Solving A = Pe^rt for P, we obtain P = Ae^-it which is the present value of the amount A due in t years if money earns interest at an annual nominal rate r compounded continuously. For the function P = 12,000e ^-0.07t, in how many years will the $12,000 be due in order for its present value to be $7,000?

In ______ years, the $12,000 will be due in order for its present value to be $7,000.

(Type an integer or decimal rounded to the nearest hundredth as needed.)

Answers

Answer 1

In about 10.9 years, the $12,000 will be due for its present value to be $7,000.

Solving A = Pe^rt for P,

we obtain

P = Ae^-it is the present value of A due in t years if money earns interest at an annual nominal rate r compounded continuously.

For the function

P = 12,000e ^-0.07t, and

we need to find in how many years will the $12,000 be due for its present value to be $7,000, which is represented by

P = 7,000.

To solve the above problem, we must equate both equations.

12,000e ^-0.07t = 7,000

Dividing both sides by 12,000,

e ^-0.07t = 7/12

Taking the natural logarithm of both sides,

ln e ^-0.07t = ln (7/12)-0.07t ln e = ln (7/12)t

= (ln (7/12))/(-0.07)t

= 10.87

≈ 10.9 years.

Therefore, in about 10.9 years, the $12,000 will be due for its present value to be $7,000.

To know more about the nominal rate, visit:

brainly.com/question/31580933

#SPJ11


Related Questions

Find the indefinite integral. sech² (3x) dx. Find the derivative of the function: y = tanh-¹ (sin 2x) Find the indefinite integral.

Answers

1. Indefinite Integral: To find the indefinite integral of sech² (3x) dx, let us proceed with the steps below: Let y = sech² (3x) dx We know that sech x = 1 / cosh x= 2 / [ e^x + e^(-x)] So, sech² x = (2 / [ e^x + e^(-x)])²= 4 / [e^(2x) + 2 + e^(-2x)]

Therefore, y = 4 / [e^(2(3x)) + 2 + e^(-2(3x))]dx

= 4 / [e^(6x) + 2 + e^(-6x)]dx

Let u = e^(6x)u²

= e^(12x)du

= 6e^(6x)dx

So, we can rewrite the expression as,

y = 4 / [(u² / u²) + 2(u / u²) + 1]

= 4 / [u² + 2u + 1 - u²]

= 4 / [(u + 1)² - 1]

Substituting the value of u back, we get the final expression as:

y = 4 / [(e^(6x) + 1)² - 1]

Now, using the formula of integration, we can write,

∫ sech² (3x) dx

= ∫ 4 / [(e^(6x) + 1)² - 1] dx

= 2 / tanh (3x + C),

where C is a constant of integration.

2. Derivative of the Function:

To find the derivative of y

= tanh-¹ (sin 2x),

let us first find the derivative of tanh y

=y

=tanh^-1 (sin 2x)We know that tanh y

= sin 2xWe know that sech² y dy/dx

=[tex]2 cos 2xdy/dx[/tex]

=[tex]2 cos 2x / sech² ydy/dx[/tex]

= [tex]2 cos 2x / (1 - tanh² y)dy/dx[/tex]

= [tex]2 cos 2x / [1 - sin² (tanh y)][/tex]

Now, we can use the identity, sin² a + cos² a

= 1 and

sin² a

= tanh² b, to get,

dy/dx

=[tex]2 cos 2x / [1 - tanh² (tanh^-1 (sin 2x))]dy/dx[/tex]

=[tex]2 cos 2x / [1 - sin² (2x)]dy/dx[/tex]

=[tex]2 cos 2x / cos² (2x)dy/dx[/tex]

[tex]= 2 / cos (2x)[/tex]

= 2 sec (2x)

Hence, the derivative of y

= tanh-¹ (sin 2x) is dy/dx

= 2 sec (2x).

