-Solve for tail
current
- Use the DMM as
an ammeter to measure the base current in each transistor. If the
DMM is
not sensitive
enough to measure microampere currents, then use the oscilloscope
on d

Answers

Answer 1

In the following circuit, we will calculate the tail current and measure the base current of each transistor using DMM as an ammeter. If the DMM is not sensitive enough to measure microampere currents, then the oscilloscope will be used.

In the given circuit, the tail current, denoted as IT, flows from the supply voltage to the ground through R1 and Q1. As we know that the voltage across the resistor R1 is equal to the voltage across the base-emitter junction of Q1. Hence, using Ohm’s law, we can find the tail current:IT = VR1/R1where,VR1

= VBE1

= 0.7 V (approx) from the base-emitter junction of Q1R1

= 100 Ω (given)Therefore, the tail current can be calculated as follows:IT

= 0.7/100

= 7 mA (approx)For measuring the base current of each transistor, we will use DMM as an ammeter. However, if the DMM is not sensitive enough to measure microampere currents, then we will use the oscilloscope.The base-emitter junction of Q1 is forward-biased, so a current flows from the base to the emitter of Q1, which is the base current, IB1.

Using the DMM as an ammeter, we can measure the base current of Q1 as follows:Remove the base resistor RB1.Connect the red lead of the DMM to the base of Q1.Connect the black lead of the DMM to the emitter of Q1.Select the suitable range of the DMM to measure the base current of Q1.Note down the reading of the DMM, which is the base current of Q1.Repeat the above steps for measuring the base current of Q2 and Q3.

To know more about transistor visit:
https://brainly.com/question/30335329

#SPJ11


Related Questions

Question 3: (Total: 4 Marks) A) If there are two radio waves have the frequencies: 1000 Khz and 80 Mhz respectively. Find their wavelength and explain the effect of the wavelength on how much deep each of them can go in the ocean. (2 Marks)

Answers

The first radio wave with a frequency of 1000 kHz has a wavelength of 300 meters, while the second radio wave with a frequency of 80 MHz has a wavelength of 3.75 meters. Longer wavelengths, such as that of the first radio wave, can penetrate deeper into the ocean compared to shorter wavelengths. This is because longer wavelengths have less energy and are less likely to interact or get absorbed by the water molecules. However, it's important to note that even the longer wavelength radio wave will eventually experience attenuation as it travels through the ocean due to the absorption and scattering properties of water.

To find the wavelength of a radio wave, we can use the formula: wavelength = speed of light / frequency. The speed of light in a vacuum is approximately 3 x 10^8 meters per second.

For the first radio wave with a frequency of 1000 kHz (1000 x 10^3 Hz), the wavelength can be calculated as follows: wavelength = (3 x 10^8 m/s) / (1000 x 10^3 Hz) = 300 meters

For the second radio wave with a frequency of 80 MHz (80 x 10^6 Hz), the wavelength can be calculated as follows: wavelength = (3 x 10^8 m/s) / (80 x 10^6 Hz) = 3.75 meters

The wavelength of the first radio wave is much longer than that of the second radio wave. In general, longer wavelengths can penetrate deeper into materials compared to shorter wavelengths. This is because longer wavelengths have less energy and are less likely to interact or get absorbed by the particles in the medium.

In the context of the ocean, the longer wavelength of the first radio wave (300 meters) allows it to penetrate deeper into the water compared to the second radio wave (3.75 meters). Therefore, the first radio wave can travel further and deeper into the ocean before its energy gets significantly attenuated or absorbed by the water molecules. However, it's important to note that even the longer wavelength radio wave will eventually experience attenuation as it travels through the ocean due to the absorption and scattering properties of water.

In summary, the wavelength of a radio wave affects its ability to penetrate into a medium, and in the case of the ocean, a longer wavelength can allow the radio wave to travel deeper before its energy is diminished.

Learn more about radio wave

https://brainly.com/question/69373

#SPJ11

Three capacitors having capacitances of 8.40, 8.40, and 4.20 µF, respectively, are connected in series across a 36.0 V potential difference. the voltage across the 4.20-uF capacitor is
2 V
18 V
1 V
10 V

Answers

The voltage across the 4.20-uF capacitor is 10 V.

When capacitors are connected in series, the equivalent capacitance is found using the following formula:

1/C = 1/C1 + 1/C2 + 1/C3 + ...

where C1, C2, C3, and so on are the individual capacitances of the capacitors.

In this case, we have three capacitors in series with capacitances of 8.40 µF, 8.40 µF, and 4.20 µF. Therefore, the equivalent capacitance is:

1/C = 1/8.40 µF + 1/8.40 µF + 1/4.20 µF= 0.119 µF

The voltage across each capacitor is directly proportional to its capacitance. The voltage across the 4.20-µF capacitor is given by:

V = (C/Ceq) × Veq

where C is the capacitance of the 4.20-µF capacitor, Ceq is the equivalent capacitance, and Veq is the potential difference across the capacitors.

Substituting the values:

V = (4.20 µF/0.119 µF) × 36.0 V= 10 V

Hence, the voltage across the 4.20-µF capacitor is 10 V.

To know more about voltage, visit:

https://brainly.com/question/32002804

#SPJ11

1.81 Contrast the electron and hole drift velocities through a 10−μm layer of intrinsic silicon across which a voltage of 3 V is imposed. Let μn​=1350 cm2/V⋅s and μp​= 480 cm2/V⋅s

Answers

The electron drift velocity is greater than the hole drift velocity.

Intrinsic silicon has equal amounts of holes and electrons, i.e. n = p. The drift velocity is given by the relation, vd = μE. Here, vd is the drift velocity, μ is the mobility, and E is the electric field.

The electric field is given by the relation, E = V/d = 3 × 10^5 V/m.

The thickness of the layer is d = 10^-4 m.

Electron drift velocity is given by vd,

n = μnE = 1350 × 3 × 10^5 = 4.05 × 10^8 m/s

Hole drift velocity is given by vd,

p = μpE = 480 × 3 × 10^5 = 1.44 × 10^8 m/s

Therefore, we can conclude that the electron drift velocity is greater than the hole drift velocity.

Learn more about drift velocity from:

https://brainly.com/question/14293455

#SPJ11

Question 9 of 10 -/1 III View Policies Current Attempt in Progress Late one night on a highway, a car speeds by you and fades into the distance. Under these conditions the pupils of your eyes have diameters of about 7.4 mm. The taillights of this car are separated by a distance of 1.2 m and emit red light (wavelength = 657 nmin vacuum). How far away from you is this car when its taillights appear to merge into a single spot of light because of the effects of diffraction? Number i Units e Textbook and Media Save for Later Attempts: 0 of 5 used Submit Answer

Answers

The concept of diffraction is important in understanding how light behaves. Diffraction is a phenomenon that occurs when a wave, such as light, bends around an object or passes through a small aperture, causing the wave to spread out or diffract.

The concept of diffraction is important in understanding how light behaves. Diffraction is a phenomenon that occurs when a wave, such as light, bends around an object or passes through a small aperture, causing the wave to spread out or diffract. As a result, it can be observed that the light emitted by the taillights of a car spread out and merge into a single spot when seen from a distance. This phenomenon is used to calculate the distance between the observer and the car. In order to calculate this distance, we need to determine the angle at which the light from the taillights is diffracted by the pupils of the observer's eyes.

The formula for the diffraction angle is given by θ = 1.22λ/D, where λ is the wavelength of the light, D is the diameter of the pupil, and θ is the angle of diffraction. Here, λ = 657 nm, D = 7.4 mm = 0.0074 m.

Hence, θ = 1.22(657 x 10^-9)/0.0074 = 0.109 radians.

Using trigonometry, the distance between the observer and the car can be calculated as D = d/tan(θ), where d is the distance between the taillights of the car, and θ is the angle of diffraction. Plugging in the values, we get D = 1.2 m/tan(0.109) = 6.7 m. Therefore, the car is 6.7 meters away when the taillights appear to merge into a single spot of light due to the effects of diffraction.

To know more about diffraction visit:

https://brainly.com/question/12290582

#SPJ11

how to find the missing length of a rectangular prism

Answers

To find the missing length of a rectangular prism, you need to have the measurements of the other two dimensions and apply the formula for the volume of a rectangular prism.

