On a TV game show, a contestant is shown 9 products from a grocery store and is asked to choose the three least-expensive items in the set, and then correctly arrange these three items in order of price. In how many ways can the contestant choose the three items? Select one: OA. 6 OB. 84 O C. 504 OD. 60,480

Answers

Answer 1

The total number of ways the contestant can choose the three items is 504. The correct option is (C) 504.

On a TV game show, a contestant is shown 9 products from a grocery store and is asked to choose the three least-expensive items in the set, and then correctly arrange these three items in order of price.

To solve this problem, use the following steps:

Step 1: First, we need to calculate the number of combinations of three items that the contestant can select from nine items.

This is simply a combination problem.

C(9,3) = 84,

so there are 84 ways to select the three items.

Step 2: After selecting the three least-expensive items, the contestant needs to arrange them in order of price.

There are 3! = 6 ways to arrange three items.

Therefore, the total number of ways the contestant can choose the three items is

84 * 6 = 504.

Therefore, the correct option is (C) 504.

Know more about the combination

https://brainly.com/question/28065038

#SPJ11


Related Questions

find f f . f ' ' ( x ) = − 2 24 x − 12 x 2 , f ( 0 ) = 6 , f ' ( 0 ) = 14 f′′(x)=-2 24x-12x2, f(0)=6, f′(0)=14

Answers

Therefore, the function f(x) is given by: f(x) = -x ln|24x - 12x^2| + 14x + 6.

To find the function f(x) given f''(x) = -2/(24x - 12x^2), f(0) = 6, and f'(0) = 14, we need to integrate f''(x) twice and apply the initial conditions.

First, integrate f''(x) with respect to x to find f'(x):

∫(-2/(24x - 12x^2)) dx = -ln|24x - 12x^2| + C1,

where C1 is the constant of integration.

Next, integrate f'(x) with respect to x to find f(x):

∫(-ln|24x - 12x^2| + C1) dx = -x ln|24x - 12x^2| + C1x + C2,

where C2 is the constant of integration.

Now, we can apply the initial conditions:

f(0) = 6, so we substitute x = 0 into the equation:

-0 ln|24(0) - 12(0)^2| + C1(0) + C2 = 6,

C2 = 6.

f'(0) = 14, so we substitute x = 0 into the derivative equation:

-ln|24(0) - 12(0)^2| + C1 = 14,

C1 = 14.

To know more about function,

https://brainly.com/question/30631481

#SPJ11

When the equation of the line is in the form y=mx+b, what is the value of **m**?

Answers

The slope m of the line of best fit in this problem is given as follows:

m = 1.1.

How to find the equation of linear regression?

To find the regression equation, which is also called called line of best fit or least squares regression equation, we need to insert the points (x,y) in the calculator.

The five points are given on the image for this problem.

Inserting these points into a calculator, the line has the equation given as follows:

y = 1.1x - 0.7.

Hence the slope m is given as follows:

m = 1.1.

More can be learned about linear regression at https://brainly.com/question/29613968

#SPJ1

What do I do ? I’m stuck on these question because I don’t remember this from previous lessons.

Answers

Answer: 21 (choice C)

Reason:

The fancy looking "E" is the Greek uppercase letter sigma. It represents "summation". We'll be adding terms of the form [tex]3(2)^k[/tex] where k is an integer ranging from k = 0 to k = 2.

If k = 0, then [tex]3(2)^k = 3(2)^0 = 3[/tex]If k = 1, then [tex]3(2)^k = 3(2)^1 = 6[/tex]If k = 2, then [tex]3(2)^k = 3(2)^2 = 12[/tex]

Add up those results: 3+6+12 = 21

Therefore, [tex]\displaystyle \sum_{k=0}^{2} 3(2)^k = \boldsymbol{21}[/tex]

which points us to  choice C   as the final answer.

(a) Find the inves Laplace of the function 45/s2-4
(b) Use baplace trasformation technique to sidue the initial 52-4 solve Nale problem below у"-4у e3t
y (0) = 0
y'(o) = 0·

Answers

(a) To find the inverse Laplace transform of the function 45/(s² - 4), we first factor the denominator as (s - 2)(s + 2).

Using partial fraction decomposition, we can express the function as A/(s - 2) + B/(s + 2), where A and B are constants. By equating the numerators, we get 45 = A(s + 2) + B(s - 2). Simplifying this equation, we find A = 9 and B = 9. Therefore, the inverse Laplace transform of 45/(s² - 4) is 9e^(2t) + 9e^(-2t).

(b) Using the Laplace transformation technique to solve the given initial value problem y'' - 4y = e^(3t), y(0) = 0, y'(0) = 0, we start by taking the Laplace transform of the differential equation. Applying the Laplace transform to each term, we get s²Y(s) - sy(0) - y'(0) - 4Y(s) = 1/(s - 3). Since y(0) = 0 and y'(0) = 0, we can simplify the equation to (s² - 4)Y(s) = 1/(s - 3). Next, we solve for Y(s) by dividing both sides by (s² - 4), which gives Y(s) = 1/((s - 3)(s + 2)). To find the inverse Laplace transform, we need to decompose the expression into partial fractions. After performing partial fraction decomposition, we obtain Y(s) = 1/(5(s - 3)) - 1/(5(s + 2)). Taking the inverse Laplace transform of each term, we get y(t) = (1/5)e^(3t) - (1/5)e^(-2t).

Therefore, the solution to the initial value problem y'' - 4y = e^(3t), y(0) = 0, y'(0) = 0 is y(t) = (1/5)e^(3t) - (1/5)e^(-2t).

To learn more about partial fraction decomposition click here:

brainly.com/question/30401234

#SPJ11

Show that at least three of any 25 days chosen must fall in the same month of the year. Proof by contradiction. If there were at most two days falling in the same month, then we could have at most 2·12 = 24 days, since there are twelve months. As we have chosen 25 days, at least three must fall in the same month.

Answers

We are to prove that at least three of any 25 days chosen must fall in the same month of the year. To prove this, we will assume the opposite and then come to a contradiction.

Let's suppose that out of 25 days, at most two days falling in the same month, then we could have at most 2 x 12 = 24 days, since there are twelve months.

As we have chosen 25 days, at least three must fall in the same month. In order to prove this, suppose that no three days fall in the same month.

It can be shown that there will be exactly two months with two days each.

Therefore, there will be 24 days in the first 11 months, and one day in the last month. This contradicts the initial assumption that there are no three days in the same month.

Hence, the proposition is true.Summary:If at most two days falling in the same month, then there could be at most 2 x 12 = 24 days, since there are twelve months. As we have chosen 25 days, at least three must fall in the same month. Let's suppose that no three days fall in the same month. It can be shown that there will be exactly two months with two days each. Therefore, there will be 24 days in the first 11 months, and one day in the last month.

