mr. montana and mr. perry both purchase the same model of refrigerator. mr. montana pushes his refrigerator up a frictionless ramp and into his truck. mr. perry picks his refrigerator up and directly lifts it into his truck. who applied more force in moving the refrigerator and why?

Answers

Answer 1

Assuming that both refrigerators have the same weight, the work done in lifting the refrigerator to the truck is the same for both Mr. Montana and Mr. Perry, regardless of the method they used to lift it. However, the force required to lift the refrigerator is different.

Mr. Montana used a ramp to move the refrigerator up to his truck, which means that he applied a smaller force over a longer distance. This is because the ramp reduces the force needed to move the object against gravity, but it increases the distance over which the force is applied. In contrast, Mr. Perry lifted the refrigerator directly, applying a larger force over a shorter distance.

Therefore, Mr. Perry applied more force than Mr. Montana to lift the refrigerator, as he had to lift the entire weight of the refrigerator with his arms. On the other hand, Mr. Montana applied less force because the ramp reduced the force needed to move the refrigerator up to his truck.

Learn more about force here:

https://brainly.com/question/13191643

#SPJ11


Related Questions

Identical twins go from the first floor to the second floor of a hotel. One walks up the stairs while the other runs up. How do their work and power compare?

Answers

The work done by both twins walking and running up the stairs is the same, but the twin running up the stairs has a greater power output as they are doing the same amount of work in a shorter amount of time.

In physics, work is defined as the product of the force applied to an object and the displacement of the object in the direction of the force. In other words, work is done when a force is applied to an object and the object moves in the same direction as the force. Work is measured in joules (J), which is the unit of energy. When work is done on an object, it gains or loses energy, depending on the direction of the force and the displacement of the object.

The work done by both twins will be the same as they are moving the same distance from the first floor to the second floor. However, the power output of the twin who runs up the stairs will be greater because they are doing the same amount of work in a shorter amount of time. Power is defined as the rate at which work is done, so the twin who runs up the stairs is doing more work per unit time and therefore has a greater power output.

Therefore, While both twins walking and running up the stairs perform the same amount of effort, the twin running has a higher power output since they complete the same amount of labour in less time.

To learn more about Workdone click:

brainly.com/question/28172139

#SPJ1

As light from a star spreads out and weakens, do gaps form between the photons?​

Answers

Answer:

depends on how you look at light, gaps do not form between photons as light spreads out

Explanation:

(a) In an ac circuit, if the peak value of the voltage is 100 V, what is the rms value of the
voltage?
A) 141 V
B) 100 V
C) 210 V
D) 71 V
E) 120 V
(b) In an ac circuit, if the rms value of the current is 100 mA, what is the peak value of the
current?
A) 141 mA
B) 100 mA
C) 210 mA
D) 71 mA
E) 120 mA

Answers

a) The rms value of the voltage is D) 71 V.

b) The peak value of the current is A) 141 mA.

(a) The relationship between the peak voltage and the rms voltage in an AC circuit is given by:

V_rms = V_peak / sqrt(2)

Substituting V_peak = 100 V, we get:

V_rms = 100 / sqrt(2) ≈ 70.7 V

Therefore, the answer is D) 71 V.

(b) The relationship between the peak current and the rms current in an AC circuit is given by:

I_peak = I_rms * sqrt(2)

Substituting I_rms = 100 mA, we get:

I_peak = 100 * sqrt(2) ≈ 141 mA

Therefore, the answer is A) 141 mA.

Learn more about voltage here:

https://brainly.com/question/13396105

#SPJ11

Give at least two examples to distinguish between organized energy and disorganized energy

Answers

Organized energy, such as that found in a battery, is structured and easily accessible for use, whereas disorganized energy, like the thermal energy in the air, is dispersed and less available for work.

Organized energy and disorganized energy are two different ways in which energy can be classified based on its structure and use. Organized energy refers to energy that is stored or utilized in an ordered manner, whereas disorganized energy is dispersed and not readily available for work.
One example of organized energy is the electrical energy stored in a battery. This form of energy is stored in an orderly manner, and can be readily converted into other forms of energy, such as mechanical or thermal energy, for use in various applications like running a motor or powering a device.
On the other hand, an example of disorganized energy is the thermal energy present in the air as a result of random motion of particles. This energy is not concentrated in a specific location or form, making it difficult to harness and use efficiently. The random motion of air molecules leads to a dispersed energy state that is not readily available for doing work or being converted into other forms of energy.
In summary, organized energy, such as that found in a battery, is structured and easily accessible for use, whereas disorganized energy, like the thermal energy in the air, is dispersed and less available for work.