A rectangular prism is a three-dimensional shape with six rectangular faces. To find the missing length, you need to know the measurements of the other two dimensions, such as the width and height.

The volume of a rectangular prism is given by the formula:

V = length × width × height

To find the missing length, rearrange the formula:

length = V / (width × height)

Once you have the values for the volume, width, and height of the rectangular prism, you can substitute them into the formula to calculate the missing length.

It is important to note that the units of measurement should be consistent for all dimensions (e.g., centimeters, meters) to ensure accurate calculations.

By using this formula, you can determine the missing length of a rectangular prism when provided with the other dimensions and the volume.

learn more about rectangular prism here:

https://brainly.com/question/32444543

#SPJ11

2. Plutonium 239 decays in the following manner The products are shown including the Uranium 235 Pu-239 = 239.052157u U-235=235.043923u He-4 =4.002603u 239 4. 235 U 92 94Pu 94 Pu ₂He + Calculate the mass defect (in atomic mass units) And the energy released in MeV پہ

Answers

We are given the nuclear reaction in which Plutonium-239 (Pu-239) decays into Uranium-235 (U-235) and Helium-4 (He-4). We are asked to calculate the mass defect in atomic mass units (u) and the energy released in MeV.

The mass defect is the difference between the total mass of the reactants and the total mass of the products. In this case, the mass of Pu-239 is 239.052157u, the mass of U-235 is 235.043923u, and the mass of He-4 is 4.002603u.

The total mass of the reactants (Pu-239) and the product (U-235 and He-4) is:

Total mass = Mass of Pu-239 + Mass of U-235 + Mass of He-4

= 239.052157u + 235.043923u + 4.002603u

= 478.098683u

The total mass of the products is 478.098683u. However, the actual mass of the products is less than this value due to the mass defect.

The mass defect is the difference between the total mass of the reactants and the total mass of the products:

Mass defect = Total mass of reactants - Total mass of products

= 478.098683u - 478.098683u (since the products have no mass defect)

= 0u

The energy released can be calculated using Einstein's mass-energy equivalence equation, E = mc^2, where c is the speed of light.

Energy released = Mass defect * c^2

Since the mass defect is 0u, the energy released is also 0.
Therefore, the mass defect is 0 atomic mass units (u), and no energy is released in the decay process.

Learn more about Mass defect from the given link:
https://brainly.com/question/4163502
#SPJ11

Tritium undergoes β - decay with a half-life of 12 years. Suppose some tritium gas is released into the atmosphere in a nuclear power plant accident. How long will it take for 90% of the tritium to become nonradioactive?

Answers

The half-life of Tritium is 12 years.Therefore, it will take approximately 39.7 years for 90% of the tritium to become nonradioactive.

Now we are asked to find out how long it will take for 90% of the tritium to become nonradioactive. The time it takes for the radioactivity of a substance to decrease to half of its original amount is known as the half-life. The formula for calculating the amount of radioactive material left after a certain amount of time t is given by:

Nt=N0(1/2)t/T1/2

where Nt is the amount of radioactive material remaining after time t, N0 is the initial amount of radioactive material, T1/2 is the half-life of the radioactive material, and t is the time elapsed. The amount of radioactive material remaining after 90% of it has decayed is 10% of the original amount. Therefore, we can write:

Nt = 0.1N0

Substituting this value of Nt in the above equation, we get:

0.1N0 = N0(1/2)t/T1/2

Dividing both sides of the equation by N0 and rearranging the terms, we get:

(1/2)t/T1/2 = 0.1

Taking the logarithm of both sides of the equation and rearranging the terms, we get:

t = (T1/2)(log 0.1)/(log 1/2)

Given:Tritium undergoes β - decay with a half-life of 12 years. The time it takes for the radioactivity of a substance to decrease to half of its original amount is known as the half-life.

The formula for calculating the amount of radioactive material left after a certain amount of time t is given by:

Nt=N0(1/2)t/T1/2

where Nt is the amount of radioactive material remaining after time t, N0 is the initial amount of radioactive material, T1/2 is the half-life of the radioactive material, and t is the time elapsed.

The amount of radioactive material remaining after 90% of it has decayed is 10% of the original amount. Therefore, we can write:

Nt = 0.1N0

Substituting this value of Nt in the above equation, we get:

0.1N0 = N0(1/2)t/T1/2

Dividing both sides of the equation by N0 and rearranging the terms, we get:

(1/2)t/T1/2 = 0.1

Taking the logarithm of both sides of the equation and rearranging the terms, we get:

t = (T1/2)(log 0.1)/(log 1/2)t

= (12)(log 0.1)/(log 1/2)

≈ 39.7 years.

Therefore, it will take approximately 39.7 years for 90% of the tritium to become nonradioactive.

To know more about half-life, visit:

https://brainly.com/question/24710827

#SPJ11

A power transistor is specified to have a maximum junction temperature of 150°C. When the device is operated at this junction temperature with a heat sink, the case temperature is found to be 97°C. The case is attached to the heat sink with a bond having a thermal resistance 0cs=0.5°C/W and the thermal resistance of the heat sink 0sa=0.1°C/W. If the ambient temperature is 25°C, what is the power being dissipated in the device? What is the thermal resistance of the device, 0jc, from junction to case?

Answers

The power being dissipated in the device is 21.5 Watts, and the thermal resistance of the device (from junction to case) is 2.5°C/W.

To calculate the power dissipated in the device, we can use the formula: Power = (Case Temperature - Ambient Temperature) / Total Thermal Resistance. Given that the case temperature is 97°C and the ambient temperature is 25°C, the temperature difference is 72°C. Now, let's calculate the total thermal resistance.

The total thermal resistance (Rtotal) is the sum of the thermal resistances from the junction to the case (Rjc) and from the case to the ambient (Rca). We are given the thermal resistance of the bond between the case and heat sink (Rcs) as 0.5°C/W and the thermal resistance of the heat sink (Rsa) as 0.1°C/W.

Rtotal = Rjc + Rcs + Rsa

Since we know that the case temperature is 97°C and the junction temperature is specified as the maximum of 150°C, we can assume that the case and junction temperatures are the same. Therefore, Rtotal = 72°C / Power = 2.5°C/W.

Now, using the power formula, we can find the power dissipated:

Power = (Case Temperature - Ambient Temperature) / Rtotal

     = 72°C / 2.5°C/W

     = 28.8 Watts

However, the thermal resistance of the device (Rjc) is not directly given. To find it, we subtract the thermal resistances of the bond and heat sink from the total thermal resistance:

Rjc = Rtotal - Rcs - Rsa

   = 2.5°C/W - 0.5°C/W - 0.1°C/W

   = 1.9°C/W

Learn more about Power

brainly.com/question/29575208

#SPJ11

In the visually stunning scifi series "The Expanse", Earthlings established colonies on Mars that later fought a war for independence. The series toyed with a number of relevant physical concepts such as the coriolis force and differences in gravitational accelerations. According to the series, the ship, LDSS Nauvoo, later known as OPAS Behemoth and then Medina Station, is a generational ship constructed at Tycho Station. Cylindrical in shape, it measures just over two kilometers long. It was originally built to ferry Mormons over generations to another star system 12 light years away. Given the ship's radius to be 950. m wide, and the persons inside the ship's levels will walk/live primarily along the inner circumference of the ship, which would have an area just under the size of the state of Rhode Island (for help visualizing, draw a circle with a stick figure inside with feet on the circle edge and head pointing toward the center), answer the following: (a) What force acts as the centripetal force? type your answer... (b) Calculate the velocity required for persons inside the ship to achieve a 1g acceleration at the outer rim of the ship. type your answer... (c) Calculate the angular velocity. type your answer.... (d) Calculate the period of rotation of the ship in minutes. 3.23 min (e) Determine the magnitude of the acceleration at a hypothetical ship-level at half the ship radius. type your answer...

Answers

the magnitude of the acceleration at the hypothetical ship-level at half the ship radius is approximately 20.08 m/s^2.

(a) The centripetal force that acts on the persons inside the ship is provided by the gravitational force. The gravitational force towards the center of the ship acts as the centripetal force, keeping the people on the inner circumference of the ship.

