Question 1 a) It is said that a scientific method of research uses deductive and inductive methods of enquiry. Using examples of your choice explain the meaning of this statement. (10) b) Using a flow diagram Outline and explain the steps taken in a scientific research method.

Answers

Answer 1

The scientific research method is not always a linear process and may involve iterations, modifications, or additional steps based on the specific research context and findings.

Deductive and inductive methods are two approaches used in scientific research to gather knowledge and make conclusions.

Deductive reasoning starts with a general principle or theory and applies it to a specific situation to draw a logical conclusion. It involves making specific predictions based on a known theory and testing those predictions through observations or experiments.

For example, if the general principle is "All mammals have hair," and we know that dogs are mammals, we can deduce that dogs have hair.

Inductive reasoning, on the other hand, involves making generalizations based on specific observations or patterns. It uses specific examples or data to form a general theory or hypothesis.

For example, observing multiple dogs with hair can lead to the induction that all dogs have hair, even though we haven't observed every single dog.

Both deductive and inductive methods are important in scientific research.

Deductive reasoning allows scientists to test specific predictions derived from existing theories, while inductive reasoning helps to generate new hypotheses or theories based on observed patterns.

b) Steps in the Scientific Research Method (Flow Diagram):

Identify the Research Problem: Begin by identifying and defining the research problem or question you want to investigate.

Conduct a Literature Review: Review existing literature and research relevant to your topic to gain a comprehensive understanding of the subject and identify any gaps or unanswered questions.

Formulate a Hypothesis: Based on your literature review and initial observations, develop a hypothesis, which is a testable prediction or explanation for the research problem.

Design the Research Study: Determine the appropriate research design and methodology to address your hypothesis. This includes selecting participants or subjects, deciding on data collection methods, and planning any necessary experiments or surveys.

Collect Data: Implement your research plan and collect data according to the chosen methods. This may involve conducting experiments, administering surveys, or performing observations.

Analyze the Data: Once data is collected, analyze it using appropriate statistical or qualitative analysis techniques to draw meaningful conclusions.

Interpret the Results: Examine the analyzed data to determine whether the results support or refute your hypothesis. Consider any limitations or alternative explanations for the findings.

To know more about linear refer here:

https://brainly.com/question/31510530#

#SPJ11


Related Questions

An electrochemical cell has a standard cell potential of E ∘
=−0.081 V with n=1 (number of electrons in balanced redox reaction). What is the equibrium constant, K, for the electrocherrical cell reaction at 298× ? K=34.2
K=83.2
K=23.4
K=43.2

Answers

The equilibrium constant, K, for the electrochemical cell reaction is K = 43.2. The correct option is D.

The standard cell potential, E°, is related to the equilibrium constant, K, through the Nernst equation:

E = E° - (RT/nF) * ln(K)

In the given question, the standard cell potential, E°, is -0.081 V, and the number of electrons involved in the balanced redox reaction is n = 1. We are asked to determine the equilibrium constant, K.

R represents the gas constant (8.314 J/(mol·K)), T is the temperature in Kelvin (298 K), and F is the Faraday constant (96485 C/mol).

Substituting the given values into the Nernst equation and rearranging, we have:

ln(K) = (E° - E) * (nF/RT)

ln(K) = (-0.081 - E) * (96485/8.314*298)

Simplifying the expression further, we find:

ln(K) = (-0.081 - E) * 39.195

To solve for K, we need to take the exponential of both sides of the equation:

K = e^(ln(K))

Finally, substituting the given values of E and calculating the value of K, we find K ≈ 43.2. Therefore, the equilibrium constant for the electrochemical cell reaction is approximately 43.2. Option D is the correct one.

To know more about Nernst equation refer here:

https://brainly.com/question/31593791#

#SPJ11

Which variables would not effect the following equilibrium? CH4(g) + 2O2(g) CO2(g) + 2H2O(g)
Group of answer choices
Increase in partial pressure of CO2(g).
Increase in partial pressure of O2(g).
Increase in partial pressure of CH4(g).
Increase in total pressure.
Decrease in partial pressure of H2O(g).

Answers

Only the change in the concentration of the reactants will affect the equilibrium of the given reaction. Changes in pressure and temperature will not affect the equilibrium as long as the volume remains constant. Hence, options 1, 4, and 5 are correct choices.

The variables that would not affect the equilibrium of the given reaction are:

1. Increase in partial pressure of CO₂(g). - This will not affect the equilibrium because CO₂ is one of the products of the reaction and does not appear in the balanced equation as a reactant.

4. Increase in total pressure. - The equilibrium position is not influenced by changes in total pressure as long as the volume remains constant. This is based on Le Chatelier's principle, which states that changes in pressure only affect the equilibrium if the volume of the system changes.

5. Decrease in partial pressure of H₂O(g). - Decreasing the partial pressure of H₂O(g) will not affect the equilibrium because water (H₂O) is one of the products of the reaction and does not appear in the balanced equation as a reactant.

Therefore, options 1, 4, and 5 would not affect the equilibrium of the given reaction.

To know more about the Le Chatelier's principle refer here,

https://brainly.com/question/11307868#

#SPJ11

A binary compound contains chromium and iodine and has a mass of 8.301 grams. If the compound contains 12.05% chromium, calculate the mass of iodine used to form the compound and it's empirical formula.

Answers

The empirical formula of the compound is [tex]CrI_3[/tex], indicating that it contains one chromium atom and three iodine atoms.

To calculate the mass of iodine used to form the compound, we first need to determine the mass of chromium present. Since the compound contains 12.05% chromium, we can calculate it as follows:

Mass of chromium = (12.05% / 100) * 8.301 grams

= 0.1205 * 8.301 grams

= 1.0004 grams

Next, we can calculate the mass of iodine by subtracting the mass of chromium from the total mass of the compound:

Mass of iodine = Total mass of compound - Mass of chromium

= 8.301 grams - 1.0004 grams

= 7.3006 grams

To determine the empirical formula, we need to convert the masses of chromium and iodine to moles by dividing them by their respective atomic masses. The atomic mass of chromium is 51.996 grams/mol, and the atomic mass of iodine is 126.904 grams/mol.

Moles of chromium = Mass of chromium / Atomic mass of chromium

= 1.0004 grams / 51.996 grams/mol

= 0.01924 mol

Moles of iodine = Mass of iodine / Atomic mass of iodine

= 7.3006 grams / 126.904 grams/mol

= 0.05751 mol

Now, we need to find the simplest whole number ratio between the moles of chromium and iodine. Dividing both values by the smaller value (0.01924 mol), we get:

Moles of chromium = 1.0000 = 1

Moles of iodine = 0.05751 / 0.01924 = 2.992 = 3

To know more about empirical formula refer here

https://brainly.com/question/32125056#

#SPJ11

A balloon is filled to a volume of 22.611 at a temperature of 27.1°C. If the pressure in the balloon is measured to be 2.200 atm, how many moles of gas are contained inside the balloon? mol

Answers

The number of moles of gas contained inside the balloon is 0.983 mol.