3. Indefinite Integral:

To find the indefinite integral of, let us proceed with the steps below:

Let y = (sin³x)(cos x) dx

We know that sin³ x

= sin² x * sin xWe also know that sin

2x = 2 sin x cos xsin² x

= (1 - cos 2x) / 2

Therefore, sin³ x

= (1 - cos 2x) / 2 * sin x

So, y = (1 - cos 2x) / 2 * sin x * cos x dx

= 1/4 sin 2x - 1/2 ∫ cos² x sin x dx

Now, we can use the formula, d/dx [sin x]

= cos x, to get,

[tex]∫ cos² x sin x dx[/tex]

= - 1/2 ∫ sin x d(cos x)

[tex]=- 1/2 sin x cos x + 1/2 ∫ cos x d(sin x)= - 1/2 sin x cos x + 1/2 sin² x+ C[/tex]

= [tex]1/2 sin x (sin x - cos x) + C[/tex]

Now, substituting this back to y, we get the final expression as,∫ (sin³ x)(cos x) dx= 1/4 sin 2x - 1/2 ∫ cos² x sin x dx= 1/4 sin 2x - 1/2 [1/2 sin x (sin x - cos x)]+ C= 1/4 sin 2x - 1/4 sin x (sin x - cos x) + C, where C is a constant of integration.

To know more about Integral visit :

https://brainly.com/question/31433890

#SPJ11

Evaluate the integral. π/2 ∫0 cos (t) / √1+sin^2(t) dt

Answers

The given integral is evaluated by using the substitution rule. Integrating by substitution means replacing a given function with another one that makes it simpler to integrate. By putting u = sin(t), and hence du = cos(t) dt, we can easily compute the integral.

The given integral is:
π/2 ∫0 cos (t) / √1+sin^2(t) dt
To evaluate this integral, we will use the substitution rule. Integrating by substitution means replacing a given function with another one that makes it simpler to integrate.
Put u = sin(t), and hence du = cos(t) dt. Then, the given integral becomes:
π/2 ∫0 cos (t) / √1+sin^2(t) dt
= π/2 ∫0 1 / √(1 - u²) du
This is the integral of the function 1 / √(1 - u²), which is a standard integral. We can evaluate it by using the trigonometric substitution u = sin(θ), du = cos(θ) dθ, and the identity sin²(θ) + cos²(θ) = 1.
Thus, we have:
π/2 ∫0 1 / √(1 - u²) du
= π/2 ∫0 cos(θ) / cos(θ) dθ     [using u = sin(θ) and cos(θ) = √(1 - sin²(θ))]
= π/2 ∫0 1 dθ
= π/2 [θ]0π/2
= π/4
Therefore, the given integral evaluates to π/4.

Learn more about integrate here:

https://brainly.com/question/29276807

#SPJ11

Q1: ASYMPTOTIC ANALYSIS
Given T(n)=T(⌊n/2⌋)+n, what’s the corresponding runtime upper
bound, lower bound and tight bound?

Answers

Given T(n) = T(⌊n/2⌋) + n, the corresponding runtime upper bound, lower bound and tight bound are given below:Tight bound: T(n) = O(n)Upper bound: T(n) = O(n)Lower bound: T(n) = Ω(n)Explanation:We know that, in Asymptotic analysis, the Big-O notation is used to represent the upper bound of the given function T(n). Similarly, the Ω-notation is used to represent the lower bound of the given function T(n).

Therefore, the corresponding runtime upper bound, lower bound and tight bound of the given function T(n) = T(⌊n/2⌋) + n are given as follows: Tight bound:To calculate the tight bound, we need to find both the upper and lower bounds, so let's start with the lower bound.

Lower bound: We can use the Ω-notation to find the lower bound of the function T(n). We know that T(n) = T(⌊n/2⌋) + n.Substituting n/2 in place of ⌊n/2⌋, we get T(n) = T(n/2) + n.

Now, we need to solve this function. To solve this, we need to expand T(n/2) again and again until it becomes a constant.The equation looks like:T(n) = T(n/2) + n= T(n/4) + n/2 + n= T(n/8) + n/4 + n/2 + n= T(n/16) + n/8 + n/4 + n/2 + n⋮T(1) + n/2 + n/4 + n/8 + .... + 1As n/2^k approaches 1, the sum approaches 2n - 1.The tight bound of the given function is: T(n) = Θ(n)Therefore, the tight bound of the given function T(n) is Θ(n).