(b) To calculate the velocity required for a 1g acceleration at the outer rim of the ship, we can use the formula for centripetal acceleration:

[tex]a = (v^2) / r[/tex]

where a is the acceleration, v is the velocity, and r is the radius.

Given that the acceleration is 1g, which is approximately 9.8 m/s^2, and the radius is 950 meters, we can rearrange the formula to solve for v:

v = √(a * r)

v = √(9.8 * 950) ≈ 97.4 m/s

Therefore, the velocity required for persons inside the ship to achieve a 1g acceleration at the outer rim is approximately 97.4 m/s.

(c) The angular velocity can be calculated using the formula:

ω = v / r

where ω is the angular velocity, v is the linear velocity, and r is the radius.

Substituting the values, we have:

ω = 97.4 m/s / 950 m ≈ 0.1024 rad/s

Therefore, the angular velocity of the ship is approximately 0.1024 rad/s.

(d) The period of rotation of the ship can be calculated using the formula:

T = (2π) / ω

where T is the period, ω is the angular velocity.

Substituting the value of ω, we have:

T = (2π) / 0.1024 ≈ 61.44 seconds ≈ 3.23 minutes

Therefore, the period of rotation of the ship is approximately 3.23 minutes.

(e) To determine the magnitude of the acceleration at a hypothetical ship-level at half the ship radius, we can use the formula for centripetal acceleration:

[tex]a = (v^2) / r[/tex]

where a is the acceleration, v is the velocity, and r is the radius.

Given that the radius at the hypothetical ship-level is half of the ship radius (950 m / 2 = 475 m), we can calculate the acceleration:

a = (97.4 m/s)^2 / 475 m ≈ 20.08 m/s^2

Therefore, the magnitude of the acceleration at the hypothetical ship-level at half the ship radius is approximately 20.08 m/s^2.

to know more about acceleration visit:

brainly.com/question/30762941

#SPJ11

Your sister wants you to push her on a swing set. The swing is a seat hanging from a chain that is 5.1 m long. The top of the chain is attached to a horizontal bar. You grab her and pull her back so that the chain makes an angle of 32 degrees with the vertical. You do 174 J of work while pulling her back on the swing. What is your sister's mass?

Answers

The mass of the sister is 20.12 kg.

Given the following information, we have to determine the mass of the sister. The swing is a seat hanging from a chain that is 5.1 m long. The top of the chain is attached to a horizontal bar. You grab her and pull her back so that the chain makes an angle of 32 degrees with the vertical. You do 174 J of work while pulling her back on the swing.

Solution: It is given that the force is applied by you to pull your sister back on the swing and that force is used to do work which is equal to 174 J. The energy used to do work is supplied by the potential energy of your sister, which is in the form of gravity.

We know that the work done by the force can be given by the formula: W = FdCosθ, where W is the work done, d is the displacement, F is the force, and θ is the angle between the force and the displacement.

Using the above equation, we can calculate the force required to do the work which is given as: F = W/dCosθ

Where F = 174 J/5.1 m Cos 32°F = 197.58 N

Thus, the force applied to the swing is 197.58 N.

We know that the gravitational force acting on the object can be given by: F = mg, where F is the gravitational force acting on the object, m is the mass of the object, and g is the acceleration due to gravity.

Substituting the value of F we get:197.58 N = m × 9.8 m/s²m = 20.12 kg

Therefore, the mass of the sister is 20.12 kg.

To know more about mass refer to:

https://brainly.com/question/25545050

#SPJ11

97 Experiment No. 25 1. Title: Magnetic Field Lines II. Objectives: To plot the field lines of a bar magnet with the use of a small compass. 111. Inventory Tests: Inventory Test A 1) The regions where lines of induction enter and leave the Magnet are called South poles and north poles. 2) An atom is Diamagnetic if the Nat Magnetic moment of its electrons is zero. 3) What is the force between two magnetic poles m1 = 6x10-4 amp. meter and m₂ = 8x10 4amp. meter separated by a distance of 2x. Inventory Test B 1) The force on the pole of a magnet per unit of magnetic- induction is called the 2) For certain electron configurations paramagnetic atoms align in microcrystal domains to produce 3) What is the magnetic induction, B due to a magnetic pole m = 5.2 x 10-3amp. meter at a distance of 1.5 x 10-2amn. meters? IV. Apparatus 1) One 1-centimeter Compass 41 Several Large Sheets of Paper 2) One Bar Magnet 3) ONe U-Magnet 5) One Roll of Scotch Tape Learning Activity The region surrounding a Magnet is called a Magnetic Field, The intensity of the Magnetic Field at any point in this region is the force per unit North Pole placed at that point. The Magnetic 'Field's direction is the direction in which the North Pole of a compass needle will point if placed at that point. A line of force is a line whose direction at any point is the same. as the direction of the Magnetic Field at that point. Thus, Magnetic lines of force are imaginary lines which indicate the V.

Answers

Inventory Test

A1) The regions where lines of induction enter and leave the Magnet are called the North and South poles.

2) An atom is Diamagnetic if the Nat Magnetic moment of its electrons is zero.

3) The force between two magnetic poles m1 = 6x10-4 amp. meter and m₂ = 8x10 4amp. meter separated by a distance of 2x is 1.5 x 10^(-5) N.

Inventory Test B

1) The force on the pole of a magnet per unit of magnetic- induction is called the magnetic field intensity.

2) For certain electron configurations paramagnetic atoms align in microcrystal domains to produce a permanent magnet.

3) The magnetic induction, B due to a magnetic pole m = 5.2 x 10-3amp. meter at a distance of 1.5 x 10-2amn. meters is 0.0019 Tesla.

Apparatus required:

1) One 1-centimeter Compass 4

2) Several Large Sheets of Paper

3) One Bar Magnet

4) One U-Magnet

5) One Roll of Scotch Tape

Learning Activity:

The region surrounding a magnet is called a magnetic field. The intensity of the magnetic field at any point in this region is the force per unit North Pole placed at that point.

The Magnetic 'Field's direction is the direction in which the North Pole of a compass needle will point if placed at that point. A line of force is a line whose direction at any point is the same as the direction of the Magnetic Field at that point. Thus, Magnetic lines of force are imaginary lines that indicate the direction of the magnetic field.

learn more about magnetic field here

https://brainly.com/question/14411049

#SPJ11

A 325-mm-diameter vitrified pipe is a m long, and by using the Hazen-Williams equation; determine the discharge capacity of this pipe if the head loss is 2.54 m and half full. a=[95+ (last digit of your id number / 2) ]m (20 POINTS) A=5=97,5

Answers

Discharge capacity of the given pipe is 12.57 m³/s.

The formula to calculate the discharge capacity of the pipe is given by;

Q = (C×π×d²/4)×(2gh)³

Here,

Q = Discharge capacity of the pipe

C = Hazen-Williams coefficient

π = 22/7

d = Diameter of the pipe

h = Head loss

g = Acceleration due to gravity (g = 9.81 m/s²)

We know that, the cross-sectional area of the pipe can be calculated by using the formula;

A = πd²/4

As the pipe is half full,

A = πd²/8

Also, the velocity of the flow in the pipe can be determined using the formula;

v = (2gh)^(1/2)

Putting the values in the formula, we get;

Q = C×A×vQ

= 130 × (πd²/8) × [(2gh)^(1/2)]Q

= 130 × (π/8) × (0.325 m)² × [(2 × 9.81 m/s² × 2.54 m)^(1/2)]Q

= 2.506 × (2 × 9.81 × 2.54)^(1/2) m³/sQ

= 2.506 × 5.018 m³/sQ

= 12.57 m³/s

Therefore, the discharge capacity of the given pipe is 12.57 m³/s.

Learn more about Discharge capacity from :

https://brainly.com/question/32293894

#SPJ11

A 10 MVA, three-phase, wye-connected, 60 Hz, 15 kVLL synchronous generator has armature resistance of 0.6 92/phase and synchronous reactance of 15 22/phase. The generator is operating in stand-alone mode and delivering rated power at rated voltage to a unity power factor load. (a) Draw a neat and clearly labelled phase equivalent circuit of the stator of generator. Show only symbols on your phase equivalent circuit. (b) Draw a neat and clearly labelled phasor diagram for the operating condition described.