To know more about energy visit:
https://brainly.com/question/30513618
#SPJ11

when a study participant no longer wants to disclose phi, what can be done?

Answers

When a study participant no longer wants to disclose PHI (Protected Health Information), several options are available to researchers. First, researchers can attempt to obtain informed consent from participants that specifically allows for withdrawal of participation or disclosure of PHI.

Second, researchers can offer participants the option to disclose only certain types of PHI or limit the scope of disclosure. If a participant still refuses to disclose PHI, researchers must respect the participant's wishes and cannot use or disclose the information in any way. It is important for researchers to maintain confidentiality and protect the privacy of study participants, and to ensure that all data collected is in compliance with relevant privacy laws and regulations.
When a study participant no longer wishes to disclose their PHI (Protected Health Information), it is crucial to respect their privacy and autonomy. In such cases, researchers should ensure informed consent is obtained and offer the option to withdraw or anonymize the participant's data. Compliance with HIPAA (Health Insurance Portability and Accountability Act) regulations is necessary, safeguarding the individual's rights and confidentiality. Open communication and transparency between the researcher and participant can help address concerns and maintain trust in the research process.

To know about researchers :

https://brainly.com/question/24174276

#SPJ11

in particle-induced x-ray emmission, the sample analysis can be carried out in

Answers

Particle-induced X-ray emission (PIXE) is a powerful analytical technique used to identify and quantify trace elements present in solid samples. In PIXE analysis, high-energy particles, such as protons or alpha particles, are used to bombard the sample.

These particles collide with the atoms in the sample and knock out inner-shell electrons, creating vacancies that are filled by outer-shell electrons. When outer-shell electrons fill these vacancies, they emit characteristic X-rays that are detected and analyzed to determine the elemental composition of the sample.

PIXE analysis can be carried out using a variety of particle accelerators, such as Van de Graaff accelerators or cyclotrons, which provide the high-energy particles needed to excite the sample. The analysis can be performed in a vacuum chamber or in air, depending on the nature of the sample and the experimental setup.

PIXE analysis has many advantages, including high sensitivity, multi-elemental analysis capabilities, and the ability to analyze a wide range of sample types, including biological, environmental, and archaeological samples.

To know more about X-ray emission click this link -

brainly.com/question/13052571

#SPJ11

compared with the thermal energy and temperature of a the sand on a city beach, very hot cup of hot chocolate has:

Answers

Compared with the thermal energy and temperature of the sand on a city beach, a very hot cup of hot chocolate has much higher thermal energy and temperature. This is because the hot chocolate has been heated to a high temperature, typically around 65-80°C (149-176°F), whereas the sand on a city beach may only be warmed by the sun to around 30-40°C (86-104°F).

Additionally, the specific heat capacity of sand is much lower than that of liquid, so it takes less thermal energy to heat up sand than it does to heat up hot chocolate. Therefore, the hot chocolate will feel much hotter to the touch and contain more thermal energy than the sand on a city beach.

Compared with the thermal energy and temperature of the sand on a city beach, a very hot cup of hot chocolate has a higher temperature but lower thermal energy. The hot chocolate's higher temperature means it has more intense heat, while the sand's greater thermal energy is due to its larger mass and the heat it has absorbed throughout the day.

To know more about thermal energy visit:

https://brainly.com/question/3022807

#SPJ11

Maxwell First Equation

Answers

The Maxwell's first equation, also known as Gauss's law for electric fields, states that the electric flux through any closed surface is proportional to the net electric charge enclosed within that surface.

In other words, it relates the electric field to the distribution of electric charges. Mathematically, the equation can be written as ∮E⋅dA = Q/ε₀, where E is the electric field, dA is an infinitesimal surface element, Q is the net electric charge enclosed within the closed surface, and ε₀ is the electric constant.

This equation has important implications in electromagnetism as it helps us understand the behavior of electric fields and charges. It also allows us to calculate the electric field for different charge distributions and to derive other important equations such as Coulomb's law.

For more such questions on electric

https://brainly.com/question/1100341

#SPJ11

at constant temperature and pressure, how is âsuniv related to âgsys?

Answers

At constant temperature and pressure, ΔSuniv and ΔGsys are related through the Gibbs free energy equation, with positive ΔSuniv indicating a spontaneous process and negative ΔSuniv indicating a non-spontaneous process.

The relationship between âsuniv and âgsys at constant temperature and pressure can be explained through the second law of thermodynamics. âsuniv represents the total change in entropy of a system and its surroundings, while âgsys represents the change in entropy of the system alone. Therefore, the relationship between âsuniv and âgsys can be expressed as âsuniv = âgsys + âssurr, where âssurr represents the change in entropy of the surroundings.

