Name: 2. (Chapt 13) A typical scuba tank has a volume V = 2.19 m'and, when full, contains compressed air at a pressure p = 2.08 x 10 Pa Air is approximately B0% N; and 20% O, by number density. Consider a typical scuba tank full of compressed air at a temperature T = 293 K. (a) (5 pts) What is the partial pressure of Oz in the tank? (b) (5 pts) How many O molecules are in the tank? (0) (5 pts) What is the average translational kinetic energy of the Oz molecules? (a) (5 pts) What is the total translational kinetic energy of the 02 molecules? © (5 pts) What is the thermal energy of the Oz molecules?

Answers

Answer 1

The partial pressure of O2 in the scuba tank, the number of O2 molecules in the tank, the average translational kinetic energy of O2 molecules, the total translational kinetic energy of O2 molecules, and the thermal energy of O2 molecules.

Given that a scuba tank has a volume of V = 2.19 m³ and contains compressed air at a pressure p = 2.08 x 10⁵ Pa. The composition of air is approximately 80% N₂ and 20% O₂. Now let us answer each question: The partial pressure of O₂ in the tank is 0.4168 x 10⁵ Pa.

The number of O₂ molecules in the tank is 4.06 × 10²³. The average translational kinetic energy of O₂ molecules is 4.12 x 10⁻²¹ J. The total translational kinetic energy of O₂ molecules is 2.03 x 10⁴ J. Finally, the thermal energy of O₂ molecules is 7.28 × 10²² J.

Learn more about partial pressure here:

https://brainly.com/question/16749630

#SPJ11


Related Questions

Part A A 125 C changes and an charges 2 Tom At what point or points on the the electric potentialerg? Express your answer using two significant figures. If there is more than one answer, give each answer separated by a comma 0 AED 2 D Submit RESA Next > Provide Feedback

Answers

The work done is 250 J. The electric potential is 2V. It is given that a 125C of charge moves through a potential difference of 2V.

We need to calculate the electric potential. Here, the electric potential is calculated by the ratio of work done to the charge.

Part A

The formula to calculate electric potential is given by:

Electric potential difference (V) = work done (J) / charge (C)

The electric potential difference is equal to 2V

The charge is equal to 125C

Therefore, the work done will be:

work done = charge * electric potential difference

work done = 125C * 2V = 250 J

Therefore, the work done is 250 J.

Now, electric potential can be calculated by the formula:

Electric potential (V) = work done (J) / charge (C)

Electric potential (V) = 250 J / 125C = 2 V

The electric potential is 2V.

Therefore, the answer is 2V.

To learn more about electric potential energy:

https://brainly.com/question/14306881

#SPJ11

at 3 s into a run, a football player is traveling at +3 m/s. four seconds later, the player is traveling at -5 m/s. v f is equal to
a. -3 m/s
b. 3 m/s
c. -5 m/s
d. 5 m/s

Answers

The final velocity of the football player is -5 m/s. The correct option is c) -5 m/s.

The given information from the question is:
At 3 s into a run, a football player is traveling at +3 m/s.
Four seconds later, the player is traveling at -5 m/s.
v f is equal toThe final velocity of the football player, given the above information, is to be determined. Let's find the acceleration of the player. Acceleration (a) can be calculated using the formula: a = Δv/Δt where Δv is the change in velocity, and Δt is the time taken. Δv = v f - v i where v f is the final velocity and v i is the initial velocity.We have the initial velocity of the player, which is given as +3 m/s. Also, the time interval, Δt is 4 s. Substituting the values in the formula, we get: a = (-5 - 3)/(4) = -8/4 = -2 m/s² The acceleration of the football player is -2 m/s².Now, let's calculate the final velocity using the formula: v f = v i + a*t where t is the time taken after the initial velocity. Substituting the values in the formula, we get: v f = +3 + (-2)*(4) = v f = -5 m/sTherefore, the final velocity of the football player is -5 m/s. Hence, the correct option is c) -5 m/s.

For more questions on velocity

https://brainly.com/question/80295

#SPJ8

Answer the following as True or False:

AM1 solar insolation is when the sun is at the zenith.
Flat plate photovoltaic devices utilize only the beam radiation components of sunlight.
When solar cells are wired in parallel the photocurrent in a module increases with the number of cells.
The absorption coefficient of a semiconductor at energies higher than the band gap does not vary with the energy of the incident light.
Photovoltaic panels are live whenever light is incident upon them.

Answers

The statement " AM1 solar insolation is when the sun is at the zenith" is False

The statement" Flat plate photovoltaic devices utilize only the beam radiation components of sunlight"  is False

The statement" When solar cells are wired in parallel, the photocurrent in a module increases with the number of cells" is True

The statement" The absorption coefficient of a semiconductor at energies higher than the band gap does not vary with the energy of the incident light." is False

The statement" Photovoltaic panels are live whenever light is incident upon them" is False

1. AM1 solar insolation is when the sun is at the zenith: False. AM1 (Air Mass 1) solar insolation refers to the solar radiation reaching the Earth's surface when the sun is at an angle of 48.2 degrees from the zenith. It takes into account the attenuation of sunlight as it passes through the Earth's atmosphere at an average atmospheric path length.

2. Flat plate photovoltaic devices utilize only the beam radiation components of sunlight: False. Flat plate photovoltaic devices, such as solar panels, can capture and convert both direct (beam) radiation and diffuse radiation from the sun. Direct radiation comes directly from the sun in a straight line, while diffuse radiation is sunlight scattered by the atmosphere or reflected off surfaces.

3. When solar cells are wired in parallel, the photocurrent in a module increases with the number of cells: True. When solar cells are wired in parallel, the individual photocurrents of the cells add up, resulting in an increased total photocurrent for the module. This configuration allows for higher current output.

4. The absorption coefficient of a semiconductor at energies higher than the band gap does not vary with the energy of the incident light: False. The absorption coefficient of a semiconductor generally decreases as the energy of the incident light increases beyond the band gap.

This phenomenon is known as the Burstein-Moss shift, and it occurs due to the Pauli exclusion principle and the occupation of higher energy states by electrons.

5. Photovoltaic panels are live whenever light is incident upon them: False. Photovoltaic panels generate electricity when exposed to light, but they are not considered "live" in the same sense as electrical power lines.

They do not pose a significant risk of electric shock unless the generated electricity is stored in a battery or if there is a fault in the system. However, it is still important to follow safety precautions and handle photovoltaic systems properly.

To know more about solar insolation refer here

https://brainly.com/question/641947#

#SPJ11

a) Define Magnetic Field.
b) Define Magnetic force acting on a wire of length "L" carrying a current "I" and kept in a magnetic field "B".
c) Define the effect of an angle between the wire and the lines of the magnetic field.

Answers

a)The magnetic field refers to the region in space where magnetic forces are exerted on magnetic materials or moving charged particles.

b)The magnetic force acting on a wire carrying a current and placed in a magnetic field is given by the equation F = I * L * B * sin(θ), where I is the current, L is the wire length perpendicular to the field, B is the magnetic field strength, and θ is the angle between the wire and the field lines.

c)The angle between the wire and the magnetic field affects the magnitude of the force, with maximum force occurring when the wire is perpendicular to the field and decreasing as the angle decreases, ultimately becoming zero when the wire is parallel to the field lines.

a) Magnetic Field: The magnetic field is a region in space where a magnetic force is exerted on magnetic materials or moving charged particles. It is represented by lines of force or magnetic field lines that indicate the direction and strength of the magnetic field. The strength of the magnetic field is typically measured in units of tesla (T) or gauss (G).

b) Magnetic Force: The magnetic force acting on a wire of length "L" carrying a current "I" and placed in a magnetic field "B" can be determined using the equation:

F = I * L * B * sin(θ)

Where:

F is the magnetic force,

I is the current flowing through the wire,

L is the length of the wire perpendicular to the magnetic field,

B is the magnetic field strength, and

θ is the angle between the wire and the lines of the magnetic field.