Answers

(a) The phase equivalent circuit of the stator of the synchronous generator is shown in the figure below. Only the symbols are shown in this circuit diagram:(b) The phasor diagram for the operating condition described is shown below.

The field current phasor If is taken as the reference phasor, which is leading the voltage phasor V by the angle δ due to the generator's lagging power factor (cos φ = 0.8).The generated emf phasor E is in phase with the reactance voltage drop IxXs across the synchronous reactance Xs. The terminal voltage phasor V is equal to the vector sum of E and IZs, where Zs = R + jXs is the synchronous impedance, and I is the load current phasor.

Since the load is a unity power factor load, the load current I is in phase with the terminal voltage V.The armature resistance drop IRa is neglected in this phasor diagram as it is very small compared to the synchronous reactance drop IxXs. Therefore, the phasor diagram shown below is only applicable for the generator's rated voltage and rated power output.

To know more about generator  visit:-

https://brainly.com/question/12841996

#SPJ11

1.25 When the stored charge across a capacitor is multiplied by 2 , the voltage across the capacitor: (a) is multiplied by \( 4 . \) (b) is divided by \( 2 . \) (c) is divided by 4 . (d) is multiplied

Answers

In a capacitor, the voltage and charge across it are related. When a capacitor is charged, the voltage across its plates increases, and when it is discharged, the voltage across it decreases.

The charge and voltage across the capacitor are related by the capacitance and the charge equation, given by:\[Q=CV\]Where Q is the charge across the capacitor, V is the voltage across it, and C is the capacitance. When the stored charge across a capacitor is multiplied by 2,

the voltage across the capacitor can be determined using the capacitance equation. Let the initial voltage across the capacitor be V, and the stored charge be Q. If the charge is doubled, it becomes 2Q. The capacitance of the capacitor is constant. Then:\[Q=CV\]Initially, the charge is Q, and the voltage across the capacitor is V.\[Q=CV \Rightarrow V=Q/C\]After the charge is doubled, the new charge becomes 2Q.\[2Q=CV'\]where V' is the new voltage across the capacitor.Substituting for Q,\[2Q=CV' \Rightarrow V'=(2Q)/C\]The ratio of the new voltage to the initial voltage is:\[\frac{V'}{V}=\frac{2Q/C}{Q/C}=2\]Therefore, when the stored charge across a capacitor is multiplied by 2, the voltage across the capacitor is multiplied by 2. Option (d) is the correct answer.

To know more about voltage visit:

https://brainly.com/question/32002804

#SPJ11

(a)What do you mean by stationary states? Write down the properties of stationary states. With proper mathematical proof explain why it is impossible for a particle with negative energy to stay inside an infinite square well. (b)Explain why travelling at the speed of light is so impossible according to the special theory of relativity? Is time travel possible? Justify your answer. Through what potential difference does an electron have to be accelerated, starting from rest, to achieve a speed of 0.935 c? What is the kinetic energy of the electron at this speed? Express your answer in electron volts

Answers

The electron has to be accelerated through a potential difference of approximately 5.77 x 10^6 V to achieve a speed of 0.935c, and its kinetic energy at this speed is approximately 1.04 x 10^6 eV.

(a) Stationary states refer to the state of a particle in a quantum system that doesn't evolve with time.

The properties of the stationary states are:

They are energy eigenstates i.e. they have a definite energy.

They are time-independent i.e. they don't change with time.

They are characterized by a definite quantum number such as principal quantum number n, angular momentum quantum number l, magnetic quantum number m, etc.

A particle with negative energy can't stay inside an infinite square well because the probability of finding a particle inside an infinite potential well at a position x is given by the wave function ψ(x) where ψ(x) = sqrt(2/L)sin(nπx/L). As L and n are positive, sin(nπx/L) can never be negative.

Therefore, the probability density is positive for x ≥ 0.

Thus, the particle can't stay inside the well and will always tunnel through the potential barrier and escape the well.

(b) Travelling at the speed of light is impossible according to the special theory of relativity because as an object approaches the speed of light, its mass increases infinitely. As a result, an infinite amount of energy would be required to accelerate the object to the speed of light, which is impossible. Time travel is also impossible according to the special theory of relativity because as an object approaches the speed of light, time slows down for the object. At the speed of light, time would stop completely, and any further increase in speed would cause time to reverse. Therefore, travelling back in time would require an object to exceed the speed of light which is impossible.  

To accelerate an electron from rest to a speed of 0.935c, the potential difference is given by the formula: V = (γ - 1)mc²/q, where V is the potential difference, γ is the Lorentz factor (1/√1 - v²/c²), m is the rest mass of the electron, c is the speed of light, and q is the charge of the electron.

Substituting the given values, we get: V = (1/√1 - 0.935²) x (9.11 x 10^-31 kg) x (3 x 10^8 m/s)²/(1.6 x 10^-19 C) ≈ 5.77 x 10^6 V

The kinetic energy of the electron is given by the formula: K.E. = (γ - 1)mc²

Substituting the given values, we get: K.E. = (1/√1 - 0.935²) x (9.11 x 10^-31 kg) x (3 x 10^8 m/s)² ≈ 1.67 x 10^-13 J

In electron volts (eV), this is equal to: K.E. = 1.67 x 10^-13 J/(1.6 x 10^-19 J/eV) ≈ 1.04 x 10^6 eV

Therefore, the electron has to be accelerated through a potential difference of approximately 5.77 x 10^6 V to achieve a speed of 0.935c, and its kinetic energy at this speed is approximately 1.04 x 10^6 eV.

To know more about kinetic energy refer to:

https://brainly.com/question/1135367

#SPJ11

is not perceived as deviant but engages in rule-breaking behavior.

Answers

Not perceived as deviant but engages in rule-breaking behavior these are referred to as normalized deviance.

The concept of deviance refers to behaviors that are considered beyond the social norm of a society, these behaviors are often considered to be problematic or even illegal. However, there are certain behaviors that are not perceived as deviant but engage in rule-breaking behavior, these are referred to as normalized deviance. Normalized deviance refers to actions that are considered acceptable, even though they may violate established rules or norms.

These actions are often seen as less harmful or less dangerous than other forms of deviance, and are therefore less likely to be punished. Examples of normalized deviance include people breaking traffic rules or speed limits, not wearing helmets while riding a motorcycle, or downloading copyrighted material online without permission. People may engage in these behaviors because they believe that the risk of harm is low or because they believe that they are entitled to behave in this way. So therefore not perceived as deviant but engages in rule-breaking behavior these are referred to as normalized deviance.

Learn more about social norm at:

https://brainly.com/question/10149505

#SPJ11

{20%} The electric field of a particular mode in a parallel-plate air waveguide with a plate separation of 2 cm is given by

E(y,z) =10e-120 sin (100лz) kV/m

(a) What is this mode? (b) What is the operating frequency? (c) What is the guide characteristic impedance along the waveguide axis? (d) What is the highest-order mode, with the same operating frequency and polarization, that can propagate in this waveguide? Answer: (a) TE2, (b) 23.4 GHz, (c) 491 2, (d) TE3 (5 points for each part)

Answers

The operating frequency is 23.4 GHz, which is less than the cutoff frequency of the TE3 mode. Therefore, the highest-order mode that can propagate is TE3.

Answer:(a) TE2(b) 23.4 GHz(c) 491 Ω(d) TE3

(a) Given that the electric field of a particular mode in a parallel-plate air waveguide with a plate separation of 2 cm is E(y, z) = 10e^–120 sin (100лz) kV/m.

To determine the mode, we need to calculate the cutoff wavelength. The cutoff wavelength is given by the expression λc = (2a)/mπ

Here, a = plate separation = 2 cm = 0.02 m. m is the mode number.

Therefore,λc = (2 × 0.02)/mπ = 0.04/πm.

To determine the mode, we equate λc to the wavelength of the electric field, which is given as

λ = 2л/k = 2π/k, where k is the wave number.

k = 100л, λ = 2π/k = 2π/100л = 0.02л.

Therefore, λc = λ, 0.04/πm = 0.02л.

Solving for m, m = 2.

Therefore, the mode is TE2.

(b) The cutoff frequency is given by the expression

fc = (mc/2a) × (1/√(μrεr)), where c is the speed of light.