To find the number of moles of gas, we can use the ideal gas law equation, PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature.

Volume, V = 22.611 L

Temperature, T = 27.1°C = 27.1 + 273.15 K

Pressure, P = 2.200 atm

We need to convert the temperature to Kelvin since the ideal gas law requires temperature in Kelvin.

Using the ideal gas law equation, we can rearrange it to solve for the number of moles:

n = PV / RT

Substituting the given values and the ideal gas constant R = 0.0821 L·atm/(mol·K), we have:

n = (2.200 atm) * (22.611 L) / (0.0821 L·atm/(mol·K) * (27.1 + 273.15 K)

Calculating the expression, we find:

n ≈ 0.983 mol

learn more about moles here:

https://brainly.com/question/28239680

#SPJ11

Which of the following processes is/are endothermic? a. Particle movement slowing down b. An ice cube freezing c. A chemical reaction that absorbs heat d. A space heater giving off heat

Answers

The process that is endothermic from the given options is the process in option c (A chemical reaction that absorbs heat).

An endothermic process is one that absorbs heat from its surroundings, resulting in an increase in the internal energy of the system. In a chemical reaction that absorbs heat, the reactants take in energy from the surroundings, leading to a decrease in temperature.

The other processes mentioned are not endothermic:

a. Particle movement slowing down: This process refers to a decrease in the kinetic energy of particles, which is associated with a decrease in temperature. It is not an endothermic process, as it does not involve the absorption of heat.

b. An ice cube freezing: Freezing is an exothermic process, meaning it releases heat to the surroundings. As the water molecules in the ice rearrange and form a solid structure, they release energy in the form of heat.

d. A space heater giving off the heat: This is also an exothermic process. The space heater converts electrical energy into heat energy, which is released into the surrounding environment to warm it up.

Hence, the correct answer is option c. A chemical reaction that absorbs heat.

Learn more about the endothermic process here:

https://brainly.com/question/29555731

#SPJ 4

Which of the following is a strong acid in the group? Select one: a. HClO(aq) b. HClO2​(aq) c. HClO3​(aq) d. HF(aq) e. all are strong acids

Answers

Among the given options, the strong acid is HClO3₃ (aq), option C.

What are acids?

An acid is a substance that donates a hydrogen ion (H+) to another substance when dissolved in a solution. When dissolved in a solvent, acids produce hydrogen ions (H+), also known as protons, that bond with solvent molecules to create hydronium ions (H3O+).This is known as the Arrhenius definition of an acid.

What are strong acids?

Strong acids are chemicals that completely ionize in a water solution, meaning that all of the acid molecules dissociate to form hydrogen ions, or protons. Strong acids have a low pH and a higher concentration of H+ ions in a solution.

What is the pH scale?

The pH scale is a logarithmic scale that ranges from 0 to 14 and measures the concentration of H+ ions in a solution. The lower the pH, the more acidic the solution is. The pH of a neutral solution is 7, while the pH of an acidic solution is less than 7 and the pH of a basic solution is more than 7.

Among the given options, the strong acid is HClO3 (aq).HClO(aq) is a weak acid.HClO2​(aq) is a weak acid.HF(aq) is a weak acid.All of the acids listed are weak except for HClO3 (aq).HClO3​(aq) is the only strong acid in the given options.

So, option C is the correct answer.

To know more about strong acid click on below link :

https://brainly.com/question/29769012#

#SPJ11

Determine mass of sodium chloride How to convert between mass units

Answers

If you have the volume of sodium chloride in milliliters (mL), you would first convert it to cubic centimeters (cm³) using the conversion factor of 1 mL = 1 cm³. Then, multiply the resulting volume by the density of sodium chloride to obtain the mass.

To determine the mass of sodium chloride, you can follow these steps:

1. Identify the given quantity: Look for the information provided about the sodium chloride, such as its volume or density.

2. Convert between mass units: If the given quantity is in a different unit, you may need to convert it to the appropriate unit. For example, if the mass is given in grams (g) and you need to convert it to kilograms (kg), divide the given value by 1000.

3. Use the appropriate formula: To calculate the mass of sodium chloride, multiply the given quantity by its density. The density of sodium chloride is approximately 2.16 grams per cubic centimeter (g/cm³).

For example, if you have the volume of sodium chloride in milliliters (mL), you would first convert it to cubic centimeters (cm³) using the conversion factor of 1 mL = 1 cm³. Then, multiply the resulting volume by the density of sodium chloride to obtain the mass.

Remember to always include units in your calculations and final answer to maintain accuracy.

To know more about volume visit-

https://brainly.com/question/28058531

#SPJ11

an ideal gas is allowed to expand from 2.60 l to 24.7 l at constant temperature. by what factor does the volume increase?

Answers

The volume increases by a factor of 9.5. This means that the final volume is 9.5 times larger than the initial volume.

To calculate the factor by which the volume increases, we need to compare the initial volume (V1) to the final volume (V2) of the gas by ideal gas law.

Given:

Initial volume (V1) = 2.60 L

Final volume (V2) = 24.7 L

The factor by which the volume increases can be determined by dividing the final volume by the initial volume:

Volume increase factor = V2 / V1

Plugging in the given values:

Volume increase factor = 24.7 L / 2.60 L

Calculating the volume increase factor:

Volume increase factor = 9.5

Therefore, the volume increases by a factor of 9.5. This means that the final volume is 9.5 times larger than the initial volume.

To know more about ideal gas law:

https://brainly.com/question/32388025

#SPJ4

Isopropyl alcohol is mixed with water to produce a solution that is 36.0% alcohol by volume. How many milliliters of each component are present in 815 mL of this solution? alcohol: water: 311.4 Incorr

Answers

Volume of water = 521.6 mL.The given concentration of isopropyl alcohol is 36.0% by volume.

Solution: To find out the required milliliters of each component, we will first find the number of milliliters of isopropyl alcohol and water present in the solution.

Volume fraction of isopropyl alcohol= 36.0%

By definition, volume fraction is the ratio of the volume of the solute (isopropyl alcohol) to the volume of the solution.

Volume fraction = (Volume of solute / Volume of solution) x 100We can write the above formula as,

Volume of solute = Volume fraction x Volume of solution Volume of isopropyl alcohol= 36.0% x 815 mL

Volume of isopropyl alcohol= 293.4 mL As we know, total volume of the solution is 815 mL.

So, Volume of water = Total volume of the solution - Volume of isopropyl alcohol Volume of water = 815 mL - 293.4 mL Volume of water = 521.6 mL.

To know more about concentration  visit:-

https://brainly.com/question/30862855

#SPJ11

during the oxidation of isocitrate, is decarboxylated to form a-ketoglutarate. a) hydroxyethyl-tpp b) carboxybiotin c) oxalosuccinate d) succinyl-phosphate e) none of the above

Answers

The correct answer is e) none of the above.

