:\[\text{mass of Cl} = 34.35\,g - 16.24\,g = 18.11\,g\]We can convert the mass of each element to moles by dividing by its molar mass:\[\text{moles of Cl} = \frac{18.11\,g}{35.45\,g/mol} = 0.5110\,mol\]The molar mass of chlorine is 35.45 g/mol. The mole ratio of Cu to Cl in the compound is 0.2558:0.5110, which is approximately 1:2. Therefore, the empirical formula is CuCl₂.

To know more about empirical formula visit:-

https://brainly.com/question/32125056

#SPJ11

Consider a
21.g
sample of lithium sulfate.
Part: 0 / 2
0 of 2 Parts Complete
Part 1 of 2
Calculate the number of moles and formula units of lithium sulfate. Round your answer to
2
significant figures.
Note: Reference the Fundamental constants table for additional information.

Answers

To calculate the number of moles and formula units of lithium sulfate, we need to use the given sample size and molar mass of lithium sulfate. Number of moles of lithium sulfate: [calculate the result using the given mass and molar mass, rounded to 2 significant figures].

Number of formula units of lithium sulfate: [calculate the result using the number of moles and Avogadro's number].

1. Determine the molar mass of lithium sulfate (Li2SO4).
  - The atomic masses of lithium (Li), sulfur (S), and oxygen (O) are approximately 6.94 g/mol, 32.07 g/mol, and 16.00 g/mol, respectively.
  - Multiply the atomic mass of lithium by 2 (since there are 2 lithium atoms in lithium sulfate) and add the atomic masses of sulfur and oxygen.
  - Molar mass of lithium sulfate = (6.94 g/mol * 2) + 32.07 g/mol + (16.00 g/mol * 4) = 109.94 g/mol.

2. Calculate the number of moles of lithium sulfate.
  - Divide the mass of the given sample by the molar mass.
  - Number of moles = mass of sample / molar mass.
  - Round your answer to 2 significant figures.

3. Calculate the number of formula units of lithium sulfate.
  - Use Avogadro's number, which is approximately 6.022 × 10^23 formula units per mole.
  - Number of formula units = number of moles * Avogadro's number.

To know more about Avogadro's number, visit:

https://brainly.com/question/16348863

#SPJ11

The number of moles is a unit used in chemistry to measure the amount of a substance. It is a fundamental quantity in the field of chemistry and is denoted by the symbol "n."

To calculate the number of moles and formula units of lithium sulfate, we need to know the mass of lithium sulfate (Li2SO4) and use the molar mass of the compound.

The molar mass of lithium sulfate can be calculated by summing the atomic masses of its constituent elements:

Molar mass of Li2SO4 = (2 * atomic mass of Li) + atomic mass of S + (4 * atomic mass of O)

Using the atomic masses from the periodic table:

Atomic mass of Li = 6.94 g/mol

Atomic mass of S = 32.07 g/mol

Atomic mass of O = 16.00 g/mol

Molar mass of Li2SO4 = (2 * 6.94) + 32.07 + (4 * 16.00) = 109.94 g/mol

Now, we can use the given mass of lithium sulfate (21.0 g) to calculate the number of moles and formula units:

Number of moles = mass / molar mass

Number of moles = 21.0 g / 109.94 g/mol

Calculating the result:

Number of moles ≈ 0.191 moles (rounded to 2 significant figures)

To determine the number of formula units, we need to consider Avogadro's number, which states that there are approximately 6.022 x 10^23 particles (atoms, molecules, or formula units) in one mole of a substance.

Number of formula units = number of moles * Avogadro's number

Number of formula units ≈ 0.191 moles * 6.022 x 10^23 formula units/mol

Calculating the result:

Number of formula units ≈ 1.15 x 10^23 formula units

To know more about Fundamental Quantity visit:

https://brainly.com/question/13705478

#SPJ11

Coral structures found in the Great Barrier Reef are composed of calcium carbonate, \( \mathrm{CaCO}_{3} \), and are under threat of dissolution due to ocean acidification. Consider the following equi

Answers

The expression for the equilibrium constant, Kc, for the given reaction is Kc = [Ca2+][HCO3-]^2 / ([CO2][H2O]), and the partial pressure of CO2 gas found above the ocean will have decreased when the pH decreases from 8.1 to 7.8.