Here, μr = μ/μ0 = 1 and εr = ε/ε0 = 1 for air.

Therefore, fc = (2c/2a) × (1/√(μrεr))

fc = c/2a = (3 × 108)/(2 × 0.02) = 1.5 × 1010 Hz = 15 GHz.

The operating frequency is 20% greater than the cutoff frequency.

Therefore, f = 1.2

fc = 1.2 × 15 GHz

= 18 GHz + 0.6 GHz

= 18.6 GHz

≈ 23.4 GHz.

(c) The guide wavelength is given by the expression

λg = (2π/β)

= λ/√(1 - (λc/λ)

2)where β is the phase constant. The guide characteristic impedance is given by the expression

Zg = (E/H) = 120π/β.

Substituting the values,

λg = 0.02л/√(1 - (0.04/π × 0.02л)2)

= 0.0193 m

= 19.3 mm,

β = (2π/λg)

= 326.7 rad/m,

Zg = 120π/β

= 491 Ω.

(d) The cutoff frequency for the next mode is given by the expression

fc2 = (2c/2a) × (2/√(μrεr))

= 2fc = 30 GHz.

The operating frequency is 23.4 GHz, which is less than the cutoff frequency of the TE3 mode. Therefore, the highest-order mode that can propagate is TE3.

Answer:(a) TE2(b) 23.4 GHz(c) 491 Ω(d) TE3

To learn more about frequency visit;

https://brainly.com/question/29739263

#SPJ11

The response deprivation hypothesis (RDH) different from the Premack Principle by hypothesizing that :
A: High-frequency behaviors can be made contingent upon the completion of a low-frequency behavior to increase the occurrence of low-frequency behaviors
B: Low-frequency of responding can be reinforced to enhance the previous rates of intermittent responding
C: With RDH, any behavior can be brought below its free operant level and the person will work to bring it back to its usual level and with Premack a high probability behavior must be restricted
D: Reinforcement can be delivered on an intermittent schedule to facilitate maintenance

Answers

The correct answer is B: Low-frequency of responding can be reinforced to enhance the previous rates of intermittent responding.

The response deprivation hypothesis (RDH) and the Premack Principle are both theories related to reinforcement in behavior analysis, but they differ in their focus and predictions.

The Premack Principle states that a high-probability behavior can be used to reinforce a low-probability behavior. In other words, engaging in a preferred or high-frequency behavior can serve as a reward for performing a less preferred or low-frequency behavior.

For example, a parent might allow a child to play video games (high-probability behavior) after completing their homework (low-probability behavior).

On the other hand, the response deprivation hypothesis (RDH) suggests that reinforcing a behavior occurs when access to that behavior is restricted below its baseline level. RDH proposes that any behavior can be brought below its free operant level, and the individual will work to bring it back to its usual level.

The hypothesis emphasizes that even low-frequency behaviors can be reinforced if they are restricted below their baseline rates. This differs from the Premack Principle, which focuses on the relationship between high-probability and low-probability behaviors.

Option B accurately reflects the hypothesis of the response deprivation hypothesis, stating that low-frequency responding can be reinforced to enhance the previous rates of intermittent responding.

To learn more about response deprivation hypothesis, refer to the link:

https://brainly.com/question/14313014

#SPJ4

Please use "Problem Solving Methodology"
Air is compressed adiabatically in a piston-cylinder assembly
from the initial state (p=1 bar, T₁ =320 K) to the final state (p2
=10 bar, T₂ = 620 K). The

Answers

The change in internal energy of the air (ΔU) is 215.8 kJ/kg and the work done on the air (W) is 5.67 kJ/kg during the adiabatic compression from the initial state (p₁ = 1 bar, T₁ = 320 K) to the final state (p₂ = 10 bar, T₂ = 620 K).

Problem Solving Methodology: Given data:The initial state:Pressure (p₁) = 1 barTemperature (T₁) = 320 KThe final state:Pressure (p₂) = 10 barTemperature (T₂) = 620 K

The air is compressed adiabatically. The mathematical relation between pressure (p), temperature (T) and volume (V) for adiabatic compression is given by:pVγ = Constant

where γ is the ratio of specific heats (Cp/Cv)

Let’s assume V₁ be the initial volume and V₂ be the final volume of the air.Using the first law of thermodynamics, we have:

Q = ΔU + W

where Q is the heat supplied to the system ΔU is the change in internal energy of the systemW is the work done on the systemSince the air is compressed adiabatically, there is no heat transfer between the system and the surrounding i.e.

Q = 0.ΔU = U₂ - U₁

Since internal energy depends only on temperature, we haveΔU = Cv (T₂ - T₁)where Cv is the specific heat at constant volume.

W = -∫pdV

where negative sign is because work is done on the system, not by the system.

Substituting pVγ = Constant in above equation, we have

W = -∫p₁V₁p₂V₂γ -1dV

Using above equations,

Q = 0ΔU = Cv (T₂ - T₁)W

= - p₁V₁Vγ-1₂ - Vγ-1₁γ -1

Substituting numerical values, we get

V₁ = R T₁ / p₁

= 287 x 320 / 1

= 9.184 m³/kg

V₂ = R T₂ / p₂

= 287 x 620 / 10

= 17.782 m³/kgW

= - (1 x 9.184)(10 x 17.782)1.4 - 1 / (1.4 - 1)W

= - 5.67 kJ/kg

ΔU = Cv (T₂ - T₁)

= 0.718 (620 - 320)

ΔU = 215.8 kJ/kg

Hence, the change in internal energy of the air (ΔU) is 215.8 kJ/kg and the work done on the air (W) is 5.67 kJ/kg during the adiabatic compression from the initial state (p₁ = 1 bar, T₁ = 320 K) to the final state (p₂ = 10 bar, T₂ = 620 K).

To learn more about internal visit;

brainly.com/question/32659410

#SPJ11

What is the mass percentage composition of the elements in the following compounds? Round your answer to the nearest tenth.

Potash, K2CO3 ___% K ___% C ___% O

Gypsum, CaSO4 ___% Ca ___% S ___% O

Saltpeter, KNO3 ___% K ___% N ___% O

Caffeine, C8H10N4O2 ___% C ___% H ___% N ___% O

Answers

Potash, K2CO3: 47.7% K, 11.8% C, 40.5% O

Gypsum, CaSO4: 29.4% Ca, 23.2% S, 47.4% O

Saltpeter, KNO3: 38.7% K, 13.9% N, 47.4% O

Caffeine, C8H10N4O2: 49.5% C, 5.2% H, 32.7% N, 12.6% O

Potash (K2CO3) contains two potassium (K) atoms, one carbon (C) atom, and three oxygen (O) atoms. To determine the mass percentage composition, we need to calculate the total mass of each element and divide it by the total mass of the compound. The molar mass of K is approximately 39.1 g/mol, C is 12.0 g/mol, and O is 16.0 g/mol.

Total molar mass of K2CO3 = (2 × 39.1) + 12.0 + (3 × 16.0) = 138.2 g/mol

Mass percentage of K = (2 × 39.1 g/mol) / 138.2 g/mol × 100% ≈ 47.7%

Mass percentage of C = 12.0 g/mol / 138.2 g/mol × 100% ≈ 11.8%

Mass percentage of O = (3 × 16.0 g/mol) / 138.2 g/mol × 100% ≈ 40.5%

Gypsum (CaSO4) consists of one calcium (Ca) atom, one sulfur (S) atom, and four oxygen (O) atoms. The molar mass of Ca is approximately 40.1 g/mol, S is 32.1 g/mol, and O is 16.0 g/mol.

Total molar mass of CaSO4 = 40.1 + 32.1 + (4 × 16.0) = 136.1 g/mol

Mass percentage of Ca = 40.1 g/mol / 136.1 g/mol × 100% ≈ 29.4%

Mass percentage of S = 32.1 g/mol / 136.1 g/mol × 100% ≈ 23.2%

Mass percentage of O = (4 × 16.0 g/mol) / 136.1 g/mol × 100% ≈ 47.4%

Saltpeter (KNO3) contains one potassium (K) atom, one nitrogen (N) atom, and three oxygen (O) atoms. The molar mass of K is approximately 39.1 g/mol, N is 14.0 g/mol, and O is 16.0 g/mol.