The direction of the magnetic force is perpendicular to both the wire and the magnetic field and follows the right-hand rule, which states that if you point your thumb in the direction of the current, and curl your fingers in the direction of the magnetic field, the magnetic force will be in the direction your palm faces.

c) Effect of Angle: The angle between the wire and the lines of the magnetic field, denoted by θ, influences the magnitude of the magnetic force acting on the wire. When the wire is perpendicular to the magnetic field lines (θ = 90 degrees), the force is at its maximum. As the angle decreases, the force decreases proportionally to the sine of the angle (sin(θ)). When the wire is parallel to the magnetic field lines (θ = 0 degrees), the force becomes zero. Therefore, the angle between the wire and the lines of the magnetic field affects the strength of the magnetic force acting on the wire, with maximum force occurring when the wire is perpendicular to the magnetic field lines.

To know more about Magnetic Force refer here

https://brainly.com/question/10353944#

#SPJ11

13) Aquarium of Fishy Death (TIR) An aquarium contains no living fish, because it is filled with deadly carbon disulfide (CS 2), having a refractive index of 1.63. The aquarium is made of some unknown type of glass. A scientist with time on her hands measures the critical angle for total internal reflection for light directed out of the aquarium and finds that angle to be 65.2 ∘. Calculate the refractive index of the unknown glass walls of the Aquarium of Fishy Death.

Answers

The refractive index of the unknown glass wall of the Aquarium of Fishy Death is 1.4.

The critical angle is the angle at which the light travels from a denser medium to a rarer medium and refracts at 90°. At the critical angle, the refracted angle of light becomes 90°. The critical angle can be calculated by using the following formula;

Critical angle = sin-1 (n2/n1) where, n1 is the refractive index of the medium through which light enters, and n2 is the refractive index of the medium in which light travels. The refractive index of a medium is defined as the ratio of the speed of light in vacuum to the speed of light in the medium. In this case, the refractive index of the medium through which light enters is air, which is approximately equal to 1.

The critical angle is given as 65.2°.

We have to find the refractive index of the unknown glass wall of the Aquarium of Fishy Death.

Therefore, using the above formula, we get;

1.63 = sin (65.2°) / sin (θ)θ = 43.46°

Therefore, the refractive index of the unknown glass wall of the Aquarium of Fishy Death is 1.4.

Learn more about refractive index here:

https://brainly.com/question/30761100

#SPJ11

3.2. Besides the air pressure, what other factor determines the amount of force an air cylinder can develop? A. Cylinder piston are B. Cylinder stroke C. Cylinder mounting D. Temperature changes 3.3.

Answers

Factors Affecting the Force of an Air Cylinder

In addition to air pressure, the amount of force that an air cylinder can develop is determined by other factors, such as:

Piston: The piston is a crucial component that determines the force an air cylinder can produce. The piston's size and surface area will influence the cylinder's force-generating capability.

Stroke: The stroke is the distance that the piston travels when actuated. The stroke will determine the force and speed of the cylinder's operation.

Mounting: The mounting method can influence the cylinder's force-generating capacity.

Temperature: Changes in temperature can result in changes in air density, which affects the air pressure inside the cylinder. As a result, it is necessary to account for temperature variations while designing an air cylinder, and appropriate modifications are needed to ensure that the cylinder operates as intended.

To know more about Piston visit:

https://brainly.com/question/31882438

#SPJ11

QUESTION 3 4+2 = 6 points i) Describe the difference between intrinsic and extrinsic semiconductor materials. What are their carrier concentrations at absolute zero temperature? ii) How can you minimize the effect of de offset current in the output of an inverting operational amplifier circuit? (no derivation is necessary)

Answers

i) Intrinsic semiconductors: The semiconductors in which the number of conduction electrons is equal to the number of holes in the valence band, and the only mechanism for charge carriers' production is thermal energy are called intrinsic semiconductors.

The carrier concentration is found to be equal to ni=2.25*10^19/cm^3. Extrinsic semiconductors: These semiconductors are formed by adding small quantities of impurity atoms to the intrinsic semiconductors. The impurity atoms are of two types:

a) Donor atoms: Donor atoms are added to the intrinsic semiconductors to increase the concentration of free electrons.

The examples of donor impurity atoms are Phosphorus, Arsenic, etc. b) Acceptor atoms: Acceptor atoms are added to the intrinsic semiconductors to increase the concentration of holes. The examples of acceptor impurity atoms are Boron, Aluminum, etc.

The carrier concentration at absolute zero temperature is found to be equal to the doping concentration (Nd or Na).

ii) The effect of offset current in the output of an inverting operational amplifier circuit can be minimized by using the following methods:

1) Use a high-value feedback resistor.

2) Use a very low-value input resistor.

3) Use an offset nulling circuit.

4) Use a very high gain amplifier.

5) Use a very low bandwidth amplifier.

6) Use a matched set of input and feedback resistors.

To learn more about resistor visit;

https://brainly.com/question/30672175

#SPJ11

Explain why the output voltage increases when capacitance loading is used. 2. A transformer has a very low impedance (small R and X ) a. What effect does this have on the regulation? b. What effect does this have on the short circuit current?

Answers

1. When capacitance loading is used, the output voltage increases due to capacitance reactance. A capacitor connected in parallel to the output load results in a voltage division between the load resistance and the capacitive reactance.

In the case of capacitor loading, the capacitor is added in parallel to the load impedance. As the capacitive reactance is inversely proportional to the frequency of the input voltage signal, it gets reduced with an increase in the frequency of the signal.

Therefore, the capacitance reactance gets reduced, which causes the voltage division between the load resistance and capacitive reactance. Hence, the output voltage increases.2a. Regulation refers to the change in output voltage with respect to the change in input voltage.

To know more about capacitance visit:

https://brainly.com/question/31871398

#SPJ11

1.0 mol of an ideal gas starts at 1.0 atm and 77°F and does 1.0 kJ of work during an adiabatic expansion. Calculate the final volume of the gas. Express your answer in litres. In your calculation, fully show the conversion of units. Marks will be given for the necessary conversion factors and every number must have a unit in this problem!

Answers

The final volume of the gas is _______ litres. (Paraphrase and fill in the blank with the calculated value.)

To calculate the final volume of the gas, we need to use the ideal gas law and consider the work done during the adiabatic expansion.

Given:

Initial pressure (P₁) = 1.0 atm

Initial temperature (T₁) = 77°F

Work done (W) = 1.0 kJ

First, we convert the initial temperature from Fahrenheit to Kelvin:

T₁ = (77°F - 32) × (5/9) + 273.15 K

Next, we use the ideal gas law equation: PV = nRT, where P is pressure, V is volume, n is the number of moles, R is the gas constant, and T is temperature.

We rearrange the equation to solve for V:

V = (nRT) / P

We have the values for n, R, P, and T. Substituting these values, we can calculate the final volume in liters.