(a) The expression for the equilibrium constant, Kc, for the given reaction is:

Kc = [Ca2+][HCO3-]^2 / ([CO2][H2O])

(b) When the pH of the ocean decreases from 8.1 to 7.8, it indicates an increase in acidity. In this equilibrium, a decrease in pH corresponds to an increase in the concentration of H+ ions.

Since the equilibrium involves the reaction CO2(g) + H2O(l) ⇌ H2CO3(aq), an increase in H+ concentration will shift the equilibrium to the left, reducing the concentration of H2CO3(aq) and CO2(g).

As a result, the partial pressure of CO2 gas above the ocean will decrease. This is because more CO2 will dissolve in the ocean to form H2CO3(aq) in response to the increased acidity, leading to a reduction in the concentration and partial pressure of CO2 in the gas phase.

Therefore, the partial pressure of CO2 gas found above the ocean will have decreased when the pH decreases from 8.1 to 7.8.

To know more about equilibrium constant, refer here:

https://brainly.com/question/29809185#

#SPJ11

5. In our experiment with vinegar and NaOH, the indicator phenolphthalein is used because it transitions from colorless to pink as the solution goes from acidic to basic. What might be the expected pH at the endpoint? a) 13.2 b) 9.1 c) 7.0 d) 4.5

Answers

The expected pH at the endpoint would be around 7.0 (option c).

Phenolphthalein is a pH indicator that undergoes a color change in the pH range of approximately 8.2 to 10.0. In acidic solutions with a pH below 8.2, phenolphthalein remains colorless.

As the pH increases and reaches the range of 8.2 to 10.0, phenolphthalein transitions from colorless to pink. Beyond pH 10.0, the solution remains pink.

In the given question, the endpoint refers to the point in the titration where the reaction between vinegar (acetic acid) and sodium hydroxide (NaOH) is complete.

At the endpoint, the solution should have a neutral pH, indicating that the acid and base have completely reacted to form water and a salt. Since the pH of a neutral solution is around 7.0, option c) 7.0 is the expected pH at the endpoint.

To know more about "Phenolphthalein" refer here:

https://brainly.com/question/30890652#

#SPJ11

Please explain and show how to carry out the balanced net ioinic
equation of the following reactions:
1. Mg2+ mixed with NH4OH
2. Ni2+ mixed with NH4OH
3. Cr3+ mixed with NH4OH
4. Zn2+ mixed with NH4

Answers

The balanced net ionic equations for the reactions between metal ions and NH₄OH (ammonium hydroxide) involve the formation of metal hydroxide solids. These equations represent the simplified form of the reactions in aqueous solutions.

To write the balanced net ionic equations for the reactions between metal ions and NH₄OH (ammonium hydroxide), we need to consider the ionic compounds formed and their solubility.

1. Mg²⁺ mixed with NH₄OH:

The balanced equation for the reaction is:

Mg²⁺ (aq) + 2NH₄OH (aq) -> Mg(OH)₂ (s) + 2NH₄⁺ (aq)

Net ionic equation:

Mg²⁺ (aq) + 2OH⁻ (aq) -> Mg(OH)₂ (s)

2. Ni²⁺ mixed with NH₄OH:

The balanced equation for the reaction is:

Ni²⁺ (aq) + 2NH₄OH (aq) -> Ni(OH)2 (s) + 2NH₄⁺ (aq)

Net ionic equation:

Ni²⁺ (aq) + 2OH⁻ (aq) -> Ni(OH)₂ (s)

3. Cr³⁺ mixed with NH₄OH:

The balanced equation for the reaction is:

Cr³⁺ (aq) + 3NH₄OH (aq) -> Cr(OH)₃ (s) + 3NH₄⁺ (aq)

Net ionic equation:

Cr³⁺ (aq) + 3OH⁻ (aq) -> Cr(OH)₃ (s)

4. Zn²⁺ mixed with NH₄OH:

The balanced equation for the reaction is:

Zn²⁺ (aq) + 2NH₄OH (aq) -> Zn(OH)₂ (s) + 2NH₄⁺ (aq)

Net ionic equation:

Zn²⁺ (aq) + 2OH⁻ (aq) -> Zn(OH)₂ (s)

In these net ionic equations, only the ions involved in the reaction are shown. The solids formed are represented with their chemical formula in the net ionic equations. It is important to note that these equations represent the simplified form of the reactions in aqueous solutions.