Total molar mass of KNO3 = 39.1 + 14.0 + (3 × 16.0) = 101.1 g/mol

Mass percentage of K = 39.1 g/mol / 101.1 g/mol × 100% ≈ 38.7%

Mass percentage of N = 14.0 g/mol / 101.1 g/mol × 100% ≈ 13.9%

Mass percentage of O = (3 × 16.0 g/mol) / 101.1 g/mol × 100% ≈ 47.4%

Caffeine (C8H10N4O2) consists of eight carbon (C) atoms, ten hydrogen (H) atoms, four nitrogen (N) atoms, and two oxygen (O) atoms. The molar mass of C is approximately 12.0 g/mol, H is 1.0 g/mol, N is 14.0 g/mol, and O is 16.0 g/mol.

Total molar mass of C8H10N4O2 = (8 × 12.0) + (10 × 1.0) + (4 × 14.0) + (2 × 16.0) = 194.2 g/mol

Mass percentage of C = (8 × 12.0 g/mol) / 194.2 g/mol × 100% ≈ 49.5%

Mass percentage of H = (10 × 1.0 g/mol) / 194.2 g/mol × 100% ≈ 5.2%

Mass percentage of N = (4 × 14.0 g/mol) / 194.2 g/mol × 100% ≈ 32.7%

Mass percentage of O = (2 × 16.0 g/mol) / 194.2 g/mol × 100% ≈ 12.6%

Learn more about Gypsum

brainly.com/question/28446587

#SPJ11

Q1 (a) A Surveyor's steel tape 30 m long has a cross-section of 15 mm x 0.75 mm. With this, line AB is measure as 150 m. If the force applied during measurement is 120 N more than the force applied at the time of calibration, what is the actual length of the line? Take modulus of elasticity for steel as 200 kN/mm². (05 Marks)

Answers

The actual length of line AB is 147.4 m.  We know that the extension produced in a body, E = (FL) / (A × Y) where F = Force applied, L = Length of the object A = Cross-sectional area of the object, Y = Young's modulus of elasticity

Now, as the extension is not given, we cannot directly calculate the length of the line AB.

Hence, we consider the actual length of the line as l. Therefore, the extension produced due to the weight of the tape is l - L. Now, we know that the extension produced due to the weight of the tape is negligible in comparison to the extension produced due to the weight of the line AB.

Hence, the extension produced in the tape can be neglected in this case.

Therefore, the extension produced is due to the weight of the line AB.

That is,E = (F + 120)l / (11.25 × 200) where F + 120 is the force applied to measure the length of AB.

On simplification, we get E = (l / 2000) (F + 120) / (11.25) .....(1)

Now, as per the given data, when the line AB was measured, it was measured as 150 m.

Therefore, the actual length of the line is l - (extension produced due to the weight of the line AB).

Therefore, the length of line AB, l = 150 + (l - L) .......(2)

On substituting the value of l from equation (2) in equation (1), we get E = [(150 + l - L) / 2000] (F + 120) / (11.25)

On simplification, we get,8.89 E = (l + 150 - 30) (F + 120)

On substituting the values of E and F, we get8.89 × [(l - 30) / 2000] × [F + 120]

= (l + 120) (11.25)

On simplification, we get  l = 147.4 m.

Therefore, the actual length of line AB is 147.4 m.

To know more about actual length, refer

https://brainly.com/question/30533840

#SPJ11

A beaker with a metal bottom is filled with 20 g of water at 20 degree C It is brought into good thermal contact with a 4000 cm^3 container holding 0.50 mol of a monatomic gas at 9 atm pressure Both containers are well insulated from their surroundings What is the gas pressure after a long time has elapsed? You can assume that the containers themselves are nearly massless and do not affect the outcome. Express your answer with the appropriate units.

Answers

After a long time has elapsed, the gas pressure in the container will be approximately 9 atm.

When the beaker with the water and the container with the gas are brought into thermal contact, heat transfer occurs between them until they reach thermal equilibrium. As both containers are well insulated from their surroundings, there is no heat exchange with the external environment.

The metal bottom of the beaker facilitates the transfer of heat from the water to the gas container. As a result, the water loses heat and its temperature decreases, while the gas gains heat and its temperature increases. This heat transfer continues until both the water and the gas reach the same final temperature.

Since the water and the gas are in thermal equilibrium after a long time has elapsed, their temperatures will be equal. Therefore, the gas will reach a final temperature of 20 degrees Celsius.

According to the ideal gas law, the pressure of a gas is directly proportional to its temperature when the volume and the amount of gas remain constant. As the temperature of the gas reaches 20 degrees Celsius, the pressure of the gas in the container will also be 9 atm, which was the initial pressure.

In summary, after a long time has elapsed, the gas pressure in the container will be approximately 9 atm, the same as the initial pressure. This is due to the thermal equilibrium reached between the gas and the water.

Learn more about pressure

brainly.com/question/15265703

#SPJ11

7. Write the complete a decay equation for Ra. (b) Find the energy released in the decay.
Write the complete a decay equation for 249 Cf. (b) Find the energy released in the decay.
9. Write the complete / decay equation for 90 Sr . a major waste product of nuclear reactors.
b) Find the energy released in the decay.

Answers

The complete alpha decay equation for Ra is ²²⁵Ra -> ²²¹Rn + α particle. The energy released in the decay is approximately 4.87 MeV.

Alpha decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle, which consists of two protons and two neutrons. For Ra (radium), the complete alpha decay equation is as follows:

²²⁵Ra -> ²²¹Rn + α

In this equation, the parent isotope Ra undergoes alpha decay and transforms into the daughter isotope Rn, while emitting an alpha particle. The daughter isotope has an atomic number that is two less than the parent, and the mass number is reduced by four.

The energy released in the alpha decay can be calculated using the mass-energy equivalence principle (E=mc²), where E is the energy, m is the mass, and c is the speed of light. The mass difference between the parent and daughter nuclei is converted into energy according to Einstein's famous equation.

The energy released in the alpha decay of Ra is approximately 4.87 MeV (million electron volts). This energy is released in the form of kinetic energy of the alpha particle and any accompanying gamma radiation.

Learn more about alpha decay

brainly.com/question/27870937

#SPJ11

Divergence Theorem, determine the differential form of the magnetic flux conservation law. Problem 5 Maxwell's Equation (a) Compare the differential forms of Faraday's law, Ampere's law, Gauss' law an

Answers

Divergence Theorem is a theorem that relates a triple integral of a divergence of a vector field over a closed solid region, the same as a double integral over the boundary surface of that region. It is also called Gauss's theorem, Gauss's flux theorem, or Ostrogradsky's theorem.

The differential form of magnetic flux conservation law is given by the divergence of the magnetic field that is equal to zero mathematically. The divergence of a vector field B is given as follows:∇.B = 0Hence, the differential form of magnetic flux conservation law can be represented mathematically as ∇.B = 0.Ampere's law in differential form is represented as follows:∇ x B = µJ + µε∂E/∂tThis equation expresses the relationship between electric current, magnetic field, and the rate of change of electric field over time.

Gauss's law in differential form is represented as follows:∇.E = ρ/εThis equation expresses the relationship between the electric flux through a closed surface and the charge enclosed within the surface. It states that the electric flux through a closed surface is directly proportional to the charge enclosed within the surface.Faraday's law in differential form is represented as follows:∇ x E = -∂B/∂tThis equation expresses the relationship between electric fields and magnetic fields.Faraday's law and Gauss's law are both in differential form.

To know more about theorem visit :

https://brainly.com/question/32715496

#SPJ11

delay in getting married, delay in having children, and prolonged education have contributed to developmentalists' proposal of the adulthood stage of development.

Answers

These factors of delay in getting married, delay in having children, and prolonged education highlight the changing landscape of adulthood and the need for an extended period of personal development before fully entering into adult roles and responsibilities.

The proposal of the adulthood stage of development by developmentalists is influenced by several factors, including delays in getting married, delays in having children, and prolonged education.

1. Delay in getting married: In the past, people typically got married at a younger age. However, societal changes have led to a delay in marriage for many individuals. This delay allows for a period of personal growth and exploration before committing to a long-term partnership. It also provides individuals with the opportunity to establish their careers and gain financial stability.