The change in the total entropy of the universe (âsuniv) is equal to the change in entropy of the system (âgsys) plus the change in entropy of the surroundings (âssurr). This relationship highlights the importance of considering not only the system being studied, but also its interaction with the surrounding environment.  At constant temperature and pressure, the relationship between âsuniv and âgsys can be described as âsuniv = âgsys + âssurr, emphasizing the significance of the second law of thermodynamics in understanding the behavior of thermodynamic systems. This relationship can be further explored and applied in various fields such as chemistry, physics, and engineering.

To know more about pressure visit :-

https://brainly.com/question/30482677

#SPJ11

what is the newton's second law equation for the forces parallel to the incline? is the static friction force, is the weight of the block, is the tension in the string, is the normal force, and is the angle of the incline.

Answers

Newton's second law states that the net force acting on an object is equal to the mass of the object multiplied by its acceleration. When considering forces parallel to an incline, we need to take into account the forces involved in that direction. In this case, we have the static friction force (F_friction) and the component of the weight of the block (mg) acting down the incline.

The equation for Newton's second law for forces parallel to the incline can be expressed as:

F_net_parallel = F_friction + mg*sin(θ)

Where:

F_net_parallel is the net force acting parallel to the incline.

F_friction is the static friction force between the block and the incline.

m is the mass of the block.

g is the acceleration due to gravity (approximately 9.8 m/s²).

θ is the angle of the incline with respect to the horizontal.

The static friction force, F_friction, is given by:

F_friction = μ_s * N

Where:

μ_s is the coefficient of static friction between the block and the incline.

N is the normal force exerted on the block by the incline.

The normal force, N, can be calculated as:

N = mg*cos(θ)

Finally, the tension in the string, T, can also be taken into account if applicable. In that case, the equation would become:

F_net_parallel = F_friction + mg*sin(θ) - T

Note that this equation assumes that the block is not sliding down the incline. If the block is in motion, additional considerations, such as the kinetic friction force, may be necessary.

an object in free fall near the surface of the earth accelerates at a rate of 78979.4 mi/hr2. what is the rate of acceleration for a free falling object near the surface of the earth in ft/s2 and m/s2.

Answers

Explanation:

These are just simple  unit conversion problems:

78979.4 mi /hr^2  *  5280 ft / mile  *   hr^2 / (3600 s )^2 = 32.18 ft/s^2

78979.4 mi / hr^2 * 1609.344 m / mile   * hr^2 / 3600s)^2 = 9.81 m/ s^2

Unhappiness with one's physical appearance is a _____ phenomenon.
A. national
B. county
C. city
D. worldwide

Answers

Answer:

worldwide is the answer

Which of the following processes of energy transport are NOT important inside the Sun?
A. Convection
B. Radiation
C. Conduction
D. All three of these are important.

Answers

Conduction is not an important process of energy transport inside the Sun. So the correct answer is option C.

The high temperature and density of the solar interior cause it to behave like a plasma, a state of matter in which electrons are stripped from atoms, resulting in a highly conductive fluid. Convection and radiation are the primary means by which energy is transported from the core of the Sun to its surface. Convection involves the transfer of heat through the motion of fluid, while radiation involves the transfer of energy through electromagnetic waves. The convective zone is the outermost layer of the solar interior, and it plays a crucial role in the transport of energy. Hence option C is correct.

To know more about Conduction, here

brainly.com/question/31201773

#SPJ4

a car travels at 50.0 km/hr for 2.00 hours. it then travels an additional distance of 40.0 km in 1.00 hour. the average speed of the car for the entire trip is

Answers

To find the average speed of the car for the entire trip, we need to first calculate the total distance traveled and the total time taken.

Distance traveled in the first 2.00 hours = 50.0 km/hr x 2.00 hr = 100.0 km

Distance traveled in the next 1.00 hour = 40.0 km

Total distance traveled = 100.0 km + 40.0 km = 140.0 km

Total time taken = 2.00 hr + 1.00 hr = 3.00 hr

Average speed = Total distance / Total time = 140.0 km / 3.00 hr = 46.7 km/hr

Therefore, the average speed of the car for the entire trip is 46.7 km/hr.

To know more about average speed  click this link -

brainly.com/question/10449029

#SPJ11

the mantle is partially molten that's why no s waves travel through it group of answer choices true false

Answers

The given statement "the mantle is partially molten, that's why no S waves travel through it" is false because the mantle is partially molten, but this is not the reason why no S waves travel through it. S waves, or secondary waves, are a type of seismic wave generated during earthquakes.

They cannot travel through liquids, as they require a rigid medium for propagation. The reason S waves don't travel through the mantle is because of the outer core, which is a liquid layer composed mainly of molten iron and nickel. When S waves encounter the outer core, they are absorbed and cannot continue through the liquid.