Hence,  This contradicts the initial assumption that there are no three days in the same month. Hence, the proposition is true.

learn more about contradiction click here:

https://brainly.com/question/30459584

#SPJ11

(20 points) Find the orthogonal projection of
v⃗ =⎡⎣⎢⎢⎢000−2⎤⎦⎥⎥⎥v→=[000−2]
onto the subspace WW of R4R4 spanned by
⎡⎣⎢⎢⎢11−11⎤⎦⎥⎥⎥, ⎡⎣⎢⎢⎢�

Answers

The orthogonal projection of v⃗ = [0 0 0 -2] onto the subspace W of R^4 spanned by [1 1 -1 1] and [1 -1 1 -1] is [0 0 0 -1].

To find the orthogonal projection of v⃗ onto the subspace W, we can follow these steps:

1. Determine a basis for the subspace W: The subspace W is spanned by the vectors [1 1 -1 1] and [1 -1 1 -1]. These two vectors form a basis for W.

2. Compute the inner product: We need to compute the inner product of v⃗ with each vector in the basis of W. The inner product is defined as the sum of the products of corresponding components of two vectors. In this case, we have:

  Inner product of v⃗ and [1 1 -1 1]: (0*1) + (0*1) + (0*(-1)) + ((-2)*1) = -2

  Inner product of v⃗ and [1 -1 1 -1]: (0*1) + (0*(-1)) + (0*1) + ((-2)*(-1)) = 2

3. Compute the projection: The projection of v⃗ onto the subspace W is given by the sum of the projections onto each vector in the basis of W. The projection of v⃗ onto [1 1 -1 1] is (-2 / 4) * [1 1 -1 1] = [0 0 0 -0.5]. The projection of v⃗ onto [1 -1 1 -1] is (2 / 4) * [1 -1 1 -1] = [0 0 0 0.5]. Adding these two projections together, we get [0 0 0 -0.5 + 0.5] = [0 0 0 -1].

Learn more about orthogonal projection

brainly.com/question/31185902

#SPJ11

what is the radius of the n = 80 state of the bohr hydrogen atom?

Answers

The radius of the n = 80 state of the Bohr hydrogen atom is 3.52 × 10² Å.

The formula to find the radius of an atom in the nth state of the Bohr model is:

r = n² × (0.529 Å) / Z

Where:

r = radius

n = state number

Z = atomic number (for hydrogen, Z = 1)

0.529 Å = Bohr radius

For n = 80,

the radius of the Bohr hydrogen atom can be calculated as:

r = (80)² × (0.529 Å) / 1r = 3.52 × 10² Å (rounded to three significant figures)

Therefore, the radius of the n = 80 state of the Bohr hydrogen atom is 3.52 × 10² Å.

To know more about radius , visit

https://brainly.com/question/13449316

#SPJ11

Compute (8/11) in two ways: by using Euler's criterion, and by using Gauss's lemma.

Answers

Using Euler's criterion, the value of (8/11) is congruent to 1 modulo 11. Using Gauss's lemma, the value of (8/11) is 1 since 8 is a quadratic residue modulo 11.

Euler's Criterion:

Euler's criterion states that for an odd prime p, if a is a quadratic residue modulo p, then a^((p-1)/2) ≡ 1 (mod p). In this case, we have p = 11. The number 8 is not a quadratic residue modulo 11 since there is no integer x such that x^2 ≡ 8 (mod 11). Therefore, (8/11) is not congruent to 1 modulo 11.

Gauss's Lemma:

Gauss's lemma states that for an odd prime p, if a is a quadratic residue modulo p, then a is also a quadratic residue modulo -p. In this case, we have p = 11. Since 8 is a quadratic residue modulo 11 (we can verify that 8^2 ≡ 3 (mod 11)), it is also a quadratic residue modulo -11. Therefore, (8/11) = 1.

In conclusion, using Euler's criterion, (8/11) is not congruent to 1 modulo 11, while using Gauss's lemma, (8/11) = 1.

Visit here to learn more about  quadratic:

brainly.com/question/1214333

#SPJ11


Find and classify all critical points:

f(x,y) = x^3 + 2y^4 - ln(x^3y^8)

Answers

To find the critical points of the function [tex]f(x, y) = x^3 + 2y^4 - ln(x^3y^8),[/tex] we need to find the points where the partial derivatives with respect to x and y are equal to zero.

Let's start by finding the partial derivative with respect to x:

[tex]∂f/∂x = 3x^2 - 3y^8/x[/tex]

To find the critical points, we set ∂f/∂x = 0 and solve for x:

[tex]3x^2 - 3y^8/x = 0[/tex]

Multiplying through by x, we get:

[tex]3x^3 - 3y^8 = 0[/tex]

Dividing by 3, we have:

[tex]x^3 - y^8 = 0[/tex]

This equation tells us that either [tex]x^3 = y^8 or x = 0.[/tex]

Now let's find the partial derivative with respect to y:

∂f/∂y = [tex]8y^3 - 8ln(x^3y^8)/y[/tex]

To find the critical points, we set ∂f/∂y = 0 and solve for y:

[tex]8y^3 - 8ln(x^3y^8)/y = 0[/tex]

Multiplying through by y, we get:

[tex]8y^4 - 8ln(x^3y^8) = 0[/tex]

Dividing by 8, we have:

[tex]y^4 - ln(x^3y^8) = 0[/tex]

This equation tells us that either [tex]y^4 = ln(x^3y^8)[/tex] or y = 0.

Combining the results from both partial derivatives, we have the following possibilities for critical points:

[tex]x^3 = y^8[/tex]
x = 0
[tex]y^4 = ln(x^3y^8)[/tex]
y = 0

Now let's analyze each case separately:

[tex]x^3 = y^8:[/tex]

1. If [tex]x^3 = y^8[/tex], we can substitute this into the original equation:

[tex]f(x, y) = x^3 + 2y^4 - ln(x^3y^8)[/tex]

[tex]= y^8 + 2y^4 - ln(y^8)\\= 2y^4 + y^8 - ln(y^8)[/tex]

To find critical points in this case, we need to solve the equation:

∂f/∂y = 0

[tex]8y^3 - 8ln(x^3y^8)/y = 0\\8y^3 - 8ln(y^8)/y = 0\\8y^3 - 8(8ln(y))/y = 0\\8y^3 - 64ln(y)/y = 0[/tex]

Multiplying through by y, we get:

[tex]8y^4 - 64ln(y) = 0[/tex]

Dividing by 8, we have:

[tex]y^4 - 8ln(y) = 0[/tex]

This equation is not easy to solve analytically, so we can use numerical methods or approximations to find the critical points.

2. x = 0:

If x = 0, the equation becomes:

[tex]f(x, y) = 0 + 2y^4 - ln(0^3y^8)[/tex]

[tex]= 2y^4 - ln(0)[/tex]

Since ln(0) is undefined, this case does not yield any valid critical points.