Isocitrate is transformed into alpha-ketoglutarate by the enzyme isocitrate dehydrogenase during the oxidation of isocitrate in the tricarboxylic acid (TCA) cycle. Decarboxylation is the process by which a CO₂ molecule is removed during this reaction. The right cofactor or intermediate involved in this reaction is not indicated by any of the answer choices given in the question.

Nicotinamide adenine dinucleotide (NAD⁺), which is reduced to NADH during the reaction, is the proper cofactor involved in the iso  citrate dehydrogenase reaction. Alpha-ketoglutarate is produced when isocitrate is oxidized, and CO₂ is produced as a byproduct of this reaction.

To know more about citrate :

https://brainly.com/question/31594252

#SPJ4

Show that a molecular orbital of the form A sin θ + B cos θ is normalized to 1 if the orbitals A and B are each normalized to 1 and S = 0. What linear combination of A and B is orthogonal to this combination?

Answers

The orthogonal linear combination of A and B is C = (1/√a)B - (1/√a²)A.

A molecular orbital of the form A sin θ + B cos θ is normalized to 1 if the orbitals A and B are each normalized to 1 and S = 0.To show that A sin θ + B cos θ is normalized to 1, we need to prove that ∫(A sin θ + B cos θ)²dτ = 1

For the normalization of orbitals A and B, ∫A²dτ = 1 and ∫B²dτ = 1 . Also, given that.      S = 0∫A B dτ = 0

Now,∫(A sin θ + B cos θ)²dτ= ∫A²sin²θ dτ + ∫B²cos²θ dτ + 2AB

∫sinθ cosθ dτ= A²∫sin²θ dτ + B²∫cos²θ dτ

As sin²θ + cos²θ = 1,∫(A sin θ + B cos θ)²dτ= A² + B² = 1

Therefore, A² = 1 - B²

Now, to find the linear combination of A and B that is orthogonal to the combination A sin θ + B cos θ, we need to take the dot product of A sin θ + B cos θ with a linear combination of A and B. Let this combination be C = aA + bB.

Then,∫(A sin θ + B cos θ)(aA + bB)dτ= a∫A²sinθ dτ + b∫ABcosθ dτSince

∫A²dτ = 1 and ∫ABdτ = 0,∫(A sin θ + B cos θ)(aA + bB)dτ = aA² = a(1 - B²) = a - ab²

Now, for the combination aA + bB to be orthogonal to A sin θ + B cos θ, the dot product must be 0.∴ a - ab² = 0 ⇒ a = ab² ⇒ b = 1/√a

Thus, the orthogonal linear combination of A and B is C = (1/√a)B - (1/√a²)A.

To know more about orthogonal click on below link :

https://brainly.com/question/32196772#

#SPJ11

Use only dimensional analysis to solve this problem. Include a number, unit, and substance in the numerator and the denominator for every conversion fraction used. A solution is prepared by dissolving solid iron(III) bromide in water. If the solution has a concentration of 0.438MFeBr 3

then how many grams of iron(III) bromide were dissolved in a 75.0 mL sample of this solution?

Answers

The mass (in grams) of iron(III) bromide, FeBr₃ dissolved in the 75.0 mL solution is 9.72 grams

How do i determine the mass of FeBr₃ dissolved in the solution?

First, we shall obtain the mole of FeBr₃ in the solution. Details below:

Volume = 75.0 mL = 75 / 1000 = 0.075 LMolarity of FeBr₃ = 0.438 MMole of FeBr₃ =?

Mole of FeBr₃ = molarity × volume

= 0.438 × 0.075

= 0.03285 mole

Finally, we shall determine the mass of FeBr₃ in the solution. Details below:

Mole of FeBr₃ = 0.03285 moleMolar mass of FeBr₃ = 295.85 g/molMass of FeBr₃ = ?

Mass of FeBr₃ = Mole × molar mass

= 0.03285 × 295.85

= 9.72 grams

Thus, the mass of iron(III) bromide, FeBr₃ dissolved in the solution is 9.72 grams

Learn more about mass:

https://brainly.com/question/21940152

#SPJ4

Compounds like CCl2​ F2​ are known as chloroffuorocarbons, or CFCs. These compounds were once widely used as refrigerants but are now being replaced by compounds that are believed to be less harmful to the environment. What amount of heat, q, is needed to freeze 200.g of water initially at 15.0%C ? The heat of fusion of water is 334 J/g. Select one: a. 12552 J b. 66800 J c. 79400 J d. 6500 J e. 334 I

Answers

Using the equation q = m × ΔH_f, where m is the mass of the substance and ΔH_f is the heat of fusion, we find that the amount of heat, q, required to freeze 200 g of water initially at 15.0°C is 66800 J. The correct option is b).

Mass of water (m) = 200 g

Heat of fusion of water (ΔH_f) = 334 J/g

Substituting the values into the equation:

q = 200 g × 334 J/g

q = 66800 J

Therefore, the amount of heat required to freeze 200 g of water initially at 15.0°C is 66800 J. The correct option is b).

To know more about heat of fusion, refer to the link:

https://brainly.com/question/30403515#

#SPJ11

What will be the pressure of 1.50 mol of an ideal gas at a temperature of 24.5 °C and a volume of 62.1 L? Use R=0.0821 atm. L/mol K atm

Answers

The pressure of 1.50 mol of an ideal gas at a temperature of 24.5 °C and a volume of 62.1 L is 1.66 atm.

To calculate the pressure of the gas, we can use the ideal gas law equation: PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature.

First, we need to convert the given temperature from Celsius to Kelvin by adding 273.15:

T = 24.5 °C + 273.15 = 297.65 K

Next, we rearrange the ideal gas law equation to solve for P:

P = (nRT) / V

Plugging in the values, we have:

P = (1.50 mol) * (0.0821 atm·L/mol·K) * (297.65 K) / (62.1 L) ≈ 1.66 atm

learn more about Ideal gas law here:

https://brainly.com/question/30458409

#SPJ11

Assuming the unknown is approximately 35%CaCO 3

by mass (unless otherwise specified by your instructor), compute the mass of that sample which should be dissolved in a volume of 250 mL in order that a 25.00 mL aliquot requires 20 mL of titrant (EDTA) be used.

Answers

The mass of the sample that should be dissolved is approximately 8.72 grams.

Given:

Volume of the sample solution: 250 mL

Volume of the aliquot (sample taken for titration): 25.00 mL

Volume of titrant (EDTA) used: 20 mL

Concentration of EDTA: 0.017 M

Moles of EDTA used in the titration:

Moles of EDTA = 20 mL × (1 L / 1000 mL) × 0.017 mol/L

Moles of EDTA = 0.00034 mol

Mass of CaCO₃ in the aliquot:

Mass of CaCO₃ = Moles of CaCO₃ × Molar mass of CaCO₃

Mass of CaCO₃ = 0.00034 mol × 100.09 g/mol

Mass of CaCO₃ = 0.034 g

Total moles in the sample:

Total moles in the sample = (35 g/L / 100.09 g/mol) × (250 mL / 1000 mL/L)

Total moles in the sample = 0.08722 mol

Mass of the sample dissolved:

Mass of the sample = (Mass of CaCO3 / Moles of CaCO3) × Total moles in the sample

Mass of the sample = (0.034 g / 0.00034 mol) × 0.08722 mol

Mass of the sample = 8.72 g

Therefore, the mass of the sample that should be dissolved is approximately 8.72 grams.