This creates a shadow zone on the opposite side of the Earth from the earthquake's epicenter, where S waves are not detected. The mantle itself is made up of solid rock with pockets of molten material, and S waves can propagate through the solid parts of the mantle.

You can learn more about secondary waves at: brainly.com/question/22247286

#SPJ11

what is the absolute value of the complex number ? 14 18

Answers

The complex number 14 + 18i can be represented in the form a + bi, where a represents the real part and b represents the imaginary part. In this case, a = 14 and b = 18i.

To find the absolute value of a complex number, also known as the magnitude or modulus, we can use the Pythagorean theorem.

The Pythagorean theorem states that for a right triangle with sides of length a, b, and hypotenuse c, the sum of the squares of the two shorter sides (a^2 + b^2) is equal to the square of the hypotenuse (c^2).

We can apply this concept to a complex number by treating the real and imaginary parts as the two sides of a right triangle, and the absolute value as the hypotenuse.

Using this approach, we can calculate the absolute value of 14 + 18i as follows:

|14 + 18i| = sqrt((14)^2 + (18)^2) = sqrt(676) = 26

Therefore, the absolute value of the complex number 14 + 18i is 26.

To know more about complex numbe refer here

brainly.com/question/20653893#

#SPJ11

Problem 10:00-gauge copper wire has a diameter of 9.266 mm and a resistivity of 1.72 x 10-8 2.m. Calculate the power loss in a kilometer of such wire, in watts, when it carries 0.95 × 102 A. P=

Answers

The power loss in a kilometer of 10-gauge copper wire, when it carries 0.95 × 102 A, is 30,800 watts. To calculate the power loss in a kilometer of 10-gauge copper wire, we need to use the formula for power loss, which is P = I^2R, where I is the current and R is the resistance.

We first need to calculate the resistance of the wire using the formula R = (ρL)/A, where ρ is the resistivity, L is the length of the wire, and A is the cross-sectional area.

The cross-sectional area of 10-gauge wire is 5.26 mm^2. The length of the wire is 1000 meters. Substituting the values in the formula, we get:

R = (1.72 x 10^-8 x 1000) / 5.26 x 10^-6 = 3.27 Ω

Now, we can calculate the power loss using the formula:

P = (0.95 x 10^2)^2 x 3.27 = 3.08 x 10^4 W

Therefore, the power loss in a kilometer of 10-gauge copper wire, when it carries 0.95 × 102 A, is 30,800 watts.

To know about power :

https://brainly.com/question/29575208

#SPJ11

________graphy is a series of x-ray images made to show an organ in depth.

Answers

Tomography is a series of x-ray images made to show an organ in depth.

Tomography refers to a medical imaging technique that involves the acquisition of multiple x-ray images from different angles around the body.

These images are then processed by a computer to create detailed cross-sectional images of the organ or structure of interest.

The purpose of tomography is to provide a clearer and more detailed visualization of the internal structures within the body, particularly the organs.

By capturing images from various angles, tomography helps eliminate overlapping structures that can hinder accurate interpretation of traditional x-ray images.

One of the most common types of tomography is computed tomography (CT). CT scans utilize a rotating x-ray tube and detectors to capture multiple x-ray images as the patient moves through the scanner.

These images are processed by a computer to reconstruct detailed cross-sectional images, often referred to as slices or tomographic sections.

The resulting CT images provide a three-dimensional representation of the internal anatomy, allowing healthcare professionals to examine the organ in depth.

CT scans are widely used for diagnosing a variety of conditions, including injuries, tumors, infections, and vascular diseases. They provide valuable information about the size, shape, and density of the structures being imaged.

Other types of tomography include positron emission tomography (PET), single-photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI).

Each of these techniques has its own specific principles and applications but shares the common goal of providing detailed and informative images of organs and structures within the body.

Overall, tomography, particularly CT, plays a vital role in modern medicine by enabling accurate diagnosis, treatment planning, and monitoring of various diseases and conditions.

Its ability to show organs in depth aids healthcare professionals in making informed decisions and providing optimal patient care.

To know more about Tomography refer here

brainly.com/question/15197940#

#SPJ11

In which direction will the force of friction act on a ladder that resting on rough ground and leaning against a smooth vertical wall? If a ladder is resting on a floor and leaning against a vertical wall, then there will be normal reaction on the wall and on the floor. The weight of the ladder acts in a vertically downward direction. The frictional forces act on the wall and the floor.

Answers

Since the ladder is leaning against a smooth vertical wall, there will be no frictional force acting in the vertical direction. However, there will be a force of friction acting in the horizontal direction due to the roughness of the ground.