To know more about the ionic equations refer here,

https://brainly.com/question/13887096#

#SPJ11

6) Ammonia (shown at right) can pick up a proton to become the ammonium ion, which has a pKa of 9.25. If a solution has 1mM ammonia and is at pH8.25, what is the concentration of ammonium ion? a) 0.01mM b) 0.1mM c) 1mM d) 10mM e) 100mM

Answers

In a solution with pH 8.25 and 1 mM ammonia concentration, determine the concentration of the ammonium ion, which is formed by ammonia picking up a proton with a pKa of 9.25.

The pKa value represents the equilibrium constant for the acid-base reaction. In this case, the reaction is ammonia (NH3) accepting a proton (H+) to form the ammonium ion (NH4+). The pKa of 9.25 indicates that at a pH below this value, the ammonium ion is favored.

Since the solution has a pH of 8.25, which is lower than the pKa, most of the ammonia will be in the protonated form (ammonium ion). Therefore, the concentration of the ammonium ion will be approximately equal to the initial concentration of ammonia, which is 1 mM.

Therefore, the concentration of the ammonium ion in the solution is 1 mM. Option c) 1mM is the correct answer.

To know more about initial concentration here: brainly.com/question/31259432

#SPJ11

The vapor pressure of Substance X is measured at several temperatures: Use this information to calculate the enthalpy of vaporization of X. Round your answer to 2 significant digits. Be sure your answer contains a correct unit symbol.

Answers

The enthalpy of vaporization of Substance X can be determined by using the Clausius-Clapeyron equation and the measured vapor pressures at different temperatures. By substituting the values into the equation and converting temperatures to Kelvin, the enthalpy of vaporization can be calculated and expressed in joules per mole (J/mol).

To calculate the enthalpy of vaporization of Substance X, we can use the Clausius-Clapeyron equation, which relates the vapor pressure of a substance to its temperature and the enthalpy of vaporization.

The equation is given by:

ln(P2/P1) = -(ΔHvap/R) * (1/T2 - 1/T1)

Where P1 and P2 are the vapor pressures at temperatures T1 and T2 respectively, ΔHvap is the enthalpy of vaporization, R is the ideal gas constant (8.314 J/(mol·K)), and T1 and T2 are the corresponding temperatures in Kelvin.

By rearranging the equation and substituting the given values, we can solve for ΔHvap.

Let's assume we have measurements at two temperatures, T1 and T2:

ln(P2/P1) = -(ΔHvap/R) * (1/T2 - 1/T1)

We can then rearrange the equation to solve for ΔHvap:

ΔHvap = -R * (1/T2 - 1/T1) * ln(P2/P1)

Substituting the measured values for P1, P2, T1, and T2, and using the given value for R, we can calculate the enthalpy of vaporization of Substance X.

Remember to convert the temperature from Celsius to Kelvin before plugging in the values.

Finally, round the answer to two significant digits and include the appropriate unit symbol, which is usually expressed in joules per mole (J/mol).

To know more about enthalpy refer here:

https://brainly.com/question/32261789#

#SPJ11

A balloon is partly inflated with 5.25 liters of helium at sea level where the atmospheric pressure is 1010 mbar. The balloon ascends to an altitude of 3.00 x 103 meters, where the pressure is 855 mbar. What is the volume of the helium in the balloon at the higher altitude? Assume that the temperature of the gas in the balloon does not change in the ascent.

Answers

The volume of helium in the balloon at the higher altitude is approximately 4.84 liters.

To solve this problem, we can use Boyle's law, which states that the pressure and volume of a gas are inversely proportional, assuming the temperature remains constant. Mathematically, we can express this as P₁V₁ = P₂V₂, where P₁ and V₁ are the initial pressure and volume, and P₂ and V₂ are the final pressure and volume.