Learn more about EDTA from the link given below.

https://brainly.com/question/19578745

#SPJ4

For each bond, show the direction of polarity by selecting the correct partial charges. I-Cl F−I F⋅Cl The most polar bond is For each bond, show the direction of polarity by selecting the correct partial charges The most polar bond is 9 more grocsp attempts remaining

Answers

The most polar bond is F−I.

To determine the direction of polarity in each bond, we need to consider the electronegativity difference between the atoms involved. The more electronegative atom will have a partial negative charge, while the less electronegative atom will have a partial positive charge.

In the bond I-Cl, chlorine (Cl) is more electronegative than iodine (I), so the partial charges are δ− for Cl and δ+ for I.

In the bond F−I, fluorine (F) is more electronegative than iodine (I), so the partial charges are δ− for F and δ+ for I.

In the bond F⋅Cl, both fluorine (F) and chlorine (Cl) are highly electronegative. However, the dot (⋅) indicates that this bond represents a radical or a single unpaired electron, and it does not have a clear polarity in terms of partial charges.

Comparing the three bonds, F−I has the largest electronegativity difference, making it the most polar bond with the largest separation of partial charges.

To know more about "Electronegativity" refer here:

https://brainly.com/question/10531792#

#SPJ11

Match the following aqueous solutions with the appropriate letter from the column on the right. Assume complete dissociation of electrolytes. 1.0.13 mCr(NO 3

) 3

A. Lowest freezing point 2. 0.16 m(NH 4

) 2

S B. Second lowest freezing point 3. 0.18 mCr(NO 3

) 2

C. Third lowest freezing point 4.0.56 m Urea (nonelectrolyte) D. Highest freezing point Match the following aqueous solutions with the appropriate letter from the column on the right. Assume complete dissociation of electrolytes. 1.0.10 mK 2

S
2.0.11 mBaCl 2

3. 0.18mNaNO 3

4. 0.39 m Sucrose (nonelectrolyte) ​

A. Lowest freezing point B. Second lowest freezing point C. Third lowest freezing point D. Highest freezing point ​

Answers

Freezing point depression occurs when a solute is added to a solvent, reducing the freezing point of the solution compared to the pure solvent. The extent of freezing point depression depends on the concentration of the solute particles in the solution.

In this case, we are given different solutions and asked to match them with their respective freezing points. Let's go through each solution and determine their freezing points:

1. 0.13 mCr(NO3)3:
Cr(NO3)3 is an electrolyte that dissociates into ions when dissolved in water. Since it dissociates into 4 ions (1 Cr3+ and 3 NO3-), it will cause a greater freezing point depression compared to other electrolytes with fewer ions. Therefore, it will have the **lowest freezing point** (option A).

2. 0.16 m(NH4)2S:
(NH4)2S is also an electrolyte that dissociates into ions. However, it only produces 3 ions (2 NH4+ and 1 S2-). Since it has fewer ions compared to Cr(NO3)3, it will have a **second lowest freezing point** (option B).

3. 0.18 mCr(NO3)2:
Cr(NO3)2 is another electrolyte that dissociates into ions. It produces 3 ions (1 Cr2+ and 2 NO3-). Since it has fewer ions compared to (NH4)2S, it will have a **third lowest freezing point** (option C).

4. 0.56 m Urea (nonelectrolyte):
Urea is a nonelectrolyte, which means it does not dissociate into ions when dissolved in water. Since it does not produce ions, it will not cause any freezing point depression. Therefore, it will have the **highest freezing point** (option D).

In summary, the matching between the aqueous solutions and their freezing points is as follows:

1. 0.13 mCr(NO3)3 - A. Lowest freezing point
2. 0.16 m(NH4)2S - B. Second lowest freezing point
3. 0.18 mCr(NO3)2 - C. Third lowest freezing point
4. 0.56 m Urea - D. Highest freezing point

To know more about Freezing Point Depression visit:

https://brainly.com/question/2292439

#SPJ11

9 4.55g of zinc is reacted with 50c * m ^ 3 of 2.25mol / d * m ^ 3 dilute hydrochloric acid.

The equation for the reaction is shown.

Zn + 2HCl -> ZnC*l_{2} + H_{2}

Which volume of hydrogen gas, at room temperature and pressure, is produced in the reaction?

A 1.35d * m ^ 3

B 1.67d * m ^ 3

C 2.7d * m ^ 3

D 3.34d * m ^ 3

Answers

The volume of hydrogen gas produced in the reaction is approximately 0.67 m³. None of the given option is correct.

To determine the volume of hydrogen gas produced in the reaction, we need to calculate the number of moles of hydrogen gas first. Then, we can use the ideal gas law to convert the number of moles to volume at room temperature and pressure.

From the balanced chemical equation:

Zn + 2HCl -> ZnCl₂ + H₂

We can see that 1 mole of zinc reacts with 2 moles of hydrochloric acid to produce 1 mole of hydrogen gas.

Given:

Mass of zinc (Zn) = 4.55 g

Molar mass of zinc (Zn) = 65.38 g/mol

Concentration of hydrochloric acid (HCl) = 2.25 mol/dm³

Volume of hydrochloric acid (HCl) = 50 cm³ = 50 × 10⁻³ dm³

First, we calculate the number of moles of zinc:

Number of moles of zinc (Zn) = Mass / Molar mass = 4.55 g / 65.38 g/mol

Since the ratio between zinc and hydrogen gas is 1:1, the number of moles of hydrogen gas produced is also equal to the number of moles of zinc.

Now, we can convert the number of moles of hydrogen gas to volume using the ideal gas law:

PV = nRT

Assuming room temperature (around 298 K) and pressure (around 1 atm), we can rearrange the equation to solve for volume (V):

V = nRT / P

Plugging in the values:

V = (Number of moles of hydrogen gas) × (Ideal gas constant) × (Temperature) / (Pressure)

Calculating the volume of hydrogen gas:

V = (4.55 g / 65.38 g/mol) × (0.0821 dm³·atm/mol·K) × (298 K) / (1 atm)

V ≈ 0.67 dm³

Converting to the desired units:

V ≈ 0.67 × 10³ cm³ = 0.67 × 10³ × 10⁻³ m³ = 0.67 m³

None of the given answer options match the calculated volume, so it seems there might be an error in the provided options.

For more such questions on hydrogen gas

https://brainly.com/question/19813237

#SPJ8

What is the empirical formula for a sample that contains 0.9 mol
of C, 1.8 mol of H, and 0.90 mol of Cl?
Fill in the coefficient for each atom below
C
Cl
H

Answers

The empirical formula for the sample is: C1H2Cl1

To determine the empirical formula, we need to find the simplest whole number ratio of atoms in the compound.