Upper bound: We can use the Big-O notation to find the upper bound of the given function T(n). We know that T(n) = T(⌊n/2⌋) + n.Substituting n/2 in place of ⌊n/2⌋, we get T(n) = T(n/2) + n.To calculate the upper bound, let's assume that the solution of the function T(n) is O(n).

This implies that T(n) <= cn for all values of n >= k.Now, we need to prove that this assumption is true or false. For that, let's substitute the O(n) into the function T(n).T(n) = T(n/2) + n<= cn/2 + n<= cnSince n <= cn, the above equation can be written as: T(n) <= 2cnThis implies that the solution of the function T(n) is O(n). Therefore, the upper bound of the given function T(n) is O(n).

Therefore, the corresponding runtime upper bound, lower bound and tight bound of the given function T(n) = T(⌊n/2⌋) + n are given as follows:Tight bound: T(n) = Θ(n)Upper bound: T(n) = O(n)Lower bound: T(n) = Ω(n).Thus, the correct option is B.

Learn more about Ω-notation

https://brainly.com/question/31496892

#SPJ11

find the average value of f(x)=2sinx-sin2x from 0 to pi

Answers

The average value of the function f(x) = 2sin(x) - sin(2x) from 0 to π is 4/π. First we need to compute the definite integral of the function over that interval and divide it by the length of the interval.

We want to find the average value of f(x) from 0 to π.

First, we integrate the function f(x) over the interval [0, π]:

∫(0 to π) [2sin(x) - sin(2x)] dx

Using the integration rules for trigonometric functions, we can evaluate this integral to obtain:

[-2cos(x) + (1/2)cos(2x)] from 0 to π

Substituting the upper and lower limits, we get:

[-2cos(π) + (1/2)cos(2π)] - [-2cos(0) + (1/2)cos(0)]

Simplifying, we have:

[2 + (1/2)] - [-2 + (1/2)]

Combining like terms, we get the average value:

4/π

To know more about average value click here: brainly.com/question/28123159

#SPJ11

On an early foggy morning, pirates are loading stolen goods onto their ship at port. The dock of the port is located at the origin in the xy-plane. The x-axis is the beach. One mile to the right along the beach sits a Naval ship. At time t = 0, the fog lifts. The pirates and the Naval ship spot each other. Instantly, the pirates head for open seas, fleeing up the y-axis. At the same instant, the Naval ship pursues the pirate ship. The speed of both ships is a mph. What path does the Naval ship take to try to catch the pirates? The Naval ship always aims the boat directly at the pirates.
a.) Find the equation that models the pursuit path.
b.) Does the Naval ship ever catch the pirate? If so, when?
On an early foggy morning, pirates are loading stolen goods onto their ship at port. The dock of the port is located at the origin in the xy-plane. The x-axis is the beach. One mile to the right along the beach sits a Naval ship. At time t = 0, the fog lifts. The pirates and the Naval ship spot each other. Instantly, the pirates head for open seas, fleeing up the y-axis. At the same instant, the Naval ship pursues the pirate ship. The speed of both ships is a mph. What path does the Naval ship take to try to catch the pirates? The Naval ship always aims the boat directly at the pirates.
a.) Find the equation that models the pursuit path.
b.) Does the Naval ship ever catch the pirate? If so, when?

Answers

The distance between the pirate and naval ships goes to zero as t goes to infinity. So, we find the value of t that causes D to equal zero, and we obtain t = (a/2) × [(√(1 + (8/a2)) - 1]. Thus, the naval ship will catch the pirate after a certain amount of time has passed and they have traveled some distance.

a.) The equation that models the pursuit path of the naval ship isy

= (ax - 1) / a + (a / 2t) × ln[((t + 1)2 + a2) / a2].b.) Yes, the Naval ship will eventually catch the pirate. It is shown by evaluating the distance between the two ships as a function of time. Let's calculate this distance, denoted by D using the distance formula, D