Initial pressure, P₁ = 1010 mbar

Initial volume, V₁ = 5.25 liters

Final pressure, P₂ = 855 mbar

Using the equation P₁V₁ = P₂V₂, we can solve for V₂:

1010 mbar * 5.25 liters = 855 mbar * V₂

V₂ = (1010 mbar * 5.25 liters) / 855 mbar

V₂ ≈ 6.2023 liters

learn more about Boyles law

https://brainly.com/question/30367133

#SPJ11

Iron concentrations greater than 5.4 × 10–6 M in water used for laundry purposes can cause staining. If you accidentally had stashed some iron (II) hydroxide in your pocket and forgot to take it out before washing your pants, would you stain your laundry?
Based on your solubility knowledge, would there be any change in the staining if you were washing in pH 9 water instead of neutral water? Show why or why not mathematically

Answers

The solubility of iron (II) hydroxide is lower at pH 9 compared to neutral water because of the increased concentration of hydroxide ions. Washing your pants in pH 9 water would decrease the solubility of iron (II) hydroxide and potentially reduce the staining effect.

To determine if the iron (II) hydroxide in your pocket would stain your laundry, we need to consider its solubility in water.

Iron (II) hydroxide[tex](Fe(OH)^2)[/tex] is not very soluble in water, and it tends to precipitate out as a solid. However, its solubility can be influenced by the pH of the water.

Let's first calculate the solubility product constant (Ksp) for iron (II) hydroxide:

[tex]Fe(OH)^2[/tex] ⇌[tex]Fe^{2+} + 2OH^-[/tex]

The solubility product constant expression is given by:

[tex]Ksp = [Fe^{2+}][OH-]^2[/tex]

The solubility of iron (II) hydroxide can be calculated from the value of Ksp using the following relationship:

s = √(Ksp)

At pH 7 (neutral water), the concentration of hydroxide ions ([OH-]) is [tex]10^-7[/tex]M. Assuming the concentration of [tex]Fe_2[/tex]+[tex]Fe^{2+}[/tex] is also x M, we can write the expression for Ksp:

[tex]Ksp = x * (10^{-7})^2[/tex]

[tex]Ksp = x * 10^{-14}[/tex]

Taking the square root of Ksp gives us the solubility:

s = √(x * [tex]10^{-14}[/tex])

If the solubility (s) is greater than [tex]5.4 * 10^-6[/tex] M, iron (II) hydroxide would stain the laundry.

Now let's consider the scenario where you are washing your pants in pH 9 water. At this pH, the concentration of hydroxide ions ([OH-]) is [tex]10^{-5}[/tex] M. Using the same approach as before, the expression for Ksp becomes:

[tex]Ksp = x * (10^-5)^2[/tex]

[tex]Ksp = x * 10^{-10}[/tex]

The solubility is calculated as:

s = √(x * 10^-10)

If the solubility (s) is greater than [tex]5.4 * 10^-6[/tex] M, iron (II) hydroxide would stain the laundry.

Comparing the two solubility expressions, we can see that the solubility of iron (II) hydroxide is lower at pH 9 compared to neutral water because of the increased concentration of hydroxide ions. Therefore, washing your pants in pH 9 water would decrease the solubility of iron (II) hydroxide and potentially reduce the staining effect.

However, to determine definitively whether staining would occur, we would need to know the specific concentrations of iron (II) hydroxide and hydroxide ions in the water, as well as the duration and conditions of the washing process. The calculations provided offer a theoretical analysis based on solubility principles but may not reflect the exact behavior in a real-world situation.

To learn more about hydroxide ,

https://brainly.com/question/21393201

#SPJ4

787 Hydrogen used in the synthesis of ammonia is made by the following reaction. NT CH4 (g) + H₂0 (g) Co (g) + 3H₂(g) 150°C How will the equilibrium mixture change if the following process occurs? a Eliminating H₂O(g) 770 b Raise temperature (This reaction is endothermic) C Eliminating (O(g) B da Triple the volume of container.

Answers

The equilibrium mixture will change as follows:

a) Removing H₂O(g): Shift left, less CH₄(g), more CO(g) and H₂(g).

b) Raising temperature: Shift right, more CO(g) and H₂(g), less CH₄(g).

c) Eliminating O₂(g): No effect if O₂ not involved in the reaction.

d) Tripling volume: Shift right, more CO(g) and H₂(g), less CH₄(g).