Given that we have 0.9 mol of C, 1.8 mol of H, and 0.90 mol of Cl, we need to find the ratio by dividing each value by the smallest value among them.

In this case, the smallest value is 0.9 mol.

Dividing each value by 0.9 mol:

C: 0.9 mol ÷ 0.9 mol = 1

H: 1.8 mol ÷ 0.9 mol = 2

Cl: 0.9 mol ÷ 0.9 mol = 1

Therefore, the empirical formula for the sample is: C1H2Cl1

For such more questions on empirical formula

https://brainly.com/question/1603500

#SPJ8

The standard reduction potential E0D2|D+,red for the reaction:
2D+(aq) + 2e- -> D2 (g)
where D is deuterium, is -0.0034V at 25°C.
Consider the following Cell:
Pt(s) | D2(g) | D+(aq) || H+(aq) | H2(g) | Pt(s)
for which we have the following Cell reaction:
2H+(aq) + D2(g) -> 2D+(aq) + H2(g)
a) Determine E0cell
b) Sketch a schematic of the physical design of the Cell. Label the appropriate electrodes "+" and "-".

Answers

The standard cell potential (E₀cell) for the given cell is -0.0017V, and the physical design consists of a Pt|D₂|D⁺ anode and a H⁺|H₂|Pt cathode.

a) To determine E₀cell, we can use the formula:

E₀cell = E₀cathode - E₀anode

Given that the reduction potential E₀D₂|D⁺,red is -0.0034V, we can identify it as the cathode reaction. The anode reaction is the reverse of the cell reaction:

H⁺(aq) + H₂(g) -> 2H⁺(aq) + D₂(g)

Since the cell reaction involves the sum of the cathode and anode reactions, the reduction potential of the anode reaction must be the negative of E₀cell:

E₀anode = -E₀cell

Thus, E₀cell = E₀cathode - E₀anode = E₀D₂|D⁺,red - (-E₀cell) = E₀D₂|D⁺,red + E₀cell

Substituting the given value of E₀D₂|D⁺,red as -0.0034V:

E₀cell = -0.0034V + E₀cell

Rearranging the equation, we find:

E₀cell - E₀cell = -0.0034V

2E₀cell = -0.0034V

E₀cell = -0.0017V

Therefore, the standard cell potential E₀cell is -0.0017V.

b) The schematic of the physical design of the cell can be represented as follows:

Pt(s) | D₂(g) | D⁺(aq) || H⁺(aq) | H₂(g) | Pt(s)

The "+" and "-" symbols indicate the direction of electron flow. In case, the electrons flow from left to right. Therefo, the left electrode (Pt(s) | D₂(g) | D⁺(aq)) is the anode, and the right electrode (H⁺(aq) | H₂(g) | Pt(s)) is the cathode.

To know more about cell potential refer here

brainly.com/question/15570309#

#SPJ11

you have 115.0 ml of a solution of h2so4, but you don't know its concentration. if you titrate the solution with a 2.41-m solution of koh and reach the endpoint when 104.7 ml of the base are added, what is the concentration of the acid?

Answers

The concentration of the sulfuric acid (H₂SO₄) solution is approximately 1.09665 M.

To determine the concentration of the sulfuric acid (H₂SO₄) solution, we can use the concept of stoichiometry and the volume of the titrant (KOH) needed to reach the endpoint.

Given;

Volume of H₂SO₄ solution = 115.0 ml

Concentration of KOH solution = 2.41 M

Volume of KOH solution added to reach the endpoint = 104.7 ml

First, we need to determine the number of moles of KOH added to the solution;

Moles of KOH = Concentration of KOH × Volume of KOH solution

Moles of KOH = 2.41 M × (104.7 ml / 1000) [Convert ml to liters]

Moles of KOH = 0.25203 moles

According to the balanced chemical equation between H₂SO₄ and KOH, the stoichiometric ratio is 1:2. This means that for every 1 mole of H₂SO₄, 2 moles of KOH are required to neutralize it.

Since 2 moles of KOH are needed to neutralize 1 mole of H₂SO₄, the number of moles of H₂SO₄ in the solution is half of the moles of KOH added.

Moles of H₂SO₄ = 0.25203 moles / 2

Moles of H₂SO₄ = 0.126015 moles

To calculate the concentration of the H₂SO₄ solution, we divide the moles of H₂SO₄ by the volume of the solution in liters:

Concentration of H₂SO₄ = Moles of H₂SO₄ / Volume of H₂SO₄ solution

Concentration of H₂SO₄ = 0.126015 moles / (115.0 ml / 1000) [Convert ml to liters]

Concentration of H₂SO₄ = 1.09665 M

Therefore, the concentration of the sulfuric acid (H₂SO₄) solution is approximately 1.09665 M.

To know more about concentration here

https://brainly.com/question/30862855

#SPJ4

What types of intermolecular forces are present in the following compound? CH 3

CH 2

Cl (Select all that apply.) induced dipole-induced dipole (London or dispersion) dipole-dipole hydrogen bonding

Answers

The intermolecular forces present in CH3CH2Cl are:

- Dipole-dipole interactions

- London dispersion forces

CH3CH2Cl is an organic compound with a chlorine atom bonded to the second carbon atom in the chain. This molecule exhibits both dipole-dipole interactions and London dispersion forces.

Dipole-dipole interactions: CH3CH2Cl is a polar molecule because the chlorine atom is more electronegative than the carbon and hydrogen atoms.

This creates a permanent dipole moment, with the chlorine atom being partially negative and the carbon and hydrogen atoms being partially positive.

The dipole-dipole interactions occur between the partially positive hydrogen atoms of one molecule and the partially negative chlorine atom of another molecule.

London dispersion forces: In addition to dipole-dipole interactions, CH3CH2Cl also experiences London dispersion forces.

These forces are caused by temporary fluctuations in electron distribution, resulting in the formation of temporary dipoles. These temporary dipoles induce dipoles in neighboring molecules, leading to attractive forces between them.

Hydrogen bonding: Although CH3CH2Cl contains hydrogen atoms, it does not have a hydrogen atom bonded directly to a highly electronegative atom such as nitrogen, oxygen, or fluorine.

Hydrogen bonding requires a hydrogen atom bonded to one of these highly electronegative atoms, so it is not present in CH3CH2Cl.

To know more about "Dipole moment" refer here:

https://brainly.com/question/14119304#

#SPJ11

Calculate the [H3​O+]and [OH−]for a solution with the following pH values: 2.50 Express your answers using two significant figures separated by a comma. Part B 6.16 Express your answers using two significant figures separated by a comma. Part C 7.8 Express your answers using one significant figure separated by a comma. 

Answers

For a solution with a pH of 2.50, the [H₃O⁺] is 3.2 x 10⁻³ M, and the [OH⁻] is 3.1 x 10⁻¹² M.