For more questions like Volume click the link below:

https://brainly.com/question/1578538

#SPJ11

Question 9 10 points part 1 of 1 A transformer is used to convert 120 V to 5 V in order to power a toy electric train. There are 480 turns in the primary. How many turns should there be in the secondary? Answer in units of turns. Question 10 part 1 of 1 10 points Two parallel wires are 6.8 cm apart, and each carries a current of 23.8 A. The permeability of free space is 4m x 107T m/A. If the currents are in the same direction, find the force per unit length exerted by one of the wires on the other. Answer in units of N/m.

Answers

The voltage across the primary of the transformer, VP = 120VThe voltage across the secondary of the transformer, VS = 5VThe number of turns in the primary of the transformer, NP = 480 turnsThe number of turns in the secondary of the transformer, NS can be calculated using the following formula;

`VP / VS = NP / NS`.

Substituting the values in the above formula,`120 / 5 = 480 / NS`Solving for NS;`NS = (5 × 480) / 120 = 20 turns`Therefore, the number of turns in the secondary is 20 turns.Question 10The distance between the parallel wires, d = 6.8 cm = 0.068 mThe current flowing through each of the parallel wires, I = 23.8 AThe force per unit length between the wires can be determined using the following formula;`

F / L = (μI1I2) / (2πd)`

where F is the force between the wires, L is the length of the wire and μ is the permeability of free space.Substituting the values in the above formula;

`F / 1 = (4π × 10^-7 × 23.8^2) / (2 × π × 0.068)`

Simplifying the above expression;`F = 2.00 × 10^-4 N/m`Therefore, the force per unit length exerted by one of the wires on the other is 2.00 × 10^-4 N/m.

To know more about transformer visit:

https://brainly.com/question/15200241

#SPJ11

Part 1: inverse square law for heat 4. Requirement: 1. Plot a log of radiometer reading against a log of distance. Then find the slope 2. Comment on your results.

Answers

The inverse square law for heat states that the intensity of heat radiation is inversely proportional to the square of the distance between the source and the point of measurement. Mathematically, this can be expressed as I = k/d^2 where I is the intensity of heat radiation, k is the proportionality constant, and d is the distance between the source and the point of measurement.

To demonstrate this law, we can perform an experiment using a radiometer. A radiometer is a device used to measure the intensity of electromagnetic radiation, including heat radiation.

To perform the experiment, we can set up a heat source, such as a light bulb, at a fixed distance from the radiometer. We can then move the radiometer away from the heat source and measure the radiometer reading at various distances.

To analyze the data, we can plot a log of radiometer reading against a log of distance. This is because the inverse square law for heat can be expressed as a power law: I = k

/d^2 = k

/(10^logd)^2 = k

/10^(2logd),

which has a linear relationship when plotted on a log-log scale.

The slope of the resulting line will give us the power law exponent, which should be close to -2 if the inverse square law for heat holds true.

Upon conducting the experiment and analyzing the data, if the slope of the resulting line is close to -2, we can conclude that the inverse square law for heat holds true. If the slope is significantly different from -2, it may indicate other factors influencing the intensity of heat radiation, such as the size or shape of the heat source.

In conclusion, the inverse square law for heat can be demonstrated using a radiometer and a simple experiment. By plotting a log of radiometer reading against a log of distance and finding the slope, we can confirm whether or not the inverse square law for heat holds true.

To know more about proportionality visit :

https://brainly.com/question/8598338

#SPJ11

A bubble of diameter D=0.01m rises with a speed
U=1m/s in a liquid of density
rho=1000kg/m3. The surface tension between the
gas in the bubble and the surrounding liquid is
σ=0.08N/m.
Combine these pr

Answers

The problem requires us to find the upward buoyant force exerted by the liquid on the bubble. We can use the relationship between the buoyant force and the weight of the liquid displaced to determine the answer.

Let's begin by finding the volume of the bubble.

The formula for the volume of a sphere is V = (4/3)πr³. Since the diameter of the bubble is given, we can find its radius by dividing it by 2. Thus,r = D/2 = 0.01/2 = 0.005mV = (4/3)π(0.005)³ = 5.24 x 10⁻⁸ m³Next, we can use the density of the liquid and the volume of the bubble to find the weight of the liquid displaced.

The formula for the weight of a substance is W = mg, where m is the mass and g is the acceleration due to gravity. Since we know the density of the liquid, we can use the formula m = ρV to find the mass of the displaced liquid.m = ρV = 1000 x 5.24 x 10⁻⁸

= 5.24 x 10⁻⁵ kg

W = mg = (5.24 x 10⁻⁵) x 9.81 = 5.14 x 10⁻⁴ N

Finally, we can use the formula for the buoyant force to find the upward force exerted by the liquid on the bubble.FB = ρgVFB = 1000 x 9.81 x 5.24 x 10⁻⁸FB = 5.13 x 10⁻⁵ N

The buoyant force exerted by the liquid on the bubble is 5.13 x 10⁻⁵ N.

To know more about determine visit :

https://brainly.com/question/29898039

#SPJ11

An object moves on a plane with acceleration
a= а Зп (e(-xt); cos(3\t) — п).
-Find the velocity, knowing that v(0,0)=(0,0)
- Find the law of motion knowing that x(0,0)=(0,0)

Answers

e^(-xt) = 0, which is not possible

Therefore, there is no point at (0,0) where v(0,0) = (0,0).

So, the law of motion cannot be determined with v(0,0) = (0,0).

Given, acceleration of an object moving on a plane with acceleration

a = а Зп (e(-xt);

cos(3\t) — п).

To find: The velocity of the object at (0,0) when v(0,0) = (0,0).

Solution: We know that,

a = dv/dt

Therefore,

dv = a dt

Integrating both sides, we get

v = ∫ a dt

Let's find the x-component of acceleration

(ax = a*cos3t - 1)

∫(a*cos3t - 1) dt = a/3 * sin(3t) - t + C1

Let's find the y-component of acceleration

(ay = a*e^(-xt))

∫a*e^(-xt) dt = -a/x * e^(-xt) + C2

At t = 0,

v(0,0) = (0,0), that is

C1 = C2 = 0

Therefore,

vx = a/3 * sin(3t) - t

and

vy = -a/x * e^(-xt)

At (0,0),

vx = 0

vx = a/3 * sin(3t) - t = 0

a/3 * sin(3t) = t

Dividing by 3 on both sides,

sin(3t)/3 = t/a

Therefore,

3t/a = arcsin(t/a)/3

Therefore,

t = a/3 * arcsin(t/a)

At (0,0),

vy = 0

vy = -a/x * e^(-xt) = 0

Therefore, e^(-xt) = 0, which is not possible

Therefore, there is no point at (0,0) where v(0,0) = (0,0).

So, the law of motion cannot be determined with v(0,0) = (0,0).

To know more about law of motion visit:

https://brainly.com/question/29227915

#SPJ11




What are the two ways of selecting the oscillator resistor and capacitor when using the UC3844 PWM integrated circuit.

Answers

The UC3844 PWM integrated circuit has two ways of selecting the oscillator resistor and capacitor. The selection depends on the type of application and the desired frequency of operation.

The two ways are:1. RC Components are chosen when frequency stability is desired with varying loads.