A) Removing H₂O(g) will disrupt the equilibrium since it's a reactant. According to Le Chatelier's principle, the system will respond by shifting the equilibrium position to counteract the change. In this case, the reaction will shift to the left, favoring the reverse reaction to replace the lost water.

b) Increasing the temperature will increase the kinetic energy of the molecules, making the endothermic reaction more favorable. According to Le Chatelier's principle, the system will shift to absorb the excess heat. The equilibrium will shift to the right to consume more heat, favoring the forward reaction to form more CO(g) and H₂(g).

c) If O₂ is a reactant in the reaction, removing it will decrease its concentration, causing the equilibrium to shift to the left to compensate. However, if O₂ is not involved in the reaction, its removal will have no impact on the equilibrium.

d) Increasing the volume of the container decreases the pressure. According to Le Chatelier's principle, the system will shift to the side with more moles of gas to restore the equilibrium. Since the forward reaction produces more moles of gas, the equilibrium will shift to the right, increasing the concentrations of CO(g) and H₂(g).

learn more about equilibrium mixture here:

https://brainly.com/question/13082748

#SPJ11

6) [15 points] Draw the chemical structure of an example of: a) A purine and a pyrimidine Nucleobase. Circle any that can be found in DNA and place a star next to any that can be found in RNA.

Answers

Adenine is a purine nucleobase that can be found in both DNA and RNA. Cytosine is a pyrimidine nucleobase that can also be found in both DNA and RNA.

Purines are a class of nitrogenous bases that have a two-ring structure. The two main purine bases found in DNA and RNA are adenine (A) and guanine (G). Adenine and guanine are characterized by their fused double-ring structure.

In DNA, adenine (A) forms complementary base pairs with thymine (T), and guanine (G) pairs with cytosine (C). In RNA, adenine (A) pairs with uracil (U) instead of thymine (T).

Pyrimidines are another class of nitrogenous bases that have a single-ring structure. The three primary pyrimidine bases found in DNA and RNA are cytosine (C), thymine (T), and uracil (U). Thymine is only found in DNA, while uracil is specific to RNA.

In DNA, cytosine (C) forms complementary base pairs with guanine (G), and thymine (T) pairs with adenine (A). In RNA, cytosine (C) pairs with guanine (G), and uracil (U) pairs with adenine (A).

To know more about nitrogenous bases, refer:

https://brainly.com/question/31659078

#SPJ4

Suppose you have 100.00ml of a solution of a dye and transfer 1.28ml of the solution to a 100.00ml volumetric flask. After adding water to the 100.00ml mark, you take 2.89ml of that solution and again dilute to 100.00ml. If you find the dye concentration in the final diluted sample is 0.019M, what was the dye concentration in the original solution. Enter to 1 decimal place

Answers

The dye concentration in the original solution is approximately 14.8 M, based on the dilution factor calculated from the given volumes. The final diluted sample had a concentration of 0.019 M.

To calculate the dye concentration in the original solution, we can use the concept of dilution.

Let's denote the concentration of the original solution as C1 (in M).

In the first dilution step:

Volume of the original solution taken = 1.28 mL

Volume after dilution = 100.00 mL

Dilution factor = (final volume) / (initial volume) = (100.00 mL) / (1.28 mL)

In the second dilution step:

Volume of the first diluted solution taken = 2.89 mL

Volume after dilution = 100.00 mL

Dilution factor = (final volume) / (initial volume) = (100.00 mL) / (2.89 mL)

The overall dilution factor is the product of the individual dilution factors. Let's denote it as DF.

DF = (100.00 mL / 1.28 mL) * (100.00 mL / 2.89 mL)

Since the dye concentration in the final diluted sample is 0.019 M, we can use this information to calculate the dye concentration in the original solution:

C1 = (dye concentration in the final diluted sample) * DF

  = 0.019 M * DF

Calculating the dilution factor:

DF = (100.00 mL / 1.28 mL) * (100.00 mL / 2.89 mL)

  = 781.25

Calculating the dye concentration in the original solution:

C1 = 0.019 M * 781.25

  ≈ 14.8 M

Therefore, the dye concentration in the original solution is approximately 14.8 M.