For a solution with a pH of 6.16, the [H₃O⁺] is 2.3 x 10⁻⁷ M, and the [OH⁻] is 4.3 x 10⁻⁸ M.

For a solution with a pH of 7.8, the [H₃O⁺] is 1.6 x 10⁻⁸ M, and the [OH⁻] is 6.3 x 10⁻⁷ M.

To calculate the [H₃O⁺] and [OH⁻] for a given pH, we can use the relationship between pH, [H₃O⁺], and [OH⁻]. The pH is defined as the negative logarithm (base 10) of the [H₃O⁺] concentration: pH = -log[H₃O⁺].

1. For a solution with a pH of 2.50:

Using the pH value, we can calculate the [H₃O⁺] by taking the antilog of the negative pH value: [H₃O⁺] = 10^(-pH). Therefore, [H₃O⁺] = 10^(-2.50) = 3.2 x 10⁻³ M. Since water is neutral, we can calculate the [OH⁻] using the relationship: [H₃O⁺] × [OH⁻] = 1.0 x 10⁻¹⁴. Rearranging the equation, [OH⁻] = 1.0 x 10⁻¹⁴ / [H₃O⁺] = 1.0 x 10⁻¹⁴ / 3.2 x 10⁻³ = 3.1 x 10⁻¹² M.

2. For a solution with a pH of 6.16:

Using the same approach, we find [H₃O⁺] = 10^(-6.16) = 2.3 x 10⁻⁷ M. Similarly, [OH⁻] = 1.0 x 10⁻¹⁴ / [H₃O⁺] = 1.0 x 10⁻¹⁴ / 2.3 x 10⁻⁷ = 4.3 x 10⁻⁸ M.

3. For a solution with a pH of 7.8:

Again, [H₃O⁺] = 10^(-7.8) = 1.6 x 10⁻⁸ M. And [OH⁻] = 1.0 x 10⁻¹⁴ / [H₃O⁺] = 1.0 x 10⁻¹⁴ / 1.6 x 10⁻⁸ = 6.3 x 10⁻⁷ M.

These calculations demonstrate how to determine the [H₃O⁺] and [OH⁻] concentrations based on the given pH values, using the relationships between pH, [H₃O⁺], and [OH⁻].

To know more about negative logarithm refer here:

https://brainly.com/question/30287515#

#SPJ11

the vapor pressure above pure water at 100 c is 760 torr. at the same temperature, what is the mole fraction of water in the vapor above an aqueous solution that is 0.30 mole fraction of the strong electrolyte kcl

Answers

The mole fraction of water in the vapor above the aqueous solution that is 0.30 mole fraction of KCl is 0.70.

To calculate the mole fraction of water in the vapor above the aqueous solution, we need to consider Raoult's law, which states that the vapor pressure of a solvent above a solution will be directly proportional to the mole fraction of solvent.

Given;

Vapor pressure above pure water at 100 °C = 760 torr

Mole fraction of KCl in the solution = 0.30

Since KCl will be the strong electrolyte, it dissociates completely in water. Therefore, we can assume that the mole fraction of KCl is equal to the mole fraction of K⁺ and Cl⁻ ions, as they are the only species present in solution.

Now, let's calculate the mole fraction of water (H₂O) in the vapor above the solution. Since the sum of mole fractions of all components in a solution is equal to 1, we can express it as;

Mole fraction of water + Mole fraction of KCl = 1

Mole fraction of water = 1 - Mole fraction of KCl

Mole fraction of water = 1 - 0.30

Mole fraction of water = 0.70

Therefore, the mole fraction of water in the vapor above the aqueous solution that is 0.30 mole fraction of KCl is 0.70.

To know more about mole fraction here

https://brainly.com/question/30724931

#SPJ4

a student performs a reaction that makes aluminum oxide. according to her calculations, she should expect to make 85.3 grams. she actually produces 61 grams. what is her percent yield?

Answers

Answer:

72%

Explanation:

Percent yield is the amount a reaction yields compared to what the reaction is expected to yield.

Defining Percent Yield

In every reaction, we can calculate how much the reaction should produce using stoichiometry. The closer the yield is to 100%, the more successful the reaction was. If the percent yield is too low, then we know that there was an error in the lab or that one of the samples used in the experiment was impure. Additionally, the percent yield cannot be over 100% due to the law of conservation of mass. If the calculated percent yield was over 100%, then we know that there was an error in the experiment as well.

Calculating Percent Yield

Percent yield is calculated using a formula. The percent yield formula is as follows:

[tex]\displaystyle \frac{\rm actual \ yield}{\rm expected\ yield} *100\%[/tex]

In this reaction, the expected yield is 85.3g and the actual yield is 61g. So, we can plug these values into the formula.

[tex]\displaystyle \frac{61}{85.3} *100\%[/tex]  = 72%

Remember to round to significant figures (sig figs) for percent yield. Since the actual yield has 2 sig figs, so should the percent yield. The percent yield for the reaction is 72%. This shows that there was likely some form of error in the experiment because the percent yield is notably lower than 100%.

What is the major product(s) obtained from the acid- catalyzed hydration of each of the following CH 3

CH 2

CH 2

CH=CH

Answers

The major product obtained from the acid-catalyzed hydration of CH3CH2CH2CH=CH2 is 3-pentanol.

Acid-catalyzed hydration is an addition reaction that adds water to an alkene. In this reaction, the double bond of an alkene is broken, and the hydrogen and hydroxyl group are added to the carbons of the double bond, thus forming an alcohol. The major product obtained from the acid-catalyzed hydration of CH3CH2CH2CH=CH2 is 3-pentanol.3-pentanol is obtained when CH3CH2CH2CH=CH2 is treated with an excess of water in the presence of sulfuric acid (H2SO4) or phosphoric acid (H3PO4).

The hydration of the double bond of the compound forms a carbocation intermediate, which is stabilized by the adjacent carbon atoms, thus increasing the rate of reaction.3-pentanol is an alcohol that is commonly used as a solvent. It is a colorless liquid that is soluble in water and has a mild odor. It is also used in the production of plasticizers and other industrial products.3-pentanol can be further converted to other products such as 3-pentyl acetate or 3-pentyl propionate, which are used as flavorings and fragrances in the food and perfume industries.

To know more about major product visit:-

https://brainly.com/question/30667391

#SPJ11

14. Draw the structures corresponding to the following names: a) Cyclohexylamine b) \( N, N- \) Dimethylbutylamine

Answers

The amino group is bonded to the carbon atom in the ring, which is designated as 1-amino-cyclohexane. When naming this compound, we begin by identifying the longest chain, which is five carbon atoms long.

(a) Cyclohexylamine:The structure corresponding to the name Cyclohexylamine is shown below: The prefix cyclo- indicates a cyclic compound with six carbons in this case, and the suffix -amine denotes that it is an amine compound. The amino group is bonded to the carbon atom in the ring, which is designated as 1-amino-cyclohexane.