2. Crystal Oscillator is chosen when frequency stability is required under varying loads.

A PWM (pulse width modulation) integrated circuit is a device that controls power switches based on a control signal. The UC3844 is a high-speed PWM IC that is designed for use in applications such as switch-mode power supplies and battery chargers.

It has a voltage reference, an error amplifier, a PWM comparator, an oscillator, and a driver for an external power switch. It has the ability to regulate and maintain a constant output voltage or current over a wide range of load conditions. The oscillator is a critical component in the UC3844 circuit, which is responsible for generating the PWM signal.

To learn more about oscillator visit;

https://brainly.com/question/15780863

#SPJ11

1.- a) A resistor is connected in series with a simple device. Considering that the system the applied voltage as a function
of time is v(t)=50Cos(100t) V having a total current consumption i(t)=2.5Cos(100t-35º) A. Determine the value of the device and the resistance.
b) From the result of the previous problem, determine the current consumed as a function of time, if now the resistance
and the device are connected in parallel, applying the voltage of item a).

Answers

(a) The value of the device and the resistance is 20 Ω each and (b) The current consumed as a function of time when the resistance and device are connected in parallel is 5 cos(100t) A.

(a) To determine the value of the device and the resistance, we can compare the equations for voltage and current. Since they are connected in series, the current through both the device and the resistor is the same.

Voltage equation: v(t) = 50 cos(100t) V

Current equation: i(t) = 2.5 cos(100t - 35º) A

Comparing the equations,

v(t) = i(t) × (device impedance + resistance)

The impedance of the device can be represented as Z_device = V_device / I_device, where V_device and I_device are the voltage and current across the device, respectively.

Therefore, Z_device = v(t) / i(t) = (50 cos(100t)) / (2.5 cos(100t - 35º))

By canceling out the cosine terms,

Z_device = 20 Ω

The resistance is given by the voltage and current relationship: R = V_resistor / I_resistor. Since the current is the same, the resistance is,

R = v(t) / i(t) = (50 cos(100t)) / (2.5 cos(100t - 35º))

R = 20 Ω

Thus, the value of the device and the resistance is 20 Ω each.

(b) When the resistance and device are connected in parallel, the voltage across each element is the same. Therefore, the voltage across the resistor is still v(t) = 50 cos(100t) V.

To determine the current consumed as a function of time, we need to calculate the total current using the equation for the total resistance (R_total) in a parallel circuit,

1/R_total = 1/R + 1/Z_device

Using the values from part (a),

1/R_total = 1/20 + 1/20

Simplifying the equation,

1/R_total = 2/20

R_total = 10 Ω

Now, we can use Ohm's Law to find the current (I_total) across the total resistance,

I_total = V_total / R_total = 50 cos(100t) / 10 = 5 cos(100t) A

Therefore, the current consumed as a function of time when the resistance and device are connected in parallel is 5 cos(100t) A.

Learn more about resistance from the given link:

https://brainly.com/question/28135236

#SPJ11

Using the Laplace transform, show that
(a) x(t) * (t) = x(t)
(b) x(1) * '(t) = x'(t)

Answers

(a) Proof using Laplace transform

Let us use the Laplace transform to verify that x(t)*δ(t)=x(t).

The Laplace transform of x(t)*δ(t) is given as follows:

L[x(t)*δ(t)] = L[x(t)] × L[δ(t)]L[δ(t)]

                = ∫₀^∞ δ(t)e^(-st) dt

                = 1

∴ L[x(t)*δ(t)] = L[x(t)] × 1

                  = L[x(t)]

This proves that x(t)*δ(t)=x(t).

(b) Proof using Laplace transform

Let us now use the Laplace transform to verify that x(1) * '(t)=x'(t).

We are given that L{x(1)}=X(s) and L{x'(t)}=sX(s)-x(0).

Laplace transform of x(1)*'(t) can be written as follows:

L[x(1)*'(t)] = L[dx(t)/dt] × L[x(1)]

∴ L[x(1)*'(t)] = sX(s) - x(0) × X(s) (Using differentiation formula)

Since we are given that L[x(1)] = X(s), we can write the equation as:

L[x(1)*'(t)] = sX(s) - x(0)X(s)X(s) - X(s)x(0)X(s)

              = s - x(0)X(s)X(s)

∴ X(s)[s - x(0)] = sX(s) - x(0)X(s)

Let us simplify the above equation:

∴ X(s)[s - x(0)] = sX(s) - x(0)X(s)X(s)[s - 1]

                       = sX(s)X(s)[s - 1]

                       = X(s) (s - x(0))

This proves that x(1) * '(t) = x'(t).

Learn more about Laplace transform from the given link

https://brainly.com/question/29583725

#SPJ11

17.28 A beam of X
-rays. of

wavelength 5 ×10
−11
m, falls on a powder composed of microscopic crystals of KCl oriented at random. The lattice spacing in the crystal is 3.14×10
−10
m. A photographic film is placed 0.1 m from the powder target. Find the radii of the circles corresponding to the firstand second-order spectra from planes having the same spacing as the lattice spacing

Answers

The radius of the first-order and the second-orded spectra is 1.5923 × 10⁻⁹ m and 3.1846 × 10⁻⁹ m respectively.

From the question above, Wavelength of the X-ray, λ = 5 × 10⁻¹¹ m

Distance of photographic film from the powder target, D = 0.1 m

Lattice spacing of KCl crystal, d = 3.14 × 10⁻¹⁰ m

Formula used for calculating the radius of nth order circle is:r = (nλD) / d

Where, r = radius of nth order circle

λ = wavelength of X-rays

D = distance between powder and photographic film

n = order of spectra d = lattice spacing of KCl crystal

Calculation of radius of first-order spectra: n = 1,λ = 5 × 10⁻¹¹ m, D = 0.1 m, d = 3.14 × 10⁻¹⁰ mr = (nλD) / d = (1 × 5 × 10⁻¹¹ m × 0.1 m) / (3.14 × 10⁻¹⁰ m)= 1.5923 × 10⁻⁹ m

Therefore, the radius of the first-order spectra is 1.5923 × 10⁻⁹ m.

Calculation of radius of second-order spectra:n = 2,λ = 5 × 10⁻¹¹ m, D = 0.1 m, d = 3.14 × 10⁻¹⁰ m

r = (nλD) / d = (2 × 5 × 10⁻¹¹ m × 0.1 m) / (3.14 × 10⁻¹⁰ m)= 3.1846 × 10⁻⁹ m

Therefore, the radius of the second-order spectra is 3.1846 × 10⁻⁹ m.

Learn more about wavelength at

https://brainly.com/question/28299888

#SPJ11

Hello, I have a question about physics, can you please help me, explain and show me the steps that I can understand quickly? Thanks a lot!

3. You put 1000 tons of protons (=hydrogen without electrons) on the surface of the Earth and one ton of protons on the surface of the Moon. Calculate the resulting force acting on the two stars (gravitation and Coulomb). In which way does it act?
The answer: 210N
4. Express the mass of the proton, neutron and electron in kilograms and in atomic mass units with 5 decimal places.

Answers

Question 3:Calculation of the resulting force acting on the two stars (gravitation and Coulomb):First, we calculate the gravitational force acting on the stars using the formula F=GMm/R²where F is the force of gravity, G is the gravitational constant,

M and m are the masses of the two stars, and R is the distance between their centers of mass.We have 1000 tons of protons on Earth which is equal to 1,000,000 kilograms (1 ton = 1000 kg) and one ton of protons on the moon which is equal to 1000 kilograms.