= √(x2 + y2).First, let's find the velocity of the pirate ship using the distance formula. That is: V

= D/t

= √(a2 + [(ax)/(2t + 1)]2)/(2t + 1).Also, let's compute the velocity of the Naval ship using the distance formula. That is: V

= D/t

= √(a2 + [(ax)/(2t + 1)]2)/t.Using algebraic manipulation and some calculus, we obtain a relationship between the two velocities:1/t

= [1/2a] × ln[((t + 1)2 + a2) / a2].We can use this expression to substitute t in the equation we got from the velocity of the pirate ship. By doing so, we get:D

= (a/2) × [(1/a) × x + ln[(1/a2) × ((x2 + a2)/(t + 1)2)] + ln[a2]].Since we know that the Naval ship always points directly at the pirates, we can substitute x with the distance traveled by the pirate ship up the y-axis, which is simply a time multiplied by its velocity, t × (a/(2t + 1)). The equation then becomes:D

= a/2 × [(t/(2t + 1)) + ln[((2t + 1)2a2)/(a2(2t + 1)2 + (at)2)] + ln[a2]].The distance between the pirate and naval ships goes to zero as t goes to infinity. So, we find the value of t that causes D to equal zero, and we obtain t

= (a/2) × [(√(1 + (8/a2)) - 1]. Thus, the naval ship will catch the pirate after a certain amount of time has passed and they have traveled some distance.

To know more about value visit:

https://brainly.com/question/30145972

#SPJ11

The population of a country was 5.035 million in 1990 . The approximate growth rate of the country's population is given by fit) =0.09893775 e 0.01965t, where t e 0 corresponds 101990 . a. Find a function that gives the population of the country (in milions) in year t. b. Estimate the country's population in 2012 . a. What is the function F(t) ? F(t)= (Simplify your answer: Use integers or decimals for any numbers in the expression. Round to five decimal places as needed) b. In 2012, the population will be about trilison. (Type an integer or decimal rounded to three decimal places as needed).

Answers

Using a calculator or mathematical software, we can calculate the approximate value of F(22) to find the country's population in 2012.

To find the function that gives the population of the country in year t, we can substitute the given growth rate function, f(t) = 0.09893775 * e^(0.01965t), into the formula for population growth:

F(t) = 5.035 * f(t)

Therefore, the function F(t) is:

F(t) = 5.035 * 0.09893775 * e^(0.01965t)

To estimate the country's population in 2012, we need to substitute t = 2012 - 1990 = 22 into the function F(t):

F(22) = 5.035 * 0.09893775 * e^(0.01965 * 22)

Using a calculator or mathematical software, we can calculate the approximate value of F(22) to find the country's population in 2012.

To know more about function click-

http://brainly.com/question/25841119

#SPJ11

Use 4:1 mux 74153 and necessary gate to implement the following function: F = Σ(0 to 5,7,8,12) =Σ(10,11)

Answers

This circuit uses 10 gates (4 AND gates, 1 OR gate, and 5 gates in the 4:1 MUX).

A 4:1 multiplexer (MUX) is a digital circuit that selects one of four input signals and outputs it based on a pair of binary control inputs. A MUX can be used to implement a variety of logical functions.

In this question, we will use a 4:1 MUX 74153 and necessary gates to implement the following function:

F = Σ(0 to 5,7,8,12)

= Σ(10,11).

To implement this function, we will first create a truth table with four input variables (A, B, C, and D) and one output variable (F). The output will be 1 when the input variables match the minterms of the function, and 0 otherwise.

We can then use a 4:1 MUX to select the output based on the control inputs.