In the case of a ladder that is resting on rough ground and leaning against a smooth vertical wall, the force of friction will act in a direction opposite to the ladder's motion or tendency to move. This is because the force of friction always opposes the direction of motion or tendency to move. This force of friction will act to prevent the ladder from slipping or sliding along the ground, ensuring that it remains in place and leaning against the wall. The magnitude of this force of friction will depend on the weight of the ladder and the roughness of the ground.

to know more about frictional forces visit:

https://brainly.com/question/30280752

#SPJ11

find the wavelength of the three longest-wavelength lines of the lyman series.

Answers

The Lyman series is a series of lines in the emission spectrum of hydrogen that corresponds to transitions from higher energy levels to the n = 1 level. The formula for the wavelengths of the lines in the Lyman series is given by:

1/λ = R (1 - 1/n^2)          

Where λ is the wavelength of the line, R is the Rydberg constant (1.097 × 10^7 m^-1), and n is an integer greater than 1 that corresponds to the energy level of the electron before the transition.

To find the three longest-wavelength lines in the Lyman series, we need to plug in values of n and solve for λ, and then arrange the wavelengths in decreasing order.

When n = 2:

1/λ = R (1 - 1/2^2) = 3R/4

λ = 4/3R = 121.6 nm

When n = 3:

1/λ = R (1 - 1/3^2) = 8R/9

λ = 9/8R = 102.6 nm

When n = 4:

1/λ = R (1 - 1/4^2) = 15R/16

λ = 16/15R = 97.3 nm

Therefore, the three longest-wavelength lines in the Lyman series have wavelengths of 121.6 nm, 102.6 nm, and 97.3 nm, in decreasing order.

To know more about  Lyman series click this link -

brainly.com/question/30474951

#SPJ11

a long, thin solenoid has 900 turns per meter and radius 2.50 cm . the current in the solenoid is increasing at a uniform rate of 33.0 a/s . part a what is the magnitude of the induced electric field at a point near the center of the solenoid?

Answers

The magnitude of the induced electric field near the center of a solenoid can be determined using Faraday's law of electromagnetic induction. The law states that the induced electromotive force (EMF) in a closed

loop is equal to the negative rate of change of magnetic flux through the loop. In the case of a solenoid, the magnetic field inside is given by B = μ₀ * n * I, where B is the magnetic field, μ₀ is the permeability of free space (4π x 10⁻⁷ Tm/A), n is the number of turns per meter (900 turns/m), and I is the current in the solenoid.

Since the current is increasing at a uniform rate (dI/dt = 33.0 A/s), the rate of change of magnetic flux (dB/dt) can be calculated as dB/dt = μ₀ * n * (dI/dt). Now, the induced EMF can be found using Faraday's law: EMF = - (dB/dt) * A, where A is the area of the loop. For a point near the center of the solenoid, the area can be approximated as the cross-sectional area of the solenoid, which is A = π * (radius)² = π * (0.025 m)².

Finally, the magnitude of the induced electric field (E) can be determined by dividing the induced EMF by the circumference of the loop: E = EMF / (2π * radius). By substituting the given values and solving for E, you can find the magnitude of the induced electric field near the center of the solenoid.

to know more about Faraday's law click this link

brainly.com/question/1640558

#SPJ11

in which situation would a standpipe need to be improvised by stretching a hoseline up an interior stairwell or up the side of the building?

Answers

A standpipe system is a crucial element in fire protection that provides firefighters with a readily available water supply to fight fires in high-rise buildings.

However, there may be situations where a standpipe system is not available or not functioning correctly, such as in older buildings or during maintenance and construction work. In such cases, firefighters may need to improvise by stretching a hoseline up an interior stairwell or up the side of the building to access water sources at higher elevations. This method is called an improvised standpipe system. It involves firefighters running a hoseline up the stairwell or the exterior of the building and then connecting it to a water source, such as a fire hydrant or a nearby water source.

This method can be time-consuming and challenging, especially in buildings with limited access, but it can provide firefighters with a critical water supply to fight fires in high-rise buildings. In summary, an improvised standpipe system may be necessary when a traditional standpipe system is not available or not functioning correctly, and firefighters need a readily available water supply to fight fires in high-rise buildings.

To know more about standpipe system visit:-

https://brainly.com/question/31586854

#SPJ11

A massless spring with spring constant 19.5N / m hangs vertically. A body of mass 0.400 kg is attached to its free end and then released. Assume that the spring was unstretched before the body was released. How far below the initial position does the body Hlescend?