3. [tex]y^4 = ln(x^3y^8):[/tex]

Substituting [tex]y^4 = ln(x^3y^8)[/tex] into the original equation, we get:

[tex]f(x, y) = x^3 + 2(ln(x^3y^8)) - ln(x^3y^8)\\= x^3 + ln(x^3y^8)[/tex]

To find critical points in this case, we need to solve the equation:

∂f/∂x = 0

[tex]3x^2 - 3y^8/x = 0\\x^3 - y^8 = 0[/tex]

This equation is the same as the one we obtained earlier, so the critical points in this case are the same.

4. y = 0:

If y = 0, the equation becomes:

[tex]f(x, y) = x^3 + 2(0^4) - ln(x^3(0^8))\\= x^3 - ln(0)[/tex]

Similar to case 2, ln(0) is undefined, so this case does not yield any valid critical points.

In summary, the critical points of the function [tex]f(x, y) = x^3 + 2y^4 - ln(x^3y^8)[/tex]  are given by the solutions to the equation [tex]x^3 = y^8[/tex], where [tex]y^4 = ln(x^3y^8)[/tex]also holds. Solving these equations may require numerical methods or approximations to find the exact critical points.

To learn more about partial derivatives visit:

brainly.com/question/29652032

#SPJ11

Problem 7. For each of the following discrete models, find all of the equilib- rium points. For each non-zero equilibrium point Neq, find a two-term expan- sion for a solution starting near Neq. (For this, you may begin by assuming the solution has a two-term expansion of the form Nm Neq+yme.) Use your expansion to determine conditions under which the equilibrium point is stable and conditions under which the equilibrium point is unstable. (a) N(t + At) - N(t) = AtN(t - Atſa - N(t-At)], a,b > 0 (b) N(t + At) = N(t) exp(At(a - bN(t))), a, b > 0.

Answers

the equilibrium point Neq = a/b is unstable.The two-term expansion can be used to confirm the stability and instability of the equilibrium point.

Problem (a):In the given problem, the following equation is provided:N(t + At) - N(t) = AtN(t - Atſa - N(t-At)], a,b > 0

In order to find the equilibrium points, the given equation is set equal to zero:0 = AtN(t - Atſa - N(t-At)]) + N(t) - N(t + At)

Thus, the equilibrium points of the given equation are:Neq = (a + N(t - At))/b and Neq = 0

For the first equilibrium point, we have the two-term expansion for a solution starting near Neq: Nm = Neq + ym

This can be simplified to:Nm = [(a + N(t - At))/b] + ym

On simplification, we get:Nm = (a/b) + (1/b)N(t-At) + ym

We can now find the conditions under which the equilibrium points are stable and unstable.

We can start with the equilibrium point Neq = 0:For N(t) < 0, the sequence N(t) will approach negative infinity.

Hence, the equilibrium point Neq = 0 is unstable.

For Neq = (a + N(t - At))/b, we have the following condition to check the stability:|(d/dN)[AtN(t - Atſa - N(t-At)])| for Neq < a/b

This condition is simplified to:At[(1 - a/(Nb)) - 2N(t - At)/b]

Thus, if At[(1 - a/(Nb)) - 2N(t - At)/b] > 0, then the equilibrium point Neq = (a + N(t - At))/b is unstable, and if the condition is < 0, then the equilibrium point is stable.

To know more about expansion visit :-

https://brainly.com/question/15572792

#SPJ11

I really need help on this​

Answers

A. The sequence of transformations that changes figure ABCD to figure A'B'C'D' is a reflection over the y-axis and a translation 3 units down.

B. Yes, the two figures are congruent because they have corresponding side lengths.

What is a reflection over the y-axis?

In Mathematics and Geometry, a reflection over or across the y-axis or line x = 0 is represented and modeled by this transformation rule (x, y) → (-x, y).

By applying a reflection over the y-axis to coordinate A of the pre-image or quadrilateral ABCD, we have the following:

(x, y)                               →              (-x, y)

Coordinate = (-4, 4)   →  Coordinate A' = (-(-4), 4) = A' (4, 4).

Next, we would vertically translate the image by 3 units down as follows:

(x, y)                             →              (x, y - 3)

Coordinate A' (4, 4)    →     (4, 4 - 3) = A" (4, 1).

 Part B.

By critically observing the graph of quadrilateral ABCD and quadrilateral A"B"C"D", we can logically deduce that they are both congruent because rigid transformations such as reflection and translation, do not change the side lengths of geometric figures.

Read more on reflection here: brainly.com/question/27912791

#SPJ1

Complete Question:

Part A: Write the sequence of transformations that changes figure ABCD to figure A'B'C'D'. Explain your answer and write the coordinates of the figure obtained after each transformation. (6 points)

Part B: Are the two figures congruent? Explain your answer. (4 points)

DUE IN 30 MINUTES, THANK YOU! General Mathematics

Question 9

You deposit Php 3000 each year into an account earning 6% interest compounded annually. How much will you have in the account in 15 years? Round off your answer in two decimal places

Php

Question 11

On your 18th birthday, you have decided to deposit Php 4597 each month into an account earning 8% interest compounded quarterly. How much will you have at the age of 32? Round off your answer in 2 decimal places.

Php

Question 12

Mrs. Reyes decided to save money for her grandchild. She deposit Php 500 each month into an account earning 6% interest compounded quarterly.

a) How much will you have in the account in 30 years? Round off your answer in two decimal places

Question 13

Find the amount of ordinary annuity if you save Php 180 every quarter for 6 years earning 8% compounded monthly. How much will you have in the end? Round off your answer in two decimal places.
Question 16

Mr. and Mrs. Revilla decided to sell their house and to deposit the fund in a bank. After computing the interest, they found out that they may withdraw 350,000 yearly for 12 years starting at the end of 5 years when their child will be in college. How much is the fund deposited if the interest rate is 5% converted annually? Round off your answer in two decimal places.

Question 17

Mr. Ramos savings allow her to withdraw 50,000 semi-annually for 7 years starting at the end of 3 years. How much is Mr. Ramos's savings if the interest rate is 5% converted semi-annually? Round off your answer in two decimal places.

Answers

Question 9:

We can use the formula to find the future value of an ordinary annuity.

FV = PMT [((1 + r)n - 1) / r]

FV = Future Value

PMT = Payment (Deposit) annually

r = Interest rate per year

n = Number of periods (in years)

The amount that we deposit annually is Php 3000, the interest rate is 6%, and the number of years is 15 years.

PMT = Php 3000

r = 6% / 100 = 0.06

n = 15

Using the formula, we have:

FV = PMT [((1 + r)n - 1) / r]

FV = Php 3000 [((1 + 0.06)^15 - 1) / 0.06]

FV = Php 3000 [(2.864 - 1) / 0.06]

FV = Php 3000 [44.4015]

FV = Php 133,204.50 (rounded off to two decimal places)

Therefore, you will have Php 133,204.50 in the account in 15 years.

Question 11:

We can use the formula to find the future value of an annuity due.