2. Delay in having children: Similarly, there has been a trend of postponing parenthood. This delay is often driven by the desire to focus on personal goals, such as furthering education or advancing in one's career. It allows individuals to have more time for self-discovery and to develop emotionally and financially before taking on the responsibilities of raising a child.

3. Prolonged education: With advancements in technology and changes in the job market, higher levels of education have become increasingly important. Many individuals now pursue higher education or additional training beyond high school. This extended period of education contributes to the proposal of the adulthood stage as it allows individuals to acquire specialized skills, knowledge, and experiences before fully transitioning into adulthood.Overall, these factors of delay in getting married, delay in having children, and prolonged education highlight the changing landscape of adulthood and the need for an extended period of personal development before fully entering into adult roles and responsibilities.

Learn more about Adulthood here,https://brainly.com/question/13134787

#SPJ11

1. A stone tied to the end of a string is swung in a horizontal circle. If the mass of the stone is 12.0g, and the string is 50.0 cm, and the stone revolves at a constant speed 8 times in 10 seconds, what is the force on the string? 2. What is the centripetal force needed to keep a 4.5kg stone moving in a horizontal circle of radius 600cm at a speed of 28 km/h? 3. A ball is whirled at the end of a string in a horizontal 60 cm in radius at the rate of 1 revolution every 2 seconds. Find the balls centripetal acceleration.

Answers

The force on the string is 0.95  The centripetal force needed to keep a 4.5kg stone moving in a horizontal circle of radius 600cm at a speed of 28 km/h is 93.33 N.3. The ball's centripetal acceleration is 942.48 cm/s².Explanation:1. Given:

Mass of stone = 12.0g = 0.012 kg

Length of string = 50.0 cm

Radius of circle = length of string

= 50.0 cm

Time taken to complete one revolution = 10/8 seconds

Speed of stone = Number of revolutions × circumference of circle / time

= 8 × 2 × π × 50.0 / 10

= 25.12 cm/s

Centripetal force = mass × velocity² / radius

= 0.012 × (25.12)² / 0.5

= 0.95

Given: Mass of stone = 4.5 kg

Radius of circle = 600 cm

Speed of stone = 28 km/h

= 28000/3600 m/s

= 7.778 m/s

Centripetal force = mass × velocity² / radius

= 4.5 × (7.778)² / 6= 93.33

Given: Radius of circle = 60 cm

Time taken to complete one revolution = 2 seconds

Angular velocity = 2π / time

= 2π / 2

= π rad/s

Linear velocity of ball = radius × angular velocity

= 60 × π= 188.5 cm/s

Centripetal acceleration = velocity² / radius

= (188.5)² / 60

= 942.48 cm/s²

To know more about centripetal visit:

https://brainly.com/question/17123770

#SPJ11

Fill out the blanks with appropriate words in the following sentences UPI a. FETs usually are sensitive to temperature change than BJTS. b. The level of drain-to-source voltage where the two depletion regions appear to touch is known as c. JFET is a ..... controlled device while BJT is a controlled device. d. The input impedance of a FET amplifier tends to be much ...........than that of a BJT amplifier e BJT occupies area than FET in fabrication 1. Gain+Bandwith product of FET devices is than that of BJT devices. g. Based on the type of carriers BJT's are devices, FETs are .......... devices

Answers

FETs are more temperature-sensitive, JFETs are voltage-controlled while BJT is a current-controlled device, the input impedance of a FET is higher than that of a BJT, and FETs take less area than BJT in fabrication.

In general, FETs are more temperature-sensitive compared to BJTs, and the level of drain-to-source voltage where the two depletion regions appear to touch is called the pinch-off voltage. JFETs are voltage-controlled devices since the current through the channel is controlled by the voltage applied to the gate, while BJTs are current-controlled devices since the collector current is controlled by the current through the base region.

The input impedance of FET amplifiers tends to be much higher than that of BJT amplifiers. This is because FETs are majority carrier devices, and they do not require any injected charge to produce an output. This makes them ideal for use in high-impedance applications. BJT occupies more area than FET in fabrication, and as such, their performance can be affected by parasitic capacitances. The gain-bandwidth product of FET devices is higher than that of BJT devices because of the high input impedance of FETs. Based on the type of carriers, BJTs are minority carrier devices, while FETs are majority carrier devices.

Learn more about BJT amplifiers here:

https://brainly.com/question/33453844

#SPJ11

An AM receiver uses a low-side injection for the local oscillator with an IF of 455 kHz. The local oscillator is operating at 2.34 MHz. The image frequency of the signal is __________ MHz. No need for a solution. Just write your numeric answer only (without the unit) in the space provided.

Answers

The image frequency of the signal is 2.81 MHz.

An AM receiver uses a low-side injection for the local oscillator with an IF of 455 kHz. The local oscillator is operating at 2.34 MHz. The image frequency of the signal is 2.81 MHz (100 words).In communications and signal processing, low-side injection is a technique for creating radio receiver intermediate frequency (IF).

Low-side injection involves employing a nearby intermediate frequency, such as 455 kHz, which is less than the radio frequency. A higher frequency can be used for the local oscillator in high-side injection. The difference between the LO frequency and the input frequency is the intermediate frequency in a receiver. This approach helps to keep the amount of interference and noise in the IF stage to a minimum by avoiding broadcast signals.

An image frequency is a frequency that a receiver can produce, which is the sum of the input frequency and the IF frequency. In addition, the frequency of the image frequency is mirrored across the intermediate frequency, as seen from the input frequency. The image frequency of the signal is the frequency mirrored across the intermediate frequency as seen from the input frequency.

Therefore, in this scenario, the image frequency of the signal is 2.81 MHz.

To know more about image frequency visit:

https://brainly.com/question/29486404

#SPJ11

Page 4 of 6 II. Answer all questions below (14 marks): 1- What is the resultant force? (1 mark) 4 N 3 N 2- A freely fall object has a speed of 2 m/s at one instant, What will it be its speed 2 s later? (1 mark) 3- Two blocks with different masses move with differenct velocities. The first block (m₁-2 Kg) moves to the left at 4 m/s and the second block (m₂- 3 Kg) moves to the right with a speed of 5 m/s. When they collide, they stick and move together. What is the type of collision? Use the law of conservation of momentum to find the velocity of the blocks after the collision? (3 marks) 4- A 60 kg person walks from the ground to the roof of a 80 m tall building. How much increase in gravitational potential energy is there? (Take g = 10 N/kg). (1 mark)

Answers

3 N to the right is the Resultant force. 18 m/s is the speed.  1.4 m/s  is the velocity.  4.9 x 10⁴ J is the gravitational potential energy.

An object's push or pull that causes it to accelerate is referred to as force, which is a fundamental notion in physics. Newton's second equation of motion states that force equals mass times acceleration, meaning that the more force is supplied to an item, the faster it will move. The force is measured in newtons and can be divided into a number of different categories, including nuclear, electromagnetic, and gravitational forces.

1.Resultant force = (4 N to the right - 1 N to the left)

                            =3 N to the right

2.speed =(2 m/s + 9.8 m/s² x 2 s)

               =18 m/s

3.Initial momentum = m₁v₁ + m₂v₂

                                              = (2 kg)(-4 m/s) + (3 kg)(5 m/s)

                                             = 7 kg m/s

Final momentum = (m₁ + m₂)v

                         = (2 kg + 3 kg)v

                          = 5 kg v

Initial momentum = Final momentum

7 kg m/s = 5 kg v

v = 1.4 m/s

4.gravitational potential energy = (60 kg x 80 m x 10 N/kg)

                                                    = 4.9 x 10⁴ J

To know more about force, here:

https://brainly.com/question/30507236

#SPJ4

ANSWER ALL PARTS (a) A channel has a depth of flow of 1.3 m and a mean velocity of 2.0 m/s. If the elevation of the channel is 20 m above a specific datum. Determine: (i) The Specific Energy (ii) The total energy relative to the datum (iii) The Froude Number (iv) Whether the flow is sub or super-critical

Answers

To determine the specific energy, total energy relative to the datum, and the Froude number, we need to use the following equations.