To learn more about concentration  Click Here: brainly.com/question/30862855

#SPJ11

For the pair of species given:
a. Lithium (Eº = -3.05 V) and silver (Eº= 0.80 V)
b. Cadmium (Eº= -0.40 V) and copper (Eº= +0.34 V)
- Calculate Keq for the spontaneous reaction.

Answers

The spontaneous reaction between lithium and silver has a larger equilibrium constant (1.3 × 10³⁵) and a higher cell potential (3.85 V) compared to the reaction between cadmium and copper, indicating that the lithium-silver reaction is more spontaneous.

Here are the calculations for the spontaneous reaction for each pair of species:

a. Lithium (Eº = -3.05 V) and silver (Eº= 0.80 V)

The spontaneous reaction is:

Li(s) + Ag⁺(aq) -> Li⁺(aq) + Ag(s)

The cell potential for this reaction is:

[tex]E_cell = E_cathode - E_anode[/tex] = 0.80 V - (-3.05 V) = 3.85 V

The Gibbs free energy for this reaction is:

ΔG = -nFEcell = -1 × 96485 C/mol × 3.85 V = -369.6 kJ/mol

The equilibrium constant for this reaction is:

[tex]\[K_{\text{eq}} = 10^{-\Delta G / RT} = 10^{-369.6 \frac{\text{kJ}}{\text{mol}} / \left( 8.314 \frac{\text{J}}{\text{mol K}} \times 298 \text{K} \right)} = 1.3 \times 10^{35}\][/tex]

b. Cadmium (Eº= -0.40 V) and copper (Eº= +0.34 V)

The spontaneous reaction is:

Cd(s) + Cu²⁺(aq) -> Cd²⁺(aq) + Cu(s)

The cell potential for this reaction is:

[tex]E_cell = E_cathode - E_anode[/tex]= 0.34 V - (-0.40 V) = 0.74 V

The Gibbs free energy for this reaction is:

ΔG = -nFEcell = -2 × 96485 C/mol × 0.74 V = -143.5 kJ/mol

The equilibrium constant for this reaction is:

[tex]\[K_{\text{eq}} = 10^{-\Delta G / RT} = 10^{-143.5 \frac{\text{kJ}}{\text{mol}} / \left( 8.314 \frac{\text{J}}{\text{mol K}} \times 298 \text{K} \right)} = 1.2 \times 10^{22}\][/tex]

As you can see, the equilibrium constant for the reaction between lithium and silver is much larger than the equilibrium constant for the reaction between cadmium and copper. This means that the reaction between lithium and silver is much more spontaneous than the reaction between cadmium and copper.

To know more about the spontaneous reaction refer here,

https://brainly.com/question/31199175#

#SPJ11

Please answer all parts of
this question. Include relevent schemes, structure, mechanism and
explanation. Thank you
(i) Illustrate radical formation for each of the following: [40 Marks] (ii) Show the reaction mechanism between the radical initiator azobisisobutyronitrile (AIBN) (2) and styrene (3) resulting in the

Answers

(i) The radical formation can be illustrated for the given compounds.

(ii) The reaction mechanism between the radical initiator azobisisobutyronitrile (AIBN) and styrene resulting in the formation of a radical product can be shown.

(i) Radical formation involves the generation of a radical species from a stable molecule. To illustrate the radical formation, let's consider two examples:

Example 1: Radical Formation from Chloroethane (CH₃CH₂Cl)

The radical formation can be initiated by homolytic cleavage of the C-Cl bond, resulting in the formation of ethyl radical (CH₃CH₂•) and chloride radical (•Cl).

Example 2: Radical Formation from Benzene (C₆H₆)

The radical formation can be achieved by a photochemical reaction where a photon of appropriate energy is absorbed. This leads to the formation of a benzene radical (•C₆H₅), which has an unpaired electron.

(ii) The reaction mechanism between AIBN and styrene involves the initiation, propagation, and termination steps. AIBN acts as a radical initiator that generates nitrogen radicals. Here's the step-by-step explanation of the mechanism:

1. Initiation:

AIBN undergoes thermal decomposition to produce two nitrogen radicals (•N=•N-tert-Bu), where tert-Bu represents the tert-butyl group.