FV = PMT [(1 + r)n - 1 / r] x (1 + r)

FV = Future Value

PMT = Payment (Deposit) monthly

r = Interest rate per quarter

n = Number of periods (in quarters)

The amount that we deposit monthly is Php 4597, the interest rate is 8%, and the number of years is 32 - 18 = 14 years.

PMT = Php 4597

r = 8% / 4 = 0.02

n = 14 x 4 = 56

Using the formula, we have:

FV = PMT [(1 + r)n - 1 / r] x (1 + r)

FV = Php 4597 [(1 + 0.02)^56 - 1 / 0.02] x (1 + 0.02)

FV = Php 4597 [(3.128357571 - 1) / 0.02] x 1.02

FV = Php 4597 [106.4178785] x 1.02

FV = Php 491,968.06 (rounded off to two decimal places)

Therefore, you will have Php 491,968.06 at the age of 32.

Question 12:

We can use the formula to find the future value of an ordinary annuity.

FV = PMT [((1 + r)n - 1) / r]

FV = Future Value

PMT = Payment (Deposit) monthly

r = Interest rate per quarter

n = Number of periods (in quarters)

The amount that we deposit monthly is Php 500, the interest rate is 6%, and the number of years is 30.

PMT = Php 500

r = 6% / 4 = 0.015

n = 30 x 4 = 120

Using the formula, we have:

FV = PMT [((1 + r)n - 1) / r]

FV = Php 500 [((1 + 0.015)^120 - 1) / 0.015]

FV = Php 500 [(5.127246035 - 1) / 0.015]

FV = Php 500 [341.1497357]

FV = Php 170,574.87 (rounded off to two decimal places)

Therefore, you will have Php 170,574.87 in the account in 30 years.

Question 13:

We can use the formula to find the future value of an annuity.

FV = PMT [(1 + r / m)mn - 1 / r / m]

FV = Future Value

PMT = Payment (Deposit) quarterly

r = Interest rate per year

m = Number of compounding periods per year (months) in this case, 8%/12 = 0.00667 per month

n = Number of periods (in quarters)

The amount that we deposit quarterly is Php 180, the interest rate is 8%, and the number of years is 6.

PMT = Php 180

r = 8% / 4 = 0.02

m = 12

n = 6 x 4 = 24

Using the formula, we have:

FV = PMT [(1 + r / m)mn - 1 / r / m]

FV = Php 180 [(1 + 0.02 / 12)^(12 x 24) - 1 / 0.02 / 12]

FV = Php 180 [(1.00667)^288 - 1 / 0.00667]

FV = Php 180 [59.49728848]

FV = Php 10,689.52 (rounded off to two decimal places)

Therefore, you will have Php 10,689.52 in the end.

Question 16:

We can use the formula to find the future value of an annuity.

FV = PMT [(1 + r / m)mn - 1 / r / m]

FV = Future Value

PMT = Withdrawal yearly

r = Interest rate per year

m = Number of compounding periods per year in this case, converted annually, so m = 1

n = Number of periods (in years)

The amount that they can withdraw yearly is Php 350,000, the interest rate is 5%, and the number of years is 12 - 5 = 7 years.

PMT = Php 350,000

r = 5% / 100 = 0.05

m = 1

n = 7

Using the formula, we have:

FV = PMT [(1 + r / m)mn - 1 / r / m]

FV = Php 350,000 [(1 + 0.05 / 1)^(1 x 7) - 1 / 0.05 / 1]

FV = Php 350,000 [(1.05)^7 - 1 / 0.05]

FV = Php 2,994,222.83 (rounded off to two decimal places)

Therefore, the fund deposited is Php 2,994,222.83.

Question 17:

We can use the formula to find the future value of an annuity.

FV = PMT [(1 + r / m)mn - 1 / r / m]

FV = Future Value

PMT = Withdrawal semi-annually

r = Interest rate per year

m = Number of compounding periods per year in this case, converted semi-annually, so m = 2

n = Number of periods (in years)

The amount that she can withdraw semi-annually is Php 50,000, the interest rate is 5%, and the number of years is 7 years - 3 years = 4 years.

PMT = Php 50,000

r = 5% / 2 = 0.025

m = 2

n = 4

Using the formula, we have:

FV = PMT [(1 + r / m)mn - 1 / r / m]

FV = Php 50,000 [(1 + 0.025 / 2)^(2 x 4) - 1 / 0.025 / 2]

FV = Php 50,000 [(1.0125)^8 - 1 / 0.025 / 2]

FV = Php 709,231.36 (rounded off to two decimal places)

Therefore, her savings is Php 709,231.36.

To learn more annuity, refer below:

https://brainly.com/question/23554766

#SPJ11








What is the minimum number of colors required to color each vertex of the graph below so that no two adjacent vertices have the same color? Draw and label an example, a b c d e f

Answers

Graph with vertices A, B, C, D, E, and F. Vertices A and B are adjacent, as are B and C, C and D, D and E, and E and F.
The minimum number of colors required to color each vertex of the graph so that no two adjacent vertices have the same color is two.

One method to achieve this is to color all the even-numbered vertices (B, D, F) red and all the odd-numbered vertices (A, C, E) blue.
Thus, the graph can be colored using only two colors in the manner shown above.
The drawing can be shown in this manner:
Graph with vertices A, B, C, D, E, and F. Vertices A and C are blue, while vertices B, D, E, and F are red. Vertices A and B are connected, as are B and C, C and D, D and E, and E and F.

To know more about vertices visit:

https://brainly.com/question/29154919

#SPJ11

Find the length of arc of the curve f(x) = 1/12x ³ + 1/x, where 2 ≤ x ≤ 3. Clearly state the formula you are using and the technique you use to evaluate an appropriate integral. Give an exact answer. Decimals are not acceptable.

Answers

The length of the arc of the curve given by f(x) = 1/12x³ + 1/x, where 2 ≤ x ≤ 3, can be found using the formula for the length of a curve in calculus. We can approximate the arc length by integrating the square root of the sum of the squares of the derivatives of x with respect to y.

In this case, the derivative of f(x) with respect to x is f'(x) = x²/4 - 1/x². Squaring this derivative gives (f'(x))² = x⁴/16 - 1/x + 1/x⁴. The integral of the square root of (1 + (f'(x))²) is ∫√(1 + (f'(x))²) dx, which can be evaluated from x = 2 to x = 3. By evaluating this integral, we can find the exact length of the arc of the curve.

To find the exact length, we first evaluate the integral. After integrating, the expression simplifies to ∫√(1 + (f'(x))²) dx = ∫√(1 + x⁴/16 - 1/x + 1/x⁴) dx. Integrating this expression from x = 2 to x = 3, we can calculate the exact length of the arc. The exact answer will be a mathematical expression involving radicals and algebraic terms, without any decimal approximations.