Answers

Using this equilibrium condition, we can solve for x: 3.924 N = 19.5 N/m * x, which gives x = 3.924 N / 19.5 N/m ≈ 0.201 m. Therefore, the body descends approximately 0.201 meters below the initial position.

We need to use the equation for the potential energy stored in a spring: U = (1/2)kx^2
where U is the potential energy, k is the spring constant, and x is the displacement from the equilibrium position.
The body is released from rest, so all of its initial energy is potential energy stored in the spring. At the top of its motion, this potential energy is entirely converted to kinetic energy. At the bottom of its motion, all of its energy is again potential energy stored in the spring.
We can use the conservation of energy to relate the initial potential energy to the final potential energy:  U_i = U_f
(1/2)kx_i^2 = (1/2)kx_f^2
where x_i is the initial displacement (zero) and x_f is the final displacement, which we want to find.
Solving for x_f, we get:  x_f = sqrt((U_i/k))

We're given the spring constant, k = 19.5 N/m, and the mass of the body, m = 0.400 kg. We can use these to find the initial potential energy:  U_i = (1/2)kx_i^2 = 0
We can also use the mass and gravitational acceleration (g = 9.81 m/s^2) to find the weight of the body:
F = mg = (0.400 kg)(9.81 m/s^2) = 3.924 N

Since the spring is hanging vertically, the weight of the body is balanced by the force of the spring:
F_s = 3.924 N

We can use this force and the spring constant to find the final displacement:  x_f = sqrt((U_i/k)) = sqrt((F_s^2)/(2k)) = sqrt((3.924 N)^2/(2(19.5 N/m)))
x_f = 0.402 m
Therefore, the body ascends 0.402 m from its initial position.
The answer to the question is: The body ascends three paragraphs, which is a distance of 0.402 m from its initial position. In the initial position, the mass (0.400 kg) is subjected to gravitational force, which can be calculated using the formula F_gravity = m * g, where m is the mass and g is the gravitational acceleration (approximately 9.81 m/s²). Therefore, F_gravity = 0.400 kg * 9.81 m/s² = 3.924 N.
When the mass descends, the spring stretches and exerts a force on the mass, F_spring = k * x, where k is the spring constant (19.5 N/m) and x is the extension of the spring. At the equilibrium position, these two forces balance each other: F_gravity = F_spring.


To know more about equilibrium visit :-

https://brainly.com/question/31673675

#SPJ11



Its in the image. Physics Physics Physics

Answers

1. The wavelength of the wave is 0.4 m

2. The frequency is 10 Hertz

3. The wavelength will be half the original wavelength.

4. The frequency of the wave is 0.05 Hertz

1. How do i determine the wavelength?

The wavelength of the wave can be obtain as follow:

Frequency of wave (f) = 2.0 KHz = 2.0 × 1000 = 200- HzSpeed of wave (c) of = 800 m/sWavelength (λ) = ?

Velocity (v) = wavelength (λ) × frequency (f)

800 = wavelength × 2000

Divide both sides by 2000

Wavelength = 800 / 2000

Wavelength = 0.4 m

2. How do i determine the frequency?

The frequency of the wave can be obtain as illustrated below:

Speed of wave (v) = 10 m/sWavelength of wave (λ) = 1 mFrequency of wave (f) =?

Velocity (v) = wavelength (λ) × frequency (f)

10 = 1 × frequency

Frequency = 10 Hertz

3. How do i determine the wavelength?

The wavelength of the wave can be obtain as shown below:

Initial frequency (f₁) = fInitial wavelength  (λ₁) = λSpeed = ConstantNew frequency (f₂) = 2fNew wavelength (λ₂) =?

v = fλ

Since v is constant, we have

f₁λ₁ = f₂λ₂

Thus, we have:

f × λ = 2f × λ₂

Divide both sides by 2f

λ₂ = fλ / 2f

λ₂ = λ / 2

Thus, we can conclude that the wavelength will be half the original wavelength

4. How do i determine the frequency?

The frequency of the wave can be obtain as shown below:

Time taken = 2 minutes = 2 × 60 = 120 secondsNumber of wave = 6 complete wavesFrequency =?

Frequency = Number of wave / time taken

Frequency = 6 / 120

Frequency = 0.05 Hertz

Learn more about wavelength:

https://brainly.com/question/30859618

#SPJ1

Answer:

1. The wavelength of the wave is 0.4 m

2. The frequency is 10 Hertz

3. The wavelength will be half the original wavelength.

4. The frequency of the wave is 0.05 Hertz

1. How do i determine the wavelength?

The wavelength of the wave can be obtain as follow:

Frequency of wave (f) = 2.0 KHz = 2.0 × 1000 = 200- Hz

Speed of wave (c) of = 800 m/s

Wavelength (λ) = ?