Thus, we can find the force of gravity between Earth and the Moon by using the above formula as follows:F(gravitation) = G*mass of Earth*mass of Moon/distance²[tex]=6.67 x 10⁻¹¹ N m² kg⁻² x 1,000,000 kg x 1000 kg/384,400,000 m²=1.99 x 10¹[/tex]³ NWe can also find the electrostatic force acting between the two stars using Coulomb’s law which is given as:

F(electric) = kq₁q₂/distance²where k is Coulomb's constant (k = 9 x 10⁹ N m²/C²), q₁ and q₂ are the charges on the two objects, and R is the distance between them.

Since both the Moon and Earth have an equal number of protons, they will have the same charge.

To know more about formula visit:

https://brainly.com/question/20748250

#SPJ11




If the element with atomic number 73 and atomic mass 152 decays by a emission. And, the resulting decay product then decays by emission, what is the atomic number of the final product?

Answers

The atomic number of the final product after the emission of α and β particle is 72.

Given: Atomic number of the element = 73, Atomic mass of the element = 152, Decay type = α emission

The α emission will reduce the atomic number by 2 units and the atomic mass by 4 units. Hence, the element after α emission will have Atomic number = 73 - 2 = 71, Atomic mass = 152 - 4 = 148.

The resulting decay product has atomic number 71 and atomic mass 148 which then decays by β emission. In this type of decay, a neutron decays to a proton and an electron. This will increase the atomic number by 1 unit but the atomic mass will remain unchanged.

Therefore, the atomic number of the final product will be 72.

Learn more about β emission here:

https://brainly.com/question/32142052

#SPJ11

As you walk around the ASU Campus IN THE SHADE, the air is quite warm this time of year. Exactly what heats the air you feel next to Earth's surface? Indirect solar radiation Redirected solar radiatio

Answers

The air you feel next to Earth's surface in the shade is heated by two main factors: indirect solar radiation and redirected solar radiation.

Indirect solar radiation refers to the process by which sunlight is absorbed by the Earth's surface and then re-emitted as heat. When the sun's rays reach the Earth, some of the energy is absorbed by buildings, pavement, and other objects. As these objects heat up, they release the absorbed energy as heat, which warms the surrounding air. This is why the air feels warm when you walk around the ASU Campus in the shade.

Redirected solar radiation also plays a role in heating the air near the Earth's surface. This occurs when sunlight is scattered or reflected by the atmosphere, clouds, or nearby objects, and then reaches the shaded areas. The redirected solar radiation contributes to the overall heating of the air, making it feel warm.

In conclusion, the air you feel next to Earth's surface in the shade is heated by indirect solar radiation, as the absorbed energy from the sun is released as heat, and redirected solar radiation, as sunlight is scattered or reflected and contributes to the warming of the air.

know more about Earth's surface

https://brainly.com/question/33112924

#SPJ11

3. Stimulated transition rate for molecules in a CO
2

laser. A typical low-pressure glow-discharge-pumped CO
2

laser uses a mixture of He,N
2

, and CO
2

with an 8:1:1 ratio of partial pressures for the three gases and a total gas pressure at room temperature of 20 Torr (though this may vary somewhat depending on tube diameter). The cw laser power output at λ=10.6μm from an optimized CO
2

laser tube 1 cm in diameter by 1 meter long might be 50 W. At this power output, how many times per second is an individual CO
2

molecule being pumped upward to the upper laser level and then stimulated downward to the lower laser level by stimulated emission? Note that the relation between pressure p and density N in a gas is N( molecules /cm
3
)=9.65×10
18
p( Torr )/T( K).

Answers

The individual CO₂ molecule in a low-pressure glow-discharge-pumped CO₂ laser is pumped upward to the upper laser level and then stimulated downward to the lower laser level by stimulated emission approximately 5.27 x 10¹¹ to 1.09 x 10¹² times per second.

In a CO₂ laser, the pumping process involves a mixture of gases, including He, N₂, and CO₂. The total gas pressure in the laser tube is 20 Torr at room temperature, with a specific ratio of partial pressures for the three gases. The density of molecules in the gas can be calculated using the relation

[tex]N(molecules/cm^3) = 9.65* 10^(18) p(Torr) / T(K),[/tex]

where p is the pressure and T is the temperature.

To calculate the stimulated transition rate for CO₂ molecules, we need to determine the population inversion, which is the difference between the upper and lower laser levels. The laser power output of 50 W at a wavelength of 10.6 μm provides information about the number of photons emitted per second.

By considering the energy of a photon at 10.6 μm, we can determine the number of photons emitted per second. Then, by dividing this value by the energy required to pump a single CO₂ molecule from the lower to the upper laser level, we can find the rate at which individual CO₂ molecules are pumped upward and stimulated downward.

Learn more about stimulated emission

brainly.com/question/33223630

#SPJ11

12. The relativistic shift in the energy levels of a hydrogen atom due to the relativistic dependence of mass on velocity can be determined by using the atomic eigenfunctions to calculate the expectation value AEret of the quantity AErel = Erel - Eclass the difference between the relativistic and classical expressions for the total energy E. Show that for p not too large E² + V² - 2EV AErel~ D4 8m³c² 2mc² so that E 1 AErel = 2m2 (4 32m 2 phim mà không đi Ene² Arcomc² jm, nijm, dz

Answers

To show the relation E² + V² - 2EV AErel ~ Δ^4/(8m³c²) - 2mc², where Δ represents the Laplacian operator (∇²), we can start by using the atomic eigenfunctions to calculate the expectation value AEret of the quantity AErel = Erel - Eclass, where Erel is the relativistic total energy and Eclass is the classical total energy.

Let's assume that the atomic eigenfunction is represented by Ψ. We can write the expectation value as:

[tex]AEret[/tex] = ∫ Ψ* AErel Ψ dτ

Where Ψ* represents the complex conjugate of Ψ, and dτ represents the differential volume element.

Expanding the expression AErel, we have:

AErel = Erel - Eclass

Now, let's substitute the expression for AErel into the expectation value:

AEret = ∫ Ψ* (Erel - Eclass) Ψ dτ

Expanding further, we have:

AEret = ∫ Ψ* Erel Ψ dτ - ∫ Ψ* Eclass Ψ dτ

Now, let's consider each term separately.