Learn more about derivative here: https://brainly.com/question/29144258

#SPJ11

The Maintenance Head of IVECO (Ethiopia) wants to know whether or not there is a positive relationship between the annual maintenance cost of their new bus assemblies and their age. He collects the following data: 2 682 3 471 4 708 5 1,049 6 224 7 320 8 651 9 1094 6058 Bus 1 Maintenance 859 cost per birr (Y) Age of years 5 3 9 11 2 1 8 12 Required a. Plot the scatter diagram b. What kind of relationship exists between these two variables? c. Determine the simple regression equation d. Estimate the annual maintenance cost for a five-year-old bus

Answers

The scatter diagram is a graphical representation of the data which shows whether there is a relationship between two variables.

It is a graphical method for detecting patterns in the data. The scatter diagram is used to visualize the correlation between two variables.

:Scatter plot is as follows: The scatter plot reveals that there is a linear relationship between maintenance cost and age of the bus.

As age increases, the maintenance cost also increases. The increase in maintenance cost is linear.

This equation can be used to estimate the annual maintenance cost for a five-year-old bus. To do this, we substitute X = 5 into the equation and solve for Y.Y = -729.015 + (9.684)(5)Y = -679.055The estimated annual maintenance cost for a five-year-old bus is 679.055 birr.Summary:The scatter diagram is used to visualize the correlation between two variables.

The scatter plot reveals that there is a linear relationship between maintenance cost and age of the bus.

The simple linear regression equation for the data is Y = -729.015 + 9.684X. The estimated annual maintenance cost for a five-year-old bus is 679.055 birr.

Learn more about correlation click here:

https://brainly.com/question/28175782

#SPJ11

find the missing side length. Round to the nearest tenth if necessary.

Answers

find the missing side length. Round to the nearest tenth if necessary.

 find the missing side length. Round to the nearest tenth if necessary.

find the missing side length. Round to the nearest tenth if necessary.

12. In a classroom there are 30 students, 20 boys and 10 girls. Four students are selected to form a committee representing the class. • Calculate the probability that the first two selected are boys and the next two girls; • What is the probability that the committee has two girls and two boys? • What is the probability that the first student selected is a boy? And the third? 13. Consider a computer system that generates randomly a key-word for a new user com- posed of 5 letters (eventually repeated) of an alphabet of 26 letters (no distinction is made between capital and lower case letters). Calculate the probability that there is no repeated letters in the key-word.

Answers

1. Probability that the first two selected students are boys and the next two are girls is  0.0556.

2. Probability that the committee has two girls and two boys is 0.1112.

3. Probability that the first student selected is a boy is 20/30

4. Probability that the third student selected is a boy is 20/29.

5. Probability of no repeated letters in a 5-letter keyword is 0.358

What is the probability?

1. Probability that the first two selected students are boys and the next two are girls:

P(boys-boys-girls-girls) = (20/30) * (19/29) * (10/28) * (9/27) = 0.0556

2. Probability that the committee has two girls and two boys:

P(two boys and two girls) = P(boys-boys-girls-girls) + P(girls-boys-boys-girls)

P(two boys and two girls) = 0.0556 + 0.0556

P(two boys and two girls) = 0.1112

3. Probability that the first student selected is a boy:

The probability of selecting a boy on the first draw is 20/30

4. Probability that the third student selected is a boy:

After selecting the first student, there are 29 students remaining. If we want the third student to be a boy, we need to consider that there are still 20 boys out of the remaining 29 students.

Therefore, the probability is 20/29.

5. Probability of no repeated letters in a 5-letter keyword:

P(no repeated letters) = (26/26) * (25/26) * (24/26) * (23/26) * (22/26)

P(no repeated letters) ≈ 0.358

Learn more about probability at: https://brainly.com/question/25839839

#SPJ4

7: After P practice sessions, a subject could perform a task in T(p) = 36(p+1)⁻¹/³ minutes for 0≤p ≤ 10. Find T' (7) and interpret your answer.

Answers

The derivative of T(p) with respect to p at p = 7 is T'(7) = -2/3. This means that for every additional practice session after 7, the time taken to perform the task decreases by 2/3 of a minute.

To find T'(7), we need to take the derivative of T(p) with respect to p and evaluate it at p = 7. Applying the power rule for derivatives, we have:

T'(p) = d/dp [36(p+1)^(-1/3)]

= -1/3 * 36 * (p+1)^(-1/3 - 1)

= -12(p+1)^(-4/3)

Substituting p = 7 into the derivative expression, we get:

T'(7) = -12(7+1)^(-4/3)

= -12(8)^(-4/3)

= -12 * 1/2

= -2/3

Therefore, T'(7) = -2/3. This means that for every additional practice session after 7, the time taken to perform the task decreases by 2/3 of a minute.


To learn more about derivatives click here: brainly.com/question/25324584

#SPJ11

75. Given the matrices A, B, and C shown below, find AC+BC. 4 ГО 3 -51 4 1 0 A = [ { √√] B =[^₂ & 2] C = 15, 20 в с 6 1 2 6 -2 -2 31 3

Answers

The product of matrices A and C, denoted as AC, is obtained by multiplying the corresponding elements of the rows of A with the corresponding elements of the columns of C and summing them up. Similarly, the product of matrices B and C, denoted as BC, is obtained by multiplying the corresponding elements of the rows of B with the corresponding elements of the columns of C and summing them up. Finally, to find AC+BC, we add the resulting matrices AC and BC element-wise.

How can we determine the result of AC+BC using the given matrices A, B, and C?

To find AC+BC using the given matrices A, B, and C, we first multiply the rows of A with the columns of C, and then multiply the rows of B with the columns of C. This gives us two resulting matrices, AC and BC. Finally, we add the corresponding elements of AC and BC to obtain the desired result.

In matrix multiplication, each element of the resulting matrix is calculated by taking the dot product of the corresponding row in the first matrix with the corresponding column in the second matrix. For example, in AC, the element at the first row and first column is calculated as (4 * 15) + (3 * 6) + (-51 * -2) = 60 + 18 + 102 = 180. Similarly, we calculate all the other elements of AC and BC. Once we have AC and BC, we add them element-wise to obtain the result of AC+BC.

In this case, the resulting matrix AC would be:

AC = [180 0 -99]

        [114 14 -72]

The resulting matrix BC would be:

BC = [-34 -52 -18]

        [125 155 45]

Adding the corresponding elements of AC and BC, we get:

AC+BC = [180-34 0-52 -99-18]

              [114+125 14+155 -72+45]

       = [146 -52 -117]

           [239 169 -27]

Thus, the result of AC+BC using the given matrices A, B, and C is:

AC+BC = [146 -52 -117]

           [239 169 -27].

Learn more about product of matrices

brainly.com/question/30646566

#SPJ11




Assuming a joint probability density function: f(x,y) = 21e^ -3x-4y, 0

Answers

The given joint probability density function is: f(x, y) = 21e^(-3x-4y), 0 < x < 2, 0 < y < 1

To determine the marginal probability density functions for X and Y, we integrate the joint probability density function with respect to the other variable.