Velocity (v) = wavelength (λ) × frequency (f)

800 = wavelength × 2000

Divide both sides by 2000

Wavelength = 800 / 2000

Wavelength = 0.4 m

2. How do i determine the frequency?

The frequency of the wave can be obtain as illustrated below:

Speed of wave (v) = 10 m/s

Wavelength of wave (λ) = 1 m

Frequency of wave (f) =?

Velocity (v) = wavelength (λ) × frequency (f)

10 = 1 × frequency

Frequency = 10 Hertz

3. How do i determine the wavelength?

The wavelength of the wave can be obtain as shown below:

Initial frequency (f₁) = f

Initial wavelength  (λ₁) = λ

Speed = Constant

New frequency (f₂) = 2f

New wavelength (λ₂) =?

v = fλ

Since v is constant, we have

f₁λ₁ = f₂λ₂

Thus, we have:

f × λ = 2f × λ₂

Divide both sides by 2f

λ₂ = fλ / 2f

λ₂ = λ / 2

Thus, we can conclude that the wavelength will be half the original wavelength

4. How do i determine the frequency?

The frequency of the wave can be obtain as shown below:

Time taken = 2 minutes = 2 × 60 = 120 seconds

Number of wave = 6 complete waves

Frequency =?

Frequency = Number of wave / time taken

Frequency = 6 / 120

Frequency = 0.05 Hertz

Explanation:

a transformer si designed to change 021v into 10,000 v, and there are 164 turns in hte primary coil. how many turns are in the secondary coil?

Answers

There are approximately 7,808 turns in the secondary coil.

To determine the number of turns in the secondary coil, we can use the formula for transformer voltage ratio, which states that the ratio of the number of turns in the secondary coil to the number of turns in the primary coil is equal to the ratio of the output voltage to the input voltage. In this case, the input voltage is 21 V and the output voltage is 10,000 V, so the voltage ratio is 10,000/21.

Using this voltage ratio formula, we can write:
number of turns in the secondary coil / 164 = 10,000 / 21

Solving for the number of turns in the secondary coil, we get:
number of turns in the secondary coil = (10,000 / 21) x 164
number of turns in the secondary coil = 7,808 turns (rounded to the nearest whole number)

So there are approximately 7,808 turns in the secondary coil. This allows the transformer to step up the voltage from 21 V to 10,000 V.

To know more about transformer voltage ratio visit:

https://brainly.com/question/29382789

#SPJ11

i-10 presumes a cause-and-effect relationship between hypertension and acute kidney disease.

Answers

I-10 (International Classification of Diseases, 10th Revision) is a medical classification system used by healthcare providers and researchers to classify and code diseases and health conditions. In this system, hypertension (high blood pressure) and acute kidney disease are two separate diagnoses that can be coded independently.

While hypertension is a known risk factor for developing kidney disease, it is not necessarily a direct cause of acute kidney disease. Acute kidney disease can have various causes, including infections, medication toxicity, and decreased blood flow to the kidneys. Hypertension can contribute to the development of chronic kidney disease over time, but it may not directly cause acute kidney injury.

To know more about hypertension click this link -

brainly.com/question/30198399

#SPJ11

How do I find N1 usings snell's law?
N1=? Theta1=40° N2=2.61 Theta=34°

Answers

Answer:

To use Snell's law to find N1, we need to know the indices of refraction and angles of incidence and refraction of the two media.

Snell's law states that:

n1 sin(theta1) = n2 sin(theta2)

where n1 and n2 are the indices of refraction of the two media, theta1 is the angle of incidence, and theta2 is the angle of refraction.

We are given n2=2.61, theta1=40°, and theta2=34°. To find N1, we need to rearrange Snell's law to solve for n1:

n1 = n2 sin(theta2) / sin(theta1)

Plugging in the values we have:

n1 = 2.61 sin(34°) / sin(40°)

n1 ≈ 2.22

Therefore, the index of refraction of the first medium (N1) is approximately 2.22, based on the given values and Snell's law.

immediately prior to a cloud-to-ground lightning strike, what are the net charges of the lower cloud and the ground, respectively?

Answers

Cloud-to-ground lightning is a natural electrical discharge that occurs during thunderstorms. The process starts with the buildup of charge separation in the storm clouds.

The tops of the clouds become positively charged while the bottom of the clouds become negatively charged. The negatively charged region at the bottom of the clouds induces a positive charge in the ground below it. This sets up a potential difference between the cloud and the ground, and when the potential difference becomes high enough, it triggers a flow of current in the form of lightning.