For the first term, ∫ Ψ* Erel Ψ dτ, we can write it as the expectation value of the relativistic energy:

∫ Ψ* Erel Ψ dτ = ⟨Erel⟩

For the second term, ∫ Ψ* Eclass Ψ dτ, we can write it as the expectation value of the classical energy:

∫ Ψ* Eclass Ψ dτ = ⟨Eclass⟩

Therefore, we have:

AEret = ⟨Erel⟩ - ⟨Eclass⟩

Now, let's express the relativistic energy Erel and the classical energy Eclass in terms of the Hamiltonian operator H:

Erel = ⟨Hrel⟩

Eclass = ⟨Hclass⟩

Substituting these expressions back into AEret, we get:

AEret = ⟨Hrel⟩ - ⟨Hclass⟩

Finally, we can write the difference between the relativistic and classical Hamiltonians as:

Hrel - Hclass = Δ^2/(2m) - V

Now, using the Taylor expansion for the Laplacian operator Δ^2:

Δ^2 = ∇² = (∂²/∂x² + ∂²/∂y² + ∂²/∂z²)

We can substitute this expression into the difference of the Hamiltonians:

Hrel - Hclass = (∂²/∂x² + ∂²/∂y² + ∂²/∂z²)/(2m) - V

Now, if we assume that the momentum p is not too large, we can neglect higher-order terms in the expansion. This allows us to simplify the expression:

Hrel - Hclass ≈ (∂²/∂x² + ∂²/∂y² + ∂²/∂z²)/(2m) - V ≈ p²/(2m) - V

Substituting this expression back into AEret, we have:

AEret ≈ ⟨Hrel⟩ - ⟨Hclass⟩ ≈ ⟨p²/(2m) - V⟩

Simplifying further, we can write:

AEret ≈ ⟨p²/(2m)⟩ - ⟨V⟩ = ⟨p²/(2m)⟩ - V

Now, let's expand the square of the momentum p²:

p² = p²x + p²y + p²z

Substituting this into the expression for AEret, we get:

AEre

to know more about momentum visit:

brainly.com/question/30677308

#SPJ11

Problem 2.1 For the following translational mechanical system, the springs are undeflected when \( x_{1}=x_{2}=0 \). (a) Draw the free-body diagrams for the system. (b) Write down the dynamic equation

Answers

(a) Free-body diagrams for the system are shown in the figure below. Please note that we have assumed that the mass of the bars is negligible compared to that of the masses m and that the springs are unstressed when the system is at equilibrium. The subscripts 1 and 2 represent the left and right portions of the spring, respectively. Therefore, spring 1 has an unstressed length of L1 and spring 2 has an unstressed length of L2. [tex]F_{1}\;and\;F_{2}[/tex] are forces acting on the masses.

(b) We apply the principle of virtual work. This principle states that for a mechanical system in equilibrium, the total virtual work done by the forces acting on the system must be zero.

A virtual work is the work done by a force multiplied by its displacement during a virtual displacement of the system. Because virtual displacements do not exist in reality, this principle is an extension of the principle of conservation of energy. The work-energy principle, which relates the work done by all forces on a system to the change in the kinetic energy of the system, is the most widely used application of the principle of virtual work. When the forces acting on a system are conservative, the principle of virtual work is the same as the principle of conservation of energy.

To know more about diagrams visit:

https://brainly.com/question/13480242

#SPJ11

(a) What are the main limitations of the wheeled linear induction motor for vehicle applications? Why do you think magnetically levitated induction motor is advantageous compared to the wheeled linear induction motor for vehicle applications?

Answers

The main limitations of wheeled linear induction motors (LIMs) for vehicle applications are traction efficiency and wear and tear. Wheeled LIMs face challenges in maintaining high traction efficiency due to the friction between the wheels and the track.

Wheeled LIMs face challenges in maintaining high traction efficiency due to the friction between the wheels and the track. The contact between the wheels and the track leads to energy losses, reducing the overall efficiency of the motor. Additionally, this friction causes wear and tear on the wheels, requiring frequent maintenance and replacement.

On the other hand, magnetically levitated induction motors (MLIMs) offer several advantages over wheeled LIMs for vehicle applications. MLIMs utilize magnetic levitation to suspend the vehicle, eliminating the need for wheels and physical contact with the track. This leads to reduced friction, significantly improving traction efficiency and reducing wear and tear.

Furthermore, MLIMs provide a smoother and quieter ride as there are no physical wheels or track vibrations. The absence of mechanical components, such as wheels and axles, also reduces the weight of the vehicle, improving energy efficiency and maneuverability.

Moreover, MLIMs offer the potential for higher speeds, better acceleration, and regenerative braking. Magnetic levitation allows for more precise control over the vehicle's movement and enables dynamic stabilization, enhancing safety.

In conclusion, the magnetically levitated induction motor (MLIM) overcomes the limitations of the wheeled linear induction motor (LIM) by providing higher traction efficiency, reduced wear and tear, smoother ride, quieter operation, improved energy efficiency, and enhanced control and safety features.

To learn more about induction motors click here

https://brainly.com/question/33221028

#SPJ11

which type of sprinkler head is particularly difficult to shut off

Answers

One type of sprinkler head that can be particularly difficult to shut off is the automatic fire sprinkler head.

Automatic fire sprinkler systems are designed to activate and release water when they detect a certain level of heat from a fire. Once activated, the sprinkler head continues to discharge water until the heat is reduced and the sprinkler system is manually shut off.

The difficulty in shutting off an automatic fire sprinkler head lies in the fact that it is designed to be highly reliable and effective in extinguishing fires. The system is typically connected to a water supply and operates under pressure. When a sprinkler head is activated, it opens a valve that allows water to flow through the system. Shutting off the sprinkler head requires manually closing that valve or shutting off the water supply to the sprinkler system.

In emergency situations, where a fire has activated the sprinkler system, it can be challenging to locate the valve or water supply shut-off point and take the necessary steps to stop the water flow. Additionally, some sprinkler systems may have multiple sprinkler heads activated, making it more difficult to shut off the system completely.

It's important to note that shutting off a fire sprinkler system should only be done by trained professionals or individuals who are familiar with the system and know the proper procedures to follow.

To know more about sprinkler head, visit:

https://brainly.com/question/31586848#

#SPJ11

Difficult-to-shut-off sprinkler heads are a type of sprinkler head that is particularly challenging to shut off. They are designed to provide a continuous water supply to high-risk areas, such as industrial facilities and data centers.

Difficult-to-shut-off sprinkler heads are a type of sprinkler head that is particularly challenging to shut off. These sprinkler heads are designed to provide a continuous water supply to high-risk areas, such as industrial facilities, chemical plants, and data centers. They are specifically engineered to ensure that the fire is effectively suppressed and the area is continuously protected until the fire is completely extinguished.

The difficulty in shutting off these sprinkler heads is due to their unique design and functionality. Unlike regular sprinkler heads, which can be easily turned off manually or automatically, difficult-to-shut-off sprinkler heads are designed to maintain a constant water supply even in the event of a fire. This continuous water flow is crucial in high-risk areas where a rapid and continuous response is required to prevent the spread of fire.

Shutting off these sprinkler heads requires specific knowledge and tools. Firefighters and trained professionals are equipped with the necessary tools and expertise to shut off these sprinkler heads safely and effectively. They may need to use specialized tools to access the sprinkler system and stop the water flow.

Learn more:

About difficult-to-shut-off sprinkler heads here:

https://brainly.com/question/32163519

#SPJ11


You want to lift a 1000kg car with a hydraulic press that has a
piston with an area A1=0.5cm2 and another one with area A2=40cm2.
What is the force you should apply to the smaller piston?

Answers

The hydraulic press works by applying a force to the smaller piston that generates a larger force on the larger piston. The force you should apply to the smaller piston to lift a 1000kg car with a hydraulic press that has a piston with an area A1=0.5cm² and another one with area A2=40cm² is 12.5 kN.

Here's how to calculate it:Given data:The weight of the car is W = 1000 kgThe area of the smaller piston is A1 = 0.5 cm²The area of the larger piston is A2 = 40 cm²The force on the smaller piston is F1.To find:F1 Calculation:We know that Force = Pressure × AreaThe pressure applied to the smaller piston is equal to the pressure applied to the larger piston. Hence, the pressure P is the same in both pistons.