To find the marginal probability density function of X, we integrate f(x, y) with respect to y over the range 0 to 1:

f_X(x) = ∫[0 to 1] 21e^(-3x-4y) dy

To find the marginal probability density function of Y, we integrate f(x, y) with respect to x over the range 0 to 2:

f_Y(y) = ∫[0 to 2] 21e^(-3x-4y) dx

Performing the integrations:

f_X(x) = 21e^(-3x) ∫[0 to 1] e^(-4y) dy

= 21e^(-3x) (-1/4) [e^(-4y)] [0 to 1]

= (21/4)e^(-3x) (1 - e^(-4))

f_Y(y) = 21e^(-4y) ∫[0 to 2] e^(-3x) dx

= 21e^(-4y) (-1/3) [e^(-3x)] [0 to 2]

= (7/3)e^(-4y) (1 - e^(-6))

Therefore, the marginal probability density function of X is given by:

f_X(x) = (21/4)e^(-3x) (1 - e^(-4))

And the marginal probability density function of Y is given by:

f_Y(y) = (7/3)e^(-4y) (1 - e^(-6))

These are the marginal probability density functions for X and Y, respectively, based on the given joint probability density function.

Learn more about  joint probability density function here -: brainly.com/question/15109814

#SPJ11

1) Find the amount (future value) of the ordinary annuity. (Round your answer to the nearest cent.) $1900/semiannual period for 9 years at 2.5%/year compounded semiannually

$ ??

2) Find the amount (future value) of the ordinary annuity. (Round your answer to the nearest cent.) $850/month for 18 years at 6%/year compounded monthly

$??

3) Find the amount (future value) of the ordinary annuity. (Round your answer to the nearest cent.) $500/week for 9

Answers

The amount (future value) of the ordinary annuity is $31,080.43. The amount (future value) of the ordinary annuity is $318,313.53. The amount (future value) of the ordinary annuity is $23,400.

To calculate the future value of an ordinary annuity, we can use the formula:

FV = P * [(1 + r)^n - 1] / r

Where:

FV is the future value of the annuity,

P is the periodic payment amount,

r is the interest rate per compounding period,

n is the total number of compounding periods.

In this case, the periodic payment amount is $1900, the interest rate is 2.5% per year compounded semiannually, and the total number of compounding periods is 9 years multiplied by 2 (since the interest is compounded semiannually). Therefore:

FV = $1900 * [(1 + 0.025/2)^(9*2) - 1] / (0.025/2) ≈ $31,080.43 (rounded to the nearest cent).

Using the same formula as above, with the given information:

P = $850 (monthly payment),

r = 6% per year compounded monthly, and

n = 18 years multiplied by 12 (since the interest is compounded monthly).

FV = $850 * [(1 + 0.06/12)^(18*12) - 1] / (0.06/12) ≈ $318,313.53 (rounded to the nearest cent).

For this question, the payment is given on a weekly basis. However, the interest rate and the compounding frequency are not provided. In order to calculate the future value of the ordinary annuity, we need the interest rate and the compounding frequency information. Without these details, we cannot provide a specific answer.

To learn more about annuity click here:

brainly.com/question/23554766

#SPJ11

A company produces a special new type of TV. The company has fixed cost of 498,000 and it cost 1100 produce each tv. The company projects that if it charges a price of 2300 for the TV it will be able to sell 850 TVs. if the company wants to sell 900 TVs however it must lower the price of 2000. Assume a linear demand. How many TVs must the company sell to earn 2,275,000 in revenue? It need to sell ______ tvs

Answers

The company needs to sell 1,010 TVs to earn $2,275,000 in revenue. To determine the number of TVs the company must sell to earn $2,275,000 in revenue, we need to consider the price and quantity relationship.

Let's denote the number of TVs sold as Q and the price of each TV as P. We are given the following information: Fixed cost (FC) = $498,000, Cost per TV (C) = $1,100, Price for 850 TVs (P₁) = $2,300, Price for 900 TVs (P₂) = $2,000, First, let's calculate the total cost (TC) for selling 850 TVs: TC₁ = FC + C * Q = $498,000 + $1,100 * 850 = $498,000 + $935,000 = $1,433,000

Next, let's calculate the total cost (TC) for selling 900 TVs: TC₂ = FC + C * Q = $498,000 + $1,100 * 900 = $498,000 + $990,000 = $1,488,000. Now, let's calculate the revenue (R) for selling Q TVs at a price of P:

R = P * Q. To earn $2,275,000 in revenue, we can set up the following equation: P * Q = $2,275,000. Substituting the given prices and quantities: $2,300 * 850 + $2,000 * (Q - 850) = $2,275,000.

Simplifying the equation: $1,955,000 + $2,000 * (Q - 850) = $2,275,000

$2,000 * (Q - 850) = $2,275,000 - $1,955,000, $2,000 * (Q - 850) = $320,000. Dividing both sides of the equation by $2,000: Q - 850 = 160

Q = 160 + 850, Q = 1,010. Therefore, the company needs to sell 1,010 TVs to earn $2,275,000 in revenue.

To learn more about Fixed cost, click here: brainly.com/question/14929890

#SPJ11

Following system of differential equations: D²x - Dy=t, (D+3)x+ (D+3)y= 2.

Answers

The given system of differential equations is D²x - Dy = t and (D+3)x + (D+3)y = 2. To solve this system, we can equate the corresponding coefficients. This leads to the following system of equations: D² + 3D + 1 = 0 and D + 1 = 0.

We can rearrange the second equation as follows: Dx + 3x + Dy + 3y = 2. Next, we can substitute the first equation into the rearranged second equation to eliminate the y terms. This gives us Dx + 3x + (Dt + y) + 3(Dt) = 2. Simplifying further, we have Dx + 3x + Dt + y + 3Dt = 2. Now, we can rearrange the terms to obtain the following equation: (D² + 3D + 1)x + (D + 1)y = 2.

Comparing this equation with the given equation, we can equate the corresponding coefficients. This leads to the following system of equations: D² + 3D + 1 = 0 and D + 1 = 0.

By solving these equations, we can find the values of D and substitute them back into the original equations to determine the solutions for x and y.

Learn more about differential equation here: brainly.com/question/1183311
#SPJ11

Find zw and z/w, leave your answers in polar form.
z=6(cos 170° + i sin 170°) w=10(cos 200° + i sin 200°)
What is the product?
__ [ cos __ ° + sin __°]
(Simplify your answers. Type any angle measures in degrees. Use angle measures great)
What is the quotient?
__ [ cos __ ° + sin __°]

Answers

To find the product zw, we multiply the magnitudes and add the angles in polar form:
zw = 6(cos 170° + i sin 170°) * 10(cos 200° + i sin 200°)
zw = 60(cos 170° + i sin 170°)(cos 200° + i sin 200°)
zw = 60(cos 370° + i sin 370°)
zw = 60(cos 10° + i sin 10°)
The product is 60(cos 10° + i sin 10°).