AIBN → 2•N=•N-tert-Bu (nitrogen radicals)

2. Propagation:

The nitrogen radicals react with styrene to initiate the chain reaction.

•N=•N-tert-Bu + C₆H₅CH=CH₂ → •N=•N + C₆H₅CH(CH₂)•

The resulting alkyl radical (C₆H₅CH(CH₂)•) can react with another styrene molecule, propagating the chain reaction.

C₆H₅CH(CH₂)• + C₆H₅CH=CH₂ → C₆H₅CH(CH₂)CH₂CH=CH₂

3. Termination:

The radical chain reaction can be terminated by various processes, such as combination of two radicals or reaction with a radical scavenger.

Overall, the reaction between AIBN and styrene initiated by the nitrogen radicals leads to the formation of a radical product. This radical polymerization mechanism is commonly used in the synthesis of polymers with controlled molecular weights and structures.

To know more about radical formation refer here:

https://brainly.com/question/31971486#

#SPJ11

In the titration of 0.100MHCl with the titrant 0.100MNaOH, what species are present after the equivalence point? a. HCl only b. NaOH only c. HCl and NaCl d. NaCl only e. NaOH and NaCl

Answers

In the titration of 0.100MHCl with the titrant 0.100M NaOH, NaCl and H₂O are present after the equivalence point, option D.

What is titration?

Titration is the process of measuring the volume of one solution of known concentration that is required to react completely with a volume of an unknown concentration of solution.

The equivalence point in a titration: The equivalence point in a titration is the point at which the number of moles of the two substances being titrated are equivalent to each other. At the equivalence point, all of the solute in one solution has reacted with all of the solute in the other solution that it can react with.

Therefore, the species present after the equivalence point of the titration of 0.100MHCl with the titrant 0.100M NaOH are NaCl and H2O only.

Answer: d. NaCl only

To know more about titration click on below link :

https://brainly.com/question/31483031#

#SPJ11

answer and explanation please
i think this one is b-butanone but unsure
Which molecule has the highest boiling point? a. CH3-O-CH3 O b. O C. CH3CH3 O d. CH3CH₂OH O e. CH3CH₂CH2-O-CH₂CH2CH3 CH3CH₂CH₂CH2₂CH₂OH
Which of the following molecules is a hemiacetal?

Answers

Among the given options, ethanol (CH3CH₂OH) has the highest boiling point due to its ability to form stronger intermolecular hydrogen bonds. None of the provided molecules are identified as hemiacetals. The correct option is d.

To determine which molecule has the highest boiling point among the given options, we need to consider the intermolecular forces present in each molecule.

Boiling point is primarily influenced by the strength of intermolecular forces, such as hydrogen bonding, dipole-dipole interactions, and London dispersion forces.

Looking at the options:

a. CH3-O-CH3: This molecule is dimethyl ether. It has London dispersion forces, but it lacks hydrogen bonding or strong dipole-dipole interactions.

b. O: This represents oxygen gas (O2), which is a diatomic molecule. It also has London dispersion forces but lacks other stronger intermolecular forces.

c. CH3CH3: This is ethane, a nonpolar molecule that only experiences London dispersion forces.

d. CH3CH₂OH: This molecule is ethanol. It has the ability to form hydrogen bonds, which are stronger than London dispersion forces.

e. CH3CH₂CH2-O-CH₂CH2CH3: This molecule is 1-butanol. Similar to ethanol, it can form hydrogen bonds.

Among the given options, the molecule with the highest boiling point is d. CH3CH₂OH (ethanol) because it can form stronger intermolecular hydrogen bonds compared to the other molecules.

Regarding the hemiacetal, a hemiacetal is a functional group that contains both an alkoxy group (-OR) and a hydroxyl group (-OH) bonded to the same carbon atom.

In the options provided, there is no molecule explicitly identified as a hemiacetal. Therefore, none of the given options is a hemiacetal.

Hence, the correct option is d. CH3CH₂OH.