The lightning discharge serves to neutralize the charge separation and restore balance to the atmospheric electrical system. It does so by creating a pathway of ionized air molecules between the cloud and the ground. This pathway allows for the flow of current to occur, with electrons from the cloud moving toward the ground, neutralizing the positive charge induced in the ground.

The net charges of the lower cloud and the ground immediately prior to a cloud-to-ground lightning strike are negative and positive, respectively. The magnitude of the charges can vary depending on the specific conditions of the storm system, but in general, the bottom of the cloud has a larger negative charge compared to the positive charge induced in the ground below it.

Learn more about  lightning  here:

https://brainly.com/question/31442871

#SPJ11

a solenoid with 200 loops is 50 cm long. it has a current of 1.2 a . what is the magnetic field in this solenoid?

Answers

The magnetic field in the solenoid, we need to use the formula B = μ0 * n * I, where B is the magnetic field, μ0 is the magnetic constant (equal to 4π * 10^-7 T*m/A), n is the number of loops per unit length (in this case, n = 200/0.5 = 400 loops/m), and I is the current (I = 1.2 A).

The magnetic field in the solenoid is approximately 0.000151 T.
It's important to specify the units when providing an answer for a physics problem, so in this case, the units of magnetic field are tesla (T).


Substituting these values into the formula, we get:
B = (4π * 10^-7 T*m/A) * 400 loops/m * 1.2 A
B = 1.51 * 10^-4 T

To  know more about magnetic field visit :-

https://brainly.com/question/30331791

SPJ11

51. a change in the forces in one part of a closed system affects the entire system. thiscan be accurately applied toa. the holland hexagon.b. a support group.c. force-field analysis.d. johari window.

Answers

The term "a change in the forces in one part of a closed system affects the entire system" can be accurately applied to the "force-field analysis." (Option c)

Force-field analysis is a decision-making technique that involves analyzing the pros and cons of a proposed solution. It assumes that any action is affected by the interplay between the forces that support it and the forces that oppose it. It proposes that for an individual to progress or change, the driving force must be greater than the resisting force. Therefore, to attain progress, one must amplify the driving forces and decrease the restraining ones.

This technique is frequently used to aid in the preparation of change and innovation efforts, particularly in the business and healthcare sectors. Thus, the correct answer is option c: force-field analysis.

You can learn more about closed systems at: brainly.com/question/14782983

#SPJ11

Other Questions
according to your text, some researchers believe autism may be due to _____. A person who has cholera would be expected to have which type of diarrhea? a. Osmotic c. Small volume b. Secretory d. Motility. The economics of renting or buying a place to live depends on all of these factors excepta. tax write-offs for homeowners.b. expected residual value after depreciation.c. how many years you expect to live in the home.d. housing prices and mortgage interest rates. the idea that both partners share the accountability for sexual dysfunction is known as: Find the derivative guys pls help Problem #2Andy is supplying his class members with colored paper tomorrow. He has 4 timesas many orange papers as blue papers. There are a total of 37 students in hisclass. How many blue papers and orange papers did Andy bring to class?27 circle the correct choice. Identify n and k, and substitute theseinto the correct formula. You do not need to simplify.3. There are 100 people at a basketball game. 10 winners are chosen. Each winner wins an identical team T-shirt. To find the number of ways to choose the winners, you use (permutations/combinations).There are 30 students in a club. The club chooses a president, Vice president, and secretary. To find the number of ways to choose the officers, you use (permutations/combinations)(-help I dont get it) an acid has a ph of 4. what iis the [OH-} concentration mexican american mutual aid societies or mutualistas provided If a 6-sided die is rolled 30 times, how many times can you expect to get a 6 a time when young people are no longer adolescents but have not yet become fully adult is called 3. MAKE GENERALIZATIONS The Moral Majority wasconcerned about the effects of which social changesand movements on the American family, and why? If your income increases at a rate of 2% per year, how long will it take to double your income? 10 years 25 years O. 35 years 50 years 75 years A group of young men and women with drug addictions meet each week to share their experiences and encourage oneanother in their efforts to overcome their addiction. The benefits they receive from this interaction best illustrate the valueofA. Free Association B. A token economyC. Virtual reality exposure therapyD. Self-help groups nineteen of the 20 warmest of the last 150 years have occurred since 1980. T/F what legal issue must you consider when installing a guest os into a hypervisor? be-18 if your marine toilet has a "y" valve, what must you do in a no discharge zone? Find f(-3) for the piecewise function: a spherical mirror is to be used to form an image 4.60 times the size of an object on a screen located 5.40 m from the object. (a) is the mirror required concave or convex? What is the significance of the third meeting in Teheran between allied powers?a. It was the first meeting of the "BIG 3" Stalin, Churchill, and Roosevelt