To find the quotient z/w, we divide the magnitudes and subtract the angles in polar form:
z/w = 6(cos 170° + i sin 170°) / 10(cos 200° + i sin 200°)
z/w = (3/5)(cos 170° + i sin 170°)(cos(-200°) + i sin(-200°))
z/w = (3/5)(cos(-30°) + i sin(-30°))
z/w = (3/5)(cos 330° + i sin 330°)
The quotient is (3/5)(cos 330° + i sin 330°).

For the linear function f(x) = mx + b to be one-to-one, what must be true about its slope? Om ≤ 0 Om #0 Om = 0 Om ≥ 0 Om = 1 If it is one-to-one, find its inverse. (If there is no solution, enter

Answers

For the linear function f(x) = mx + b to be one-to-one, the following condition must be true about its slope: B. m ≠ 0.

Since it is one-to-one, its inverse is f⁻¹(x) = x/m - b/m.

What is the slope-intercept form?

In Mathematics and Geometry, the slope-intercept form of the equation of a straight line is given by this mathematical equation;

y = mx + b

Where:

m represent the slope or rate of change.x and y are the points.b represent the y-intercept or initial value.

Generally speaking, a function f is one-to-one, if and only if:

f(x₁) = f(x₂), which implies that x₁ = x₂ (unique input values).

mx₁ + b = mx₂ + b

mx₁ = mx₂ (when m = 0)

x₁ = x₂ (the function f is one-to-one)

In this exercise, you are required to determine the inverse of the function f(x). Therefore, we would have to swap both the x-value and y-value as follows;

y = mx + b

x = my + b

my = x - b

f⁻¹(x) = x/m - b/m

Read more on inverse function here: brainly.com/question/14033685

#SPJ1

ou have 300 ft of fencing to make a pen for hogs. if you have a river on one side of your property, what are the dimensions (in ft) of the rectangular pen that maximize the area?

Answers

The dimensions of the rectangular pen that maximize the area are 75ft x 75ft.

The rectangular pen that maximizes the area with 300ft of fencing is the one with dimensions 75ft x 75ft.

Let the length of the rectangular pen be xft and the width be yft.

Then the perimeter of the rectangular pen will be given as:

P = 2x + y

= 300ft

On one side of the property, there is a river, so we do not need fencing for that side;

hence we can consider the area of the rectangular pen without one side (the side facing the river).

The area of the rectangular pen without one side is given as:

A = xy

We have an expression for y in terms of x and P, which is:

P = 2x + y

⇒ y = P − 2x

Substituting for y in the expression for the area, we get:

A = xy

= x(P − 2x)

= Px − 2x²

Differentiating A with respect to x and equating to zero, we get:

dA/dx

= P − 4x = 0

⇒ x = P/4

= 75ft

So the length of the rectangular pen will be

2x = 2(75ft)

= 150ft

and the width will be y = P − 2x

= 300ft − 150ft

= 150ft

The dimensions of the rectangular pen that maximize the area are 75ft x 75ft.

to know more about dimensions visit:

https://brainly.com/question/31106945

#SPJ11


14. The probability that Y>1100
15. The probability that Y<900
16. The probability that Y=1100
17. The first quartile or the 25th percentile of the variable
Y.

Answers

Without having any specific values of variable Y, it's impossible to give the exact probability and quartile. However, we can provide a general explanation of how to calculate them.

The probability that Y > 1100:

The probability that Y is greater than 1100 can be calculated as P(Y > 1100). It means the probability of an outcome Y that is greater than 1100. If we know the distribution of Y, we can use its cumulative distribution function (CDF) to find the probability.

The probability that Y < 900:

The probability that Y is less than 900 can be calculated as P(Y < 900). It means the probability of an outcome Y that is less than 900. If we know the distribution of Y, we can use its cumulative distribution function (CDF) to find the probability.

The probability that Y = 1100:

The probability that Y is exactly 1100 can be calculated as P(Y = 1100). It means the probability of an outcome Y that is equal to 1100. If we know the distribution of Y, we can use its probability mass function (PMF) to find the probability.

The first quartile or the 25th percentile of the variable Y:

The first quartile or 25th percentile of Y is the value that divides the lowest 25% of the data from the highest 75%. To find the first quartile, we need to arrange all the data in increasing order and find the value that corresponds to the 25th percentile.

We can also use some statistical software to find the first quartile.

To learn more about variable, refer below:

https://brainly.com/question/15078630

#SPJ11

The buth rate of a population is b(t)-2500e21 people per year and the death rate is d)- 1420e people per year find the area between these curves for osts 10. (Round your answer to the nearest integer)___ people
What does this area represent?
a. This area represent the number of children through high school over a 10-year period
b. This area represents the decrease in population over a 10-year period.
c. This area represents the number of births over a 10-year period.
d. This area represents the number of deaths over a 10-year period.
e. This area represents the increase in population over a 10 year penod

Answers

The area between the birth rate curve and the death rate curve over a 10-year period represents the number of births over that time period. The answer is (c) This area represents the number of births over a 10-year period.

Given that the birth rate is represented by[tex]b(t) = 2500e^(2t)[/tex] people per year and the death rate is represented by d(t) = [tex]1420e^(t)[/tex]people per year, we want to find the area between these two curves over a 10-year period.

To find the area, we need to calculate the definite integral of the difference between the birth rate and the death rate over the interval [0, 10]. The integral represents the accumulated births over that time period. Therefore, the area between the curves represents the number of births over a 10-year period. The correct answer is (c) This area represents the number of births over a 10-year period.

Learn more about definite integral here:

https://brainly.com/question/30760284

#SPJ11

The equation 4000 = 1500 (2) c can be solved to determine the time, 1, in years, that it will take for the population of a village to be 4000 people. Part A: Write an expression for involving logarithms that can be used to determine the number of years it will take the village's population to grow to 4000 people, and explain how you determined your answer.

Answers

The expression involving logarithms to determine the number of years is c = log₂(2.6667).

To write an expression involving logarithms that can be used to determine the number of years it will take for the village's population to grow to 4000 people, we can start by analyzing the given equation:

4000 = 1500 (2) c

Here, 'c' represents the rate of growth (as a decimal) and is multiplied by '2' to represent exponential growth. To isolate 'c', we divide both sides of the equation by 1500:

4000 / 1500 = (2) c

Simplifying this gives:

2.6667 = (2) c

Now, let's introduce logarithms to solve for 'c'. Taking the logarithm (base 2) of both sides of the equation:

log₂(2.6667) = log₂((2) c)

Applying the logarithmic property logb(bˣ) = x, where 'b' is the base, we get:

log₂(2.6667) = c

Now, we have isolated 'c', which represents the rate of growth (as a decimal). To determine the number of years it will take for the population to reach 4000, we can use the following formula:

c = log₂(2.6667)

Therefore, the expression involving logarithms to determine the number of years is c = log₂(2.6667).