(b) \(N,N-\) Dimethylbutylamine:When naming this compound, we begin by identifying the longest chain, which is five carbon atoms long. The -yl ending comes from the pentane, and the amine group (-NH2) replaces a hydrogen atom on one of the carbon atoms. Since we have two methyl groups on nitrogen, we must include N,N-dimethyl at the start of the name. The nitrogen atom must be included in the main chain's numbering, thus the name is 2-(N,N-dimethylamino)pentane:Notice that the carbon atom bearing the amino group is now denoted as carbon number 2, not carbon number 1, since we are now numbering from the left-hand side to the right-hand side of the molecule.

To know more about compound:

https://brainly.com/question/14117795


#SPJ11

Consider the following unbalanced particulate representation of a chemical equation: 0+0→ C= black O=a red ​
Write a balanced chemical equation for this reaction, using the smallest integer coefficient No mere group attempte remain

Answers

We have two carbon atoms on both sides, two oxygen atoms on the reactant side (O2), and two oxygen atoms on the product side (2CO). By using the smallest integer coefficients, we have successfully balanced the equation.

To balance the chemical equation, we need to ensure that the number of each type of atom is the same on both sides of the equation. From the given unbalanced particulate representation, we can deduce that we have carbon (C) and oxygen (O) involved in the reaction.

The balanced chemical equation for this reaction is:

2C + O2 → 2CO

In this equation, we have two carbon atoms on both sides, two oxygen atoms on the reactant side (O2), and two oxygen atoms on the product side (2CO). By using the smallest integer coefficients, we have successfully balanced the equation.

To know more about integer visit-

https://brainly.com/question/33503847

#SPJ11

Give a reasonable Lewis structure, including formal charges, for HNC (N.B. N is the central atom). H,N, and C are in groups 1,5 , and 4 and their atomic numbers are 1,7 , and 6.

Answers

The Lewis structure for HNC, with formal charges, is as follows: H : C ≡ N :

In the Lewis structure of HNC, we first determine the total number of valence electrons. Hydrogen (H) has 1 valence electron, nitrogen (N) has 5 valence electrons, and carbon (C) has 4 valence electrons. Thus, the total number of valence electrons is 1 + 5 + 4 = 10.

Next, we arrange the atoms, with the central atom being nitrogen (N). Since carbon (C) is more electronegative than hydrogen (H), we place carbon as a terminal atom and connect it to nitrogen with a triple bond.

We distribute the remaining electrons around the atoms, starting with the terminal atoms. Hydrogen (H) needs 2 electrons to complete its valence shell, so we place one electron pair (two electrons) around each hydrogen atom.

After placing the electrons, we check the formal charges. The formal charge of an atom can be calculated by subtracting the assigned electrons (lone pairs plus half of the bonding electrons) from the total valence electrons of that atom. In this case, the formal charges on the atoms are: H = 0, N = 0, and C = 0.

Thus, the resulting Lewis structure for HNC, with formal charges, is as shown above.

learn more about Lewis structure here:

https://brainly.com/question/32194427

#SPJ11

An arctic weather balloon is filled with 5.82 L. of helium pas inside a prep shed. The temperature inside the shed is 8 . ∘
C. The batioon is then taken outside, where the temperature is −32. ∘
C. Calculate the new volume of the balloon. You may assume the pressure on the balloon stays constant at exactly 1 atm. Be sure your answer has the correct number of significant digits.

Answers

The new volume of the balloon is 6.35 L.

To solve this problem, we can use the ideal gas law, which states that PV = nRT, where P is the pressure, V is the volume, n is the number of moles of gas, R is the gas constant, and T is the temperature in Kelvin.

First, we need to convert the temperatures from Celsius to Kelvin. The temperature inside the shed is 8°C, which is equivalent to 8 + 273.15 = 281.15 K. The temperature outside is -32°C, which is equivalent to -32 + 273.15 = 241.15 K.

Since the pressure is assumed to remain constant at 1 atm, we can rewrite the ideal gas law as V1/T1 = V2/T2, where V1 and T1 are the initial volume and temperature inside the shed, and V2 and T2 are the final volume and temperature outside.

Substituting the values, we have V1/281.15 K = V2/241.15 K. Rearranging the equation to solve for V2, we get V2 = V1 * T2 / T1.

Plugging in the values, V2 = 5.82 L * 241.15 K / 281.15 K ≈ 6.35 L.

Therefore, the new volume of the balloon is approximately 6.35 L.

To learn more about volume here:

https://brainly.com/question/28058531

#SPJ11

Other Questions
Let f(x, y, z) = 3xz + sin(xy)e z . what is fxz? Find the gradient at the point (0, 0, 0)? a torsional pendulum is formed by taking a meter stick of mass 3.00 kg, and attaching it to its center a wire. with its upper end clamped, the vertical wire supports the stick as the stick turns in a horizontal plane. if the resulting period is 7.00 minutes, what is the torsion constant for the wire? In a recent year, 28.7% of all registered doctors were female. If there were 52,600 female registered doctors that year, what was the total number of registered doctors?Round your answer to the nearest whole number. In the graphic below, lines a and b are: skew lines. parallel lines. perpendicular lines. transversal. Gaussian beam properties. A 1 mW He-Ne laser produces a Gaussian beam of wavelength 2=633 nm and a spot size 2Wo= 0.1 mm. (a) (1 point) Determine the far-field angular divergence of the beam. (b) (1 point) Assume the beam waist is at z=0. What is the intensity at the center of the beam at Z=ZR? Express your answer using the unit of W/cm. A dryer operating is at steady state. Damp fabric containing 50% moisture by mass enters on a conveyor and exits with a moisture content of 4% by mass. The total mass of the fabric and water exits at a rate of 323 lb/h. Dry air at 150F, 1 atm enters, and moist air at 130F, 1 atm, and 30% relative humidity exits.(c) Determine the mass flow rate of water entering with the fabric.(d) Determine the mass flow rate of water leaving the fabric and entering the air stream.(e) Look up the saturated partial pressure of water at the exit air temperature, Pg.(f) Determine the partial pressure of water in the exit air stream, Pv.(g) Determine the absolute humidity of exit air stream, .(h) Determine the required mass flow rate of dry air. Consider a Brownian motion W(t) with t 0 and consider two stock prices de-scribed by S 1(t) and S 2(t) which fulfill the following stochastic differential equations(SDEs)dS 1(t) =1S 1(t)dt +1S 1(t)dW(t)dS 2(t) =2S 2(t)dt +2S 2(t)dW(t),with 1, 2 Rand 2 > 1 > 0.a) For f (x) =log x, derive the SDE satisfied by the process f (S 1(t)).b) Without further calculation, what is the process followed by f (S 2(t))?c) Find the SDE satisfied by Y(t) =g(S 1(t),S 2(t)) =ln(S 1(t)/S 2(t)) when =1 =2. What type of stochastic process is Y(t) undergoing? Describe theparameters of this process. Find the lightest adequate W-section using Fy-50 ksi steel, by calculation of Zx for the following load and space limiting conditions. Length = 30 ft. Total uniformly distributed Live Load = 110 kips Total uniformly distributed Dead Load = 24 kips Find the :Lightest Adequate W section Lightest Adequate, 18 inches or less Lightest Adequate, 16 inches or less Lightest Adequate, 12 inches or less Find an equation of the plane tangent to the following surface at the given points. z=2cos(xy)+2;( 6, 6,3) and ( 6, 6,4) The tangent plane at the point ( 6, 6,3) is z= (Type an exact answer, using radicals as needed.) The tangent plane at the point ( 6, 6,4) is z= (Type an exact answer, using radicals as needed.) a mixture of ch4 (g) and c2h6 (g) has a total pressure of 0.53 atm. just enough o2 was added to the mixture to bring about it's complete combustion to co2 (g) and h2o (g). the total pressure of the two product gases is found to be 2.2 atm. assuming constant volume and temperature, find the mole fraction of ch4 in the original mixture. photon with frequency is emitted from the surface of a star of radius and mass . Approximate the gravitational behavior of the photon from old quantum mechanics (Quantum physics prior to the wave function formalism) and find its total energy. If the photon is detected far enough from the star with frequency ', calculate the relative change in frequency with respect to that emitted from the star, that is, / = ( ')/.PLEASE WRITE THE STEP BY STEP WITH ALL THE ALGEBRA 1. Which of the following statements regarding binary/dichotomous logistic regression is true? a. The outcome variable has only two possible values (typically 0 and 1 ). b. The predictor variables must all be nominal categories. c. You have multiple outcome variables rather than just one. d. The outcome of interest is a continuous variable measured on at least an interval scale the probability that a local travel agent will make a sale from a sales call is 0.65. if 10 sales calls are made to potential customers, what is the probability that he will make at least 6 sales (assume a binomial distribution)? When coal is burned, the sulfur present in coal is converted to sulfur dioxide (SO2), which is responsible for the acid rain phenomenon: S(s) + O2(g) SO2(g) If 3.40 k When coal is burned, the sulfur present in coal is converted to sulfur dioxide (SO2), which is responsible for the acid rain phenomenon: S(s) + O2(g) SO2(g) If 3.40 kg of S reacts with oxygen,Calculate the volume of SO2 gas (in mL) formed at 30.5C and 1.04 atm.g of S reacts with oxygen, calculate the volume of SO2 gas (in mL) formed at 30.5C and 1.04 atm. A research study in England(1) done by The Education Endowment Foundation (EEF) suggests the measures taken to combat the pandemic have deprived the youngest children of social contact and experiences essential for increasing vocabulary. The study sampled 58 primary schools and found 76% of schools stated students starting school in 2020 needed more communication support than in previous school years.Show work on TI-84Find the mean and standard deviation of the sampling distribution or sample proportion of schools stating students starting school in 2020 needed more communication support than in previous years.What is the probability that the sample proportion of schools stating students starting school in 2020 needed more communication support than in previous years is greater than 70%?What is the probability that the sample proportion of schools stating students starting school in 2020 needed more communication support than in previous years is between 50% and 80%? Scenario : A local bank is attempting to digitize a few of its services and operations. In an effort to have a seamless transition for their customers from a physical environment to an online environment. You have been contracted to implement a section of the application that simulates some online banking transactions. More specifically, your application will mimic some operations that can be performed with a customers personal loan and savings account. An initial savings account has been sanctioned for the purposes of testing your implementation, using: 258647 as the main account number for customer Jane Doe, and 3284 as the PIN for accessing and using the account. Tasks: Using principles of the object-oriented programming paradigm, you are required to implement a computer program which simulates performing banking transactions for Jane Doe at the " International Bank". Use the C++ programming language to create a menu-driven program that allows it user to: 1st. Login. The user must enter their main savings account number and the PIN (as given in the scenario). If either inputs are incorrect your application must display an appropriate error message, and then allow the user to re-enter the inputs or quit the application. However, if the user is successfully authenticated, your application will display its main menu as follow: 2nd. Create an account. Upon selecting this option, your C++ application will prompt the user to select and enter data for the type of account they wish to create. Note: Your solution to this task must demonstrate the concept of inheritance. Specifically, you are to create a base class called Account. Your Account class will have: Data members to store: a distinct account number, an account type (either savings or checking); the amount of monies in the account; the name of the primary account holder; the name of a joint account holder (storing a value is optional); and, an account transfer status (which stores the status false if monies in the account is less than $10,000; otherwise, the status is true). Note that the account transfer status indicates if a user is allowed to perform transfers that debits monies from the account. Member functions must be implemented to access and modify each data member of the Account class You are to implement separate derived classes for Personal Loan Account and Savings Account both classes must inherit from your Account class, and have specializations as follow: Savings Account: Data member to store: the last three details of transactions performed on the account. A transaction detail stores the transaction type (either debit or credit) and the amount of monies that was debited from, or credited to, the account. Member functions must be implemented to access and modify the data member of the Savings Account class. An appropriate member function must also be implemented to accept a value, k (where k 5000), and then initialize the amount of monies in the account to k. Personal Loan Account: Data member to store: an existing saving account number (that is, each personal loan account must be associated with a savings account); the loan amount (this is valued at $1,000 amount of monies in the savings account); interest rate, r (where 10% r 5.5%); and, the monthly payment (0.75% of the loan amount). Member functions must be implemented to access and modify the data members of the Personal Loan Account class. 3rd. Transfer monies between accounts. Upon selecting this option, your C++ application will prompt the user to select an account to transfer from and also select an account to transfer to. You will also prompt the user for a value, m (where m 0), and then update the monies in each accounts appropriately. A user is only allowed to transfer monies between savings accounts, and from savings account to loan accounts; transfers between loan accounts are restricted. 20. Answer the following for the given function: \( f(x)=\frac{x}{x^{2}-9} \) a) Show the analysis to determine; (i) as \( x \rightarrow 3^{-}, f(x) \rightarrow \) ? (ii) as \( x \rightarrow 3^{4}, f( a nurse assisting a client with contact lens removal finds that the hard contact is not over the cornea. what would be the appropriate intervention in this situation? A local manufacturer has been approached to supply a special order for 500 vases at a price = $20 per vase. The current production per unit product cost of the vase includes: direct material = $10, direct labour = $8, variable overhead = $5 & allocated fixed overhead = $3. The allocated fixed overhead relates to factory rent that would be incurred regardless of whether the special order is accepted or not. The business has sufficient spare capacity to produce the order. From a quantitative point of view, should they accept the order?Group of answer choicesO No, as the selling price ($20) is less than the full product cost per unit ($26).O Yes, as long as the customer pays on time.O Yes, as the selling price ($20) is greater than the direct material and direct labour cost ($18).O No, as the selling price ($20) is less than the total relevant cost ($23) based on direct material cost + the direct labour cost + the variable overhead cost. Please help!! 100 points + Brainliest Draw the image of ABC under a dilation whose center is scale factor of 4