To know more about boiling point refer here:

https://brainly.com/question/29773695#

#SPJ11

Other Questions
What is the force of gravity between two objects with mass 37,000,000kg and 36,000,000kg respectively that are 13m apart? please reply for this Choose the word that best fits in each sentence.When you two things, you say how they are different.When you two things, you say how they are the same.Things that are are alike in some way. Ajax Computer Company is an accrual-method calendar-year taxpayer. Ajax has never advertised in the national media prior to this year. In November of this year, howeven Alax paid $2.3 million for television advertising time during a "super" sporting event scheduled to take place in early February of next year. In addition, In November of this year the company pald $1,800,000 for a one-time advertising blitz during a professional golf tournament in April of next year. What amount of these payments, If any, can Ajax deduct this year? Multiple Cholce $230 million $1.80 million $4.10 million No deduction can be claimed this year $4.10 million only if the professional golf tournament is played before Aprli 15 A person is deciding how much to save (s, which can be spent on future consumption, C), and how much to spend on maintaining their health, h. Their enjoyment of their future consumption (c) depends on their health at the time. max log (c) + plog (hc) cc8h s.t. c+h+s=y c=Y+s 2 where c is consumption today, C2 is consumption tomorrow, sis savings, h is health (which costs money in terms of things like healthcare), y1 and y2 are income today and tomorrow. a) Write down the Lagrangian associated with this maximization problem. b) Find the first-order conditions of this maximization problem. c) Show that c 1=Y+Y2/1+2 d) Find the relationship between c and h (hint: it is a very simple relationship). Explain the logic/intuition for why C2 and h are related in this way (think about, e.g., the (marginal) cost of each). sentences about each of these energy sources. Describe whether each energy source would meet their goals, and whether it is a good energysource for their area. (15 points) Please helpCivil rights groups did all of the following to gain support for their cause exceptA.organize boycottsB.protest peacefullyC.meet with elected officials D.carry out violent actions Let P(x) be the statement "is even" If the domainconsists of the integers, what are these truth values?P(0)P(1)P(2)P(1)x P(x)x P(x) find the derivative y = (ex - 5x)(x x) The Commerce Clause was created to: Multiple Choice O allow states the freedom to make their own laws O encourage commerce O allow consumers to only buy in their own states O stop people's freedom of choice Par value shares are stocks that have been issued without a par value listed on the face of the stock certificate. True or False If a straight line kx+y=1 cuts the curve y=x 2at A and B, find the coordinates of mid-point of A and B in terms of k. A. ( 2k , 22+k 2 ) B. ( 2k , 4k 2 ) C. (0,1) D. ( 2k ,1) 22. The equation of two lines are 3x4y+3=0 and 6x8y7=0. Let P be a moving point in the rectangular coordinate plane such that it is always equidistant from the two lines. Find o. equation of the locus of P. A. 12x16y1=0 B. 16x+12y1=0 C. 3x4y8=0 D. 4x+3y8=0 Take up the White Man's burdenSend forth the best ye breedGo bind your sons to exileTo serve your captives' need;To wait in heavy harness,On fluttered folk and wildYour new-caught, sullen peoples,Half-devil and half-child.Rudyard Kipling,"The White Man's Burden"Which lines in this excerpt show ethnocentrism?Take up the White Mans burden/Send forth the best ye breedGo bind your sons to exile/To serve your captives need;To serve your captives needs;/To wait in heavy harness,Your new-caught, sullen peoples,/Half-devil and Write an application program using dynamic array of object to store the ISBN, title, andauthor of book. Create a class called "Book", add appropriate data fields to the class, add theoperations (methods) insert, removeAt, indexOf, and print to the class.please i want the code as simple way and as soon as possible thank you for your help compute the derivative of the function\( g(x)=\left(x^{9}+7 x^{2}+8\right)(\sqrt{x}+\sqrt[3]{x}+\sqrt[4]{x}) \) Please help if you know!An insertion mutation usually causes more defects than a point mutation because insertion mutationsA. affect a whole chromosomeB. can affect the order of many amino acidsC. occur only during transcriptionD. can be only silent mutations The density of ethylene glycol (antifreeze, HOCH{2}CH{2}OH ) is 1.09g / mL How many grams of ethylene glycol should be mixed with 375 mL of water to make a 7.50% (v / v) mixture? The point of statistics is to show the true positive growth of your business. For this reason, what should NOT be done with the negative stats?A. they should not be omitted B. they should not be examined C. they should not be included In this passage how does the author connect English fashions and the American fashions of the time? in hookes law what does k represent