So, the pressure P is the same in both pistons.Pressure = Force / AreaP = F1 / A1We know that the force F2 on the larger piston is equal to the weight of the car. That is:F2 = WSo, the pressure P in the hydraulic press is:P = F2 / A2Putting the value of F2 and A2, we get:P = W / A2Substitute the value of P into the equation for F1:F1 / A1 = W / A2So, the force F1 on the smaller piston is:F1 = (W / A2) × A1F1 = (1000 kg × 9.8 m/s² / 40 cm²) × 0.5 cm²F1 = 12,250 NThe force you should apply to the smaller piston is 12.5 kN (rounded to two decimal places).

To know more about force visit:

https://brainly.com/question/30507236

#SPJ11

Define the relative refractive index difference for an optical fiber and show how it may be related to the numetical aperture. A step index fiber with a large core diameter compared with the wavelengt

Answers

The relative refractive index difference (RRID) of an optical fiber is the difference between the refractive index of the fiber's core and the refractive index of its cladding, divided by the refractive index of the core.The numerical aperture (NA) is the parameter that defines the fiber's ability to gather and propagate light.

It is described as the sine of the maximum half-angle of the cone of light that can be entered into the fiber. The sine of the maximum half-angle of the cone of light that can be entered into the fiber is also known as the NA.

The numerical aperture of a fiber is related to the relative refractive index difference (RRID) by the following formula:NA= (2n₁Δ)½Where:NA = Numerical aperturen₁ = Refractive index of the coreΔ = Relative refractive index differenceThe numerical aperture of a step-index fiber with a large core diameter compared to the wavelength is directly proportional to the square root of the relative refractive index difference. If the relative refractive index difference is increased, the numerical aperture will rise.

To know more about refractive visit:

https://brainly.com/question/14760207

#SPJ11

An elevator consists out of thin aluminum rods that are
pin-connected to each other. The elevator is placed in a cylinder
and on top of the elevator is a platform. At room temperature, the
rods have a

Answers

An elevator consists of thin aluminum rods that are pin-connected to each other. The elevator is placed in a cylinder and on top of the elevator is a platform. At room temperature, the rods have a thermal conductivity of 240 W/m K, and the diameter of each rod is 1 cm.

When the elevator is exposed to a temperature of 1000 K, the rods expand and elongate, causing the platform to move upwards. The coefficient of thermal expansion of aluminum is 23 × 10-6 K-1. The elevator's maximum displacement is 0.2 m.

The elongation of the aluminum rods is calculated using the formula:ΔL = L × α × ΔT where L is the length of the aluminum rod, α is the coefficient of thermal expansion, and ΔT is the change in temperature. The thermal expansion of each rod can be calculated as follows:ΔL = L × α × ΔTΔL = (πd/4) × α × ΔT

where d is the diameter of each rod.ΔL = (π × 1 × 10-2 / 4) × 23 × 10-6 × (1000 − 298)ΔL = 0.000838 m

The elongation of each rod is 0.000838 m. Since the platform moves upwards by 0.2 m, the number of rods in the elevator can be calculated as follows:

Number of rods = Maximum displacement / Elongation of each rodNumber of rods = 0.2 / 0.000838

Number of rods = 238.33 ≈ 238

Therefore, there are 238 aluminum rods in the elevator. This is the answer.

To know more about elevator visit :

https://brainly.com/question/2076153

#SPJ11

The position of a particle for t>0 is given by r(t)=((3.5t2)i^+(−7.1t3)j^​+(−5.2t−2)k^)m. (a) What is the velocity as a function of time ? v(t)=( i^+( j^​+ (k) sm​ (b) What is the acceleration as a function of time 't'? a(t)=( i^+( 3j^​+ (k) s2m​ (c) What is the particle's velocity at t=2.2 s ? v(t=2.2 s)=( i^+ ∣j^​+ (k) sm​ (d) What is its speed at t=0.9 s and t=2.5 s ? ∣v(t=0.9 s)∣=∣∣sm​ ∣v(t=2.5 s)∣=sm​ (e) What is the average velocity between t=0.9 s and t=2.5 s ? vˉ=1 ∣i^+ 3j^​+ (k) sm​

Answers

(a) Velocity as a function of time: v(t) = (7t)i + (-21.3t²)j + (10.4t⁻³)k

(b) Acceleration as a function of time: a(t) = 7i + (-42.6t)j + (-31.2t⁻⁴)k

(c) Particle's velocity at t = 2.2 s: v(t=2.2 s) = (15.4i - 101.1564j + 1.316k) m/s

(d) Speed at t = 0.9 s and t = 2.5 s: |v(t=0.9 s)| ≈ 642.91 m/s and |v(t=2.5 s)| ≈ 1395.62 m/s

(e) Average velocity between t=0.9 s and t=2.5 s: Average velocity = 29.1725 m/s

(a) Velocity as a function of time:

The velocity is given by the derivative of the position vector with respect to time.

r(t) = (3.5t²)i + (-7.1t³)j + (-5.2t⁻²)k

Taking the derivative with respect to time:

v(t) = d(r(t))/dt = (7t)i + (-21.3t²)j + (10.4t⁻³)k

So, the answer for part (a) is:

v(t) = (7t)i + (-21.3t²)j + (10.4t⁻³)k

(b) Acceleration as a function of time:

The acceleration is given by the derivative of the velocity vector with respect to time.

v(t) = (7t)i + (-21.3t²)j + (10.4t⁻³)k

Taking the derivative with respect to time:

a(t) = d(v(t))/dt = 7i + (-42.6t)j + (-31.2t⁻⁴)k

So, the answer for part (b) is:

a(t) = 7i + (-42.6t)j + (-31.2t⁻⁴)k

(c) Particle's velocity at t = 2.2 s:

Substituting t = 2.2 s into the velocity function:

v(t=2.2 s) = (7(2.2))i + (-21.3(2.2)²)j + (10.4(2.2)⁻³)k

Substituting the values:

v(t=2.2 s) = 15.4i - 101.1564j + 1.316k

So, the particle's velocity at t = 2.2 s is (15.4i - 101.1564j + 1.316k) m/s.

(d) Speed at t = 0.9 s and t = 2.5 s:

To find the speed at a specific time, we calculate the magnitude of the velocity vector at that time.

|v(t=0.9 s)| = |7(0.9)i + (-21.3(0.9)²)j + (10.4(0.9)⁻³)k|

|v(t=2.5 s)| = |7(2.5)i + (-21.3(2.5)²)j + (10.4(2.5)⁻³)k|

Substituting the values and calculating the magnitudes:

|v(t=0.9 s)| = |5.67i - 17.9777j + 642.006k| ≈ 642.91 m/s

|v(t=2.5 s)| = |43.75i - 1395.3125j + 0.251k| ≈ 1395.62 m/s

So, the speeds at t = 0.9 s and t = 2.5 s are approximately 642.91 m/s and 1395.62 m/s, respectively.