In the given scenario, a capacitor with a capacitance of 47 μF is connected to an AC voltage source with a peak voltage of 10 V. The frequency of the AC voltage is 5 kHz. To determine the displacement voltage at a specific time, we need to know the phase relationship between the AC voltage and the time t.If we assume that the AC voltage source is a sine wave and the time t is measured in seconds, we can use the formula for the displacement voltage in a capacitor.

To know more about capacitor visit :

https://brainly.com/question/31627158

#SPJ11

Other Questions
A 13,800/138 volt, 60 Hz, 25 KVA transformer is designed to have an induced emf of 4 volts per turn (V/e). Suppose the transformer is ideal. Calculate:a) Number of turns on the high voltage side (NH).b) Number of turns on the low voltage side (Nx).c) Nominal current on both sides, IH and IX..d) Transformation ratio if it operates as a lift. \( \mathrm{m}_{1} \) and \( \mathrm{m}_{2} \) is \( 120 \mathrm{lbs} \) and 210 Ibs respectively. What is \( r_{2} \) if \( r_{1} \) \( =1.8 \mathrm{~m} \) ? \( 3.15 \mathrm{~m} \) \( 1.25 \mathrm{~m} - If the gain \& phase responses are as follows: \[ G(\omega)=2 \cos (\omega / 2) \quad \phi(\omega)=-\omega / 2 \] find the output sequence \( y[n] \) when the input is \( x[n]=3 \cos (2 n) \) for al Bipolar junction transistor (BJT) was the first solid state amplifying device to see widespread application in electronics. (a) Sketch and label the carrier flux diagram in saturation region to predict the essential current-voltage behavior of the BJT device. (b) In the inventions of the BJT, law of the junction and the concept of minority carrier play important role on the current flow. Given here a substrate of the npn bipolar transistor with emitter area, AE=10m x 10m is biased in forward region with lc =50 A. The emitter and base dimension and doping such as NdE = 7.5 x 1018 cm-3, NB = 1017 cm-3, WE=0.4 m and WB =0.25 m have been analyzed. i. Determine the emitter diffusion coefficient, DPE and base diffusion coefficient, DnB- ii. Find the base current, lg. (c) The npn bipolar transistor shown in Figure 2 is modified have a physical parameters such as B-100, and I 10-16A. Identify the new operating region of the bipolar transistor. Can you please help me to answer these questions? Just keep itin simple words.A) Why is design for reliability is critical for a digitalsystem? How is reliability related withrobustness and yield? Wonderpillow is the trading name used by Alan. The business has long-term liabilities of 100 000, non-current assets of 289 770 and current assets of 124 400. The total ofcurrent liabilities less current assets is 3 340. What is the total for equity? a. 186 430 b. 193 110 c. 293 110 d. 286 430 The late 1800s was a time of explosive growth invention and innovation. What these many innovations of the era had in common, according to your text, was that theyA. all, in one-way or another, tapped the power of electricity.B. were made into systematic businesses.C. demonstrated America's historic leadership in basic research.D. transformed industry, while having little effect on daily life. The end of the Permian period was characterized by a mass extinction of:a. shallow-water marine invertebratesb. dinosaurs and other large reptilesc. small mammalsd. large mammals newborns who weigh less than select lb face greater health risks than normal-weight babies.true or false What is the output of the following code:print( int(True or False) )Answer Choices:a) 0b)Truec) Falsed)1 By what lensth will a slab of concrete that is originaly 18.2 m lone contract when the temperature drops from 260 +C to 508 C The coethcient of lines thermaf expanion for this concrete is 1.010 3K 1, Give your answer in cm. Question 2 A circular brass plate has a dameter of 1.94 cm at 20 C. How mach does the dameter of the plate increase when the plate is heated to 22C C The coefficient of linear thermal expamion for brass is 1910 4K 1, Give your answer in km Question 3 Gve vour anwer in cm 2and report 4 vicrificant figres. I want c++ code with comments to explain and I want the code 2 versionversion 1 doesn't consider race conditions and other one is thread-safeand the number of worker thread will be passed to the program with the Linux command line . In this assignment, you will implement a multi-threaded program (using C/C++) that will check for Prime Numbers in a range of numbers. The program will create T worker threads to check for prime numbers in the given range (T will be passed to the program with the Linux command line). Each of the threads work on a part of the numbers within the range. Your program should have two global shared variables: numOfPrimes, which will track the total number of prime numbers found by all threads. TotalNums: which will count all the processed numbers in the range. In addition, you need to have an array (PrimeList) which will record all the founded prime numbers. When any of the threads starts executing, it will print its number (0 to T-1), and then the range of numbers that it is operating on. When all threads are done, the main thread will print the total number of prime numbers found, in addition to printing all these numbers. You should write two versions of the program: The first one doesn't consider race conditions, and the other one is thread-safe. The input will be provided in an input file (in.txt), and the output should be printed to an output file (out.txt). The number of worker threads will be passed through the command line, as mentioned earlier. The input will simply have two numbers range and range1, which are the beginning and end of the numbers to check for prime numbers, inclusive. The list of prime numbers will be written to the output file (out.txt), all the other output lines (e.g. prints from threads) will be printed to the standard output terminal (STDOUT). Tasks: In this assignment, you will submit your source code files for the thread-safe and thread-unsafe versions, in addition to a report (PDF file). The report should show the following: 1. Screenshot of the main code 2. Screenshot of the thread function(s) 3. Screenshot highlighting the parts of the code that were added to make the code thread-safe, with explanations on the need for them 4. Screenshot of the output of the two versions of your code (thread-safe vs. non-thread-safe), when running passing the following number of threads (T): 1, 4, 16, 64, 256, 1024. 5. Based on your code, how many computing units (e.g. cores, hyper-threads) does your machine have? Provide screenshots of how you arrived at this conclusion, and a screenshot of the actual properties of your machine to validate your conclusion. It is OK if your conclusion doesn't match the actual properties, as long as your conclusion is reasonable. Hints: 1. Read this document carefully multiple times to make sure you understand it well. Do you still have more questions? Ask me during my office hours, I'll be happy to help! 2. To learn more about prime numbers, look at resources over the internet (e.g. link). We only need the parts related to the simple case, no need to implement any optimizations. 3. Plan well before coding. Especially on how to divide the range over worker threads. How to synchronize accessing the variables/lists. 4. For passing the number of threads (T) to the code, you will need to use argo, and argv as parameters for the main function. For example, the Linux command for running your code with two worker threads (i.e. T=2) will be something like: "./a.out 2" 5. The number of threads (T) and the length of the range can be any number (i.e. not necessarily a power of 2). Your code should try to achieve as much load balancing as possible between threads. 6. For answering Task #5 regarding the number of computing units (e.g. cores, hyper-threads) in your machine, search about "diminishing returns". You also might need to use the Linux command "time" while answering Task #4, and use input with range of large numbers (e.g. millions). 7. You will, obviously, need to use pthread library and Linux. I suggest you use the threads coding slides to help you with the syntax of the pthread library Sample Input (in.txt), assuming passing T=2 in the command line: 1000 1100 Sample Output (STDOUT terminal part): ThreadID=0, startNum=1000, endNum=1050 ThreadID=1, startNum=1050, endNum=1100 numOfPrime=16, totalNums=100 Sample Output (out.txt part): The prime numbers are: 1009 1013 1019 1021 1031 1051 1033 1061 1039 1063 1069 1049 1087 1091 1093 1097 the jovian planets have retained most of their atmospheres because Big, Inc., a C corporation owns 40% of the stock of Little, Inc. This year Big, Inc. received a $150,000 dividend from Little, Inc. In addition to the dividend, Big, Inc. had a net operating loss of $(5,000) and a net long-term capital gain of $3,000. Required: Determine Big, Inc.'s taxable income for this year. the primary purpose of us nuclear operations is to promote stability which results in_____. a strong band of tissue that holds bones together. serving a global market from a single location is consistent with 0.0154 as a percentage Greene Partnership had average annual gross receipts for the past three years of $25,800,000. One of the partners is Jackson, Inc., a C corporation. Because Greene meets the average annual gross receipts test, it may use the cash method of accounting even though it has a partner that is a C corporation.TrueFalse Sales of national brands of orange juice tend to increase when people have more money to spend, while sales of generic orange juice increase when people have less money to spend. This is an example of how ________ impacts demand for products.the income effect