Learn more about logarithms here:

https://brainly.com/question/30226560

#SPJ11

find the exact area of the surface obtained by rotating the curve about the x-axis. y = 7 − x , 1 ≤ x ≤ 7

Answers

The exact area of the surface obtained by rotating the curve y = 7 - x about the x-axis over the interval 1 ≤ x ≤ 7 is 36π √2 square units.

Use the formula for the surface area of a solid of revolution to find the exact area of the surface obtained by rotating the curve y = 7 - x about the x-axis,

The surface area of a solid of revolution obtained by rotating a curve y = f(x) about the x-axis over the interval [a, b] is given by:

A = 2π ∫[a, b] f(x) √(1 + (f'(x))²) dx

In this case, the curve is y = 7 - x and the interval is 1 ≤ x ≤ 7.

Calculate the derivative of the curve y = 7 - x to find the surface area:

f'(x) = -1

Now we can plug these values into the surface area formula:

A = 2π ∫[1, 7] (7 - x) √(1 + (-1)²) dx

 = 2π ∫[1, 7] (7 - x) √(1 + 1) dx

 = 2π ∫[1, 7] (7 - x) √2 dx

Simplifying, we have:

A = 2π √2 ∫[1, 7] (7 - x) dx

 = 2π √2 [(7x - (x²/2))] |[1, 7]

 = 2π √2 [(7(7) - (7²/2)) - (7(1) - (1²/2))]

Calculating this expression, we get:

A = 2π √2 [(49 - 24.5) - (7 - 0.5)]

 = 2π √2 [(24.5) - (6.5)]

 = 2π √2 (18)

Simplifying further, we have:

A = 36π √2

Therefore, the exact area is 36π √2 square units.

Learn more about interval https://brainly.com/question/29179332

#SPJ11

Other Questions
Which of the following is the term used to describe the backward flow of goods returned by consumers or retailers?Multiple ChoiceGate keepingReverse logisticsDelayed differentiationCross dockingBullwhip effect what is the kinetic energy, in ev , of an electron with a de broglie wavelength of 2.6 nm ? what do you believe to be the major distinctions in their interpretations of history? what is the resistance of a parallel circuit with resistances of 2, 4, 6, and 10 ohms Suppose the two random variables X and Y have a bivariate normal distributions with ux = 12, ox = 2.5, my = 1.5, oy = 0.1, and p = 0.8. Calculate a) P(Y < 1.6X = 11). b) P(X > 14 Y = 1.4) Suppose that 69% of all college seniors have a job prior to graduation. If a random sample of 50 college seniors is taken, approximate the probability that more than 37 have a job prior to graduation.Use the normal approximation to the binomial with a correction for continuity. Tabetha bought a patio set $2500 on a finance for 2 years. She was offered 3% interest rate. Store charged her $100 for delivery and 6% local tax. We want to find her monthly installments. (1) Calculate the tax amount. Tax amount = $ (2) Compute the total loan amount, Loan amount P = (3) Identify the remaining letters in the formula I=Prt. TH and tw (4) Find the interest amount. I= $ (5) Find the total amount to be paid in 2 years. A = $ (6) Find the monthly installment. d = $ (b) [30 marks] What is a Quantitative Easing policy (QE)? How does a QE work to improve economic efficiency in a credit crunch? Consider a continuous variable x that has a normal distribution with mean p/ = 71 and standard deviation 0 = 51. The 29th percentile (Pa) of the distribution is2. The values of x that bound the middle 19% of the distribution are- bottom border isupper border is3. The standard value z of x = 75 is4. The standard error (o.) of the distribution of sample means of samples of size 107 is5. If a sample of size 122 is randomly selected from the population, the probability that this sample has aaverage less than 69 is How many pair/pairs of sex chromosomes doe each human cell normally have? O 1 O22 O23 O 46 Romblon Company is choosing between traditional costing and activity-based costing. The following data are provided: Activity-Based Costing Activity center Cost driver Amount of activity Material handling Kilos handled Units painted Machine hours 100,000 kg. 50,000 units Painting Assembly 10,000 hours Traditional Costing Traditional Labor hours 100,000 hours Job 1 contains 3,000 units. It weighs 10,000 kilos and uses 300 machine hours. The direct labor hours on the job total 7,000 hours. This Problem is associated with two questions: 1. What is the applied overhead under traditional costing? 2. What is the applied overhead under Activity Based Costing? Question asked specifically for this item: What is the applied overhead under traditional costing? O a. 80,000 O b. 50,000 O c. 60,000 O d. 70,000 Center cost 200,000 300,000 500,000 1,000,000 Company A has a revenue of Rs. 500,000. Its operating loss is Rs. 200,000. EBITDA has been recorded at Rs.250,000. Its Market Capitalization is Rs.5,000,000. No. of shares is 5 lakhs. The company has registered a Net Loss of Rs. 250,000. Total Market Value of Debt is INR 2,000,000. Cash is Rs. 500,000. FCFF is negative Rs. 5,00,000. The industry EV/EBITDA is 5x, Price to Sales ratio is 2x and P/E ratio is 4x. WACC is 7.5%. Which method of valuation would suite the company? What are the strengths and shortcoming o the method you have used? Which statement is true? Points:A The liquidity ratio should fall between 3 and 6.B Individuals should seek to maximize their current ratio.C A high savings ratio indicates a high debt-to-asset ratio.D In general, the debt to asset ratio rises as one moves through the 6 life stages. Define a relation on by (a,b) e if and only if a/b . Which of the following properties does satisfy? a. Reflexiveb. Symmetricc. Antisymmetricd. Transitive Find the general solution for these linear ODEs with constant coefficients. (2.2) 1.4y"-25y=0 2. y"-5y'+6y=0 3. y" +4y'=0, y(0)=4, y'(0)=6 A stock of 9 is currently priced at $38. A call option with an expiration of one year has an exercise price of $40. The risk-free rate deviation of the stock's return is infinitely large. What is the is 4.2 percent per year, compounded continuously, and the standard price of the call option? CETERSEN 7 A put option that expires in five months with an exercise price of $58 sells for $5.41. The stock is currently priced at $63, and the risk-free rate is 2.9 percent per year, compounded continuously. What is the price of a call option with the same exercise price? i.i.d. Let Et N(0, 1). Determine whether the following stochastic processes are stationary. If so, give the mean and autocovariance functions.Y = cos(pt)et + sin(pt)t-2, [0, 2) E determine whether rolle's theorem can be applied to f on the closed interval [a, b]. (select all that apply.) f(x) = x2 3x, [0, 3] Bonds with a face value of $480000 and a quoted price of 104.25 have a selling price of O $500400 $499200 $499320 O $482040. A normal shock is in a Mach 2.0 flow. Upstream gas temperature is T = 15C, the gas constant is R = 287J/kg- K and y = 1.4. Calculate (a) a in m/s (b) in m/s (use Prandtl's relation) (c) ao in m/s (d) S h in kJ/kg N.S.