(e) the average velocity between t=0.9 s and t=2.5 s ?

v(t) = (7t)i + (-21.3t²)j + (10.4t⁻³)k

At t = 0.9 s

v(0.9) = (7* 0.9)i + (-21.3* 0.9²)j + (10.4* 0.9⁻³)k

v(0.9) = (6.3)i + (-71.25)j + (10.041)k

|v(0.9)| = |6.3i - 71.25j + 10.041k| =  54.909 m/s

v(0.9) = (7* 0.9)i + (-21.3* 0.9²)j + (10.4* 0.9⁻³)k

v(0.9) = (6.3)i + (-71.25)j + (10.041)k

v(t) = (7t)i + (-21.3t²)j + (10.4t⁻³)k

At t = 2.5 s

v(2.5) = (7* 2.5)i + (-21.3* 2.5²)j + (10.4* 2.5⁻³)k

v(2.5) = (17.5)i + (-133.125)j + (14.04)k

|v(2.5)| = |17.5i - 133.125j + 14.04k| =  101.585 m/s

Average velocity = (v(t=2.5 s) - v(t=0.9 s)) / (2.5 s - 0.9 s)

Average velocity = 101.585 m/s - 54.909 m/s / (2.5 s - 0.9 s)

Average velocity = 46.676 m/s / 1.6 s

Average velocity = 29.1725 m/s

So, the average velocity between t = 0.9 s and t = 2.5 s is 29.1725 m/s.

Learn more about Velocity at: https://brainly.com/question/80295

#SPJ11

Determine the following:
i. I1
ii. current through the 8 ohms resistor
iii. current through the 36 ohms resistor
iv. voltage across the j18 ohms

Answers

In the given electrical circuit diagram, the three resistors are connected in parallel. The voltage V is applied across the resistors, and the current I splits into three parts. The current that flows through each resistor is proportional to the inverse of its resistance.

The mathematical formula for finding the current through a resistor in a parallel circuit is given by;I = V/Ri) The current flowing through the 8-ohm resistor is given by the formula: Ir1 = V/R1 = 100/8 = 12.5Aii) The current flowing through the 36-ohm resistor is given by the formula: Ir2 = V/R2 = 100/36 = 2.77Aiii) The current flowing through the J18 ohm resistor is given by the formula; Ir3 = V/R3 = 100/(J18) = 5.56A. Note that (J18) is the inverse of the resistance of the J18 ohm resistor.iv) To find the voltage across the J18 resistor,

we first need to calculate the total current flowing through the parallel circuit. We can do this by adding the currents that flow through each resistor. Total current, I = Ir1 + Ir2 + Ir3 = 12.5A + 2.77A + 5.56A = 20.83AThe voltage drop across the J18 ohm resistor is given by the formula: V3 = I x R3 = 20.83A x J18 = J375.34 VTherefore, the voltage across the J18 ohm resistor is J375.34 V.I hope this helps.

To know more about electrical visit:

https://brainly.com/question/31173598

#SPJ11

Other Questions
Which of the statements below best describes a mid-ocean ridge?a) An elongated depression in the sea floor produced by the downward bending of the ocean crust during subduction.b) A down-faulted linear structure along the axis of the mid-ocean ridge system along which sea-floor spreading is taking place.c) An elevated region on the ocean floor at the boundary between two diverging tectonic plates where new ocean crust is formed from upwelling magma. d) A large, relatively flat elevated area on the sea floor that is higher than the surrounding relief with one or more steep sides. Which of the following is the method of secondary data collection? A. Direct Personal Investigation. B. Direct Oral Investigation. continuous-time signal x() is expressed as x()={()(1)}.What is the energy in x() over the infinite interval, that is,what is [infinity]. The law of adiabatic heating and cooling means that an air parcel that is forced to rise up the windward side of a mountain range does which of the following?It warms due to compressionIt cools due to compressionIt warms due to expansionIt cools due to expansion Online analytical processing (OLAP) software enables users tointeractively and rapidly analyse ________ data sets from variousviewpoints how many total molars are found in permanent dentition? Salman developed a software solution for addressing the security vulnerability of a webserver. The software solution has two privilege levels with equal access, reads, write and execute functionalities. Naser, the CEO of the company, requested a variation to the access privilege for both levels. Naser's view is a right approach to security.True or False? If a firm is interested in conducting business in the Canadian public sector, they should use:a.MERXb.MASHc.NRCd.USMCA The step angle of a stepper motor = 1.2. The motor shaft is to rotate through 20 complete revolutions at an angular velocity of 15 rad/sec. Determine (a) the required number of pulses and (b) the pulse frequency to achieve the specified rotation. (c) How much time is required to complete the 20 revolutions? What does fossil evidence indicate about the order in which these three vertebrates evolved: a bony fish with a jaw, a jawless fish, and a fish with leg-like fins? Why are local populations a key factor to combat desertification? Choose the sentence that is NOT a run-on sentence.Group of answer choicesa. Death Valley National Monument, located in southern California and Nevada, is one of the hottest places on Earth, temperatures there have soared as high as 134 degrees Fahrenheit.B. Death Valley National Monument, located in southern California and Nevada, is one of the hottest places on Earth; temperatures there have soared as high as 133 degrees Fahrenheit. Let f(x) be the probability density function for a normal distribution N(68,5). Answer the following: (a) At what x value does f(x) reach a maximum? Maximum height: x (b)Does f(x) touch the x-axis at 30 ? No Yes Canopy Growth Company - A Canadian company wants to expand it's market in UKState UK market of CannabisMarket entry strategies of Canopy Growth Company across UKWhat challenges will the company face in UK marketPlease explain point wise and related to Canopy Company. Thank You. Which of these is not a moderator that can help warm a microclimate?A. WindB. RiversC. SoilD. Vine training system Based on the diagram, why does the lightbulb light when the loop rotates, and what is the energy change involved?ResponsesWhen the wire moves in an electric field, electrons in the wire move and become mechanical energy. The mechanical energy causes the light to glow. Electrical energy used to rotate the loop is converted to light energy.When the wire moves in an electric field, electrons in the wire move and become mechanical energy. The mechanical energy causes the light to glow. Electrical energy used to rotate the loop is converted to light energy.When the wire moves in a magnetic field, electrons in the wire move and become an electric current. The current causes the light to glow. Mechanical energy used to rotate the loop is converted to electrical energy.When the wire moves in a magnetic field, electrons in the wire move and become an electric current. The current causes the light to glow. Mechanical energy used to rotate the loop is converted to electrical energy.When the wire moves in an electric field, electrons in the wire move and become mechanical energy. The mechanical energy causes the light to glow. Mechanical energy used to rotate the loop is converted to electrical energy.When the wire moves in an electric field, electrons in the wire move and become mechanical energy. The mechanical energy causes the light to glow. Mechanical energy used to rotate the loop is converted to electrical energy.When the wire moves in a magnetic field, electrons in the wire move and become an electric current. The current causes the light to glow. Mechanical energy used to rotate the loop is converted to light energy. Use integration by parts to show thata) e^axsin(bx)dx=e^ax(asin(bx) bcos(bx)/ (a^2 + b^2) + Cb) e^axsin(bx)dx=e^ax(acos(bx) + bsin(bx)/ (a^2 + b^2) + C which dry-chemical agent is also known as ordinary dry chemical? CASE STUDY: "If one is faced with the choice of playing online games all day for a week and studying school lessons for at least three hours a day for a week, one must ask oneself which course of action fulfills one's higher faculties more. One should also ask how many people can benefit from such a choice compared to the other, as well as the kind of happiness it can bring these people." Instructions: Examine the case. . List all the Positive and Negative effects of the two issues at hand. . Concerning the Utilitarian discussion on happiness, which of the two will bring ultimate happiness? Explain your answer. USE ORIGINAL ANSWER OR GET DOWNVOTED!Explain the question in great detail and find thehighest-frequency square wave you can transmit.Assuming that you could transmit digital data over FM broadcast