Here's the truth table:

| A | B | C | D | F ||---|---|---|---|---|

| 0 | 0 | 0 | 0 | 0 || 0 | 0 | 0 | 1 | 0 |

| 0 | 0 | 1 | 0 | 0 || 0 | 0 | 1 | 1 | 1 |

| 0 | 1 | 0 | 0 | 0 || 0 | 1 | 0 | 1 | 0 |

| 0 | 1 | 1 | 0 | 0 || 0 | 1 | 1 | 1 | 1 |

| 1 | 0 | 0 | 0 | 0 || 1 | 0 | 0 | 1 | 1 |

| 1 | 0 | 1 | 0 | 1 || 1 | 0 | 1 | 1 | 0 |

| 1 | 1 | 0 | 0 | 0 || 1 | 1 | 0 | 1 | 1 |

| 1 | 1 | 1 | 0 | 1 || 1 | 1 | 1 | 1 | 0 |

We can see that the minterms of the function are 3, 7, 8, and 12.

We can also see that the control inputs for the 4:1 MUX are the complement of the two least significant input variables (C' and D').

Therefore, we can use the following circuit to implement the function:

In this circuit, the AND gates are used to implement the minterms of the function, and the OR gate is used to combine the minterms into the final output.

The 4:1 MUX selects between the output of the OR gate and the complement of the output based on the control inputs. Therefore, when C' = 0 and D' = 1, the MUX selects the output of the OR gate (which is 1), and when C' = 1 and D' = 0, the MUX selects the complement of the output (which is 0).

Overall, this circuit uses 10 gates (4 AND gates, 1 OR gate, and 5 gates in the 4:1 MUX).

To know more about truth table, visit:

https://brainly.com/question/30588184

#SPJ11

We tried to derive the circumference of a circle with radius r in two different ways: the first try ended up in a complicated formula, while the second try almost succeeded; but we somehow mired in some unknown mistake. Here you will try it:
a) Write down the equation of a circle with radius r with center placed at the origin
b) Rewrite the equation in the functional form: y=f(x) for the upper hemisphere of the circle within [−r,r]
c) Write down the arc length formula of the function y = f(x) in the form of a definite integral (so we compute the upper half of the circumference).
d) To solve it, use the substitution x = rsint, then rewrite the definite integral
e) Compute the integral to its completion with the definite integral


Answers

The arc length of the upper half of the circumference of a circle with radius r is L = r^2 π. a) The equation of a circle with radius r and center at the origin (0,0) is given by: x^2 + y^2 = r^2

b) To rewrite the equation in the functional form y = f(x) for the upper hemisphere of the circle within the range [-r, r], we solve the equation for y: y = sqrt(r^2 - x^2)

c) The arc length formula for a function y = f(x) within a given interval [a, b] is given by the definite integral: L = ∫[a,b] √(1 + (f'(x))^2) dx

In this case, the upper half of the circumference corresponds to the function y = f(x) = sqrt(r^2 - x^2), and the interval is [-r, r]. Therefore, the arc length formula becomes:

L = ∫[-r,r] √(1 + (f'(x))^2) dx

d) We will use the substitution x = r sin(t), which implies dx = r cos(t) dt. By substituting these values into the integral, we get:

L = ∫[-r,r] √(1 + (f'(x))^2) dx

 = ∫[-r,r] √(1 + (dy/dx)^2) dx

 = ∫[-r,r] √(1 + ((d(sqrt(r^2 - x^2))/dx)^2) dx

 = ∫[-r,r] √(1 + ((-x)/(sqrt(r^2 - x^2)))^2) dx

 = ∫[-r,r] √(1 + x^2/(r^2 - x^2)) dx

 = ∫[-r,r] √((r^2 - x^2 + x^2)/(r^2 - x^2)) dx

 = ∫[-r,r] √(r^2/(r^2 - x^2)) dx

 = r ∫[-r,r] 1/(sqrt(r^2 - x^2)) dx

e) To compute the integral, we can use the trigonometric substitution x = r sin(t). This substitution implies dx = r cos(t) dt and changes the limits of integration as follows:

When x = -r, t = -π/2

When x = r, t = π/2

Now, we can rewrite the integral in terms of t:

L = r ∫[-r,r] 1/(sqrt(r^2 - x^2)) dx

 = r ∫[-π/2,π/2] 1/(sqrt(r^2 - (r sin(t))^2)) (r cos(t)) dt

 = r^2 ∫[-π/2,π/2] (cos(t))/(sqrt(r^2 - r^2 sin^2(t))) dt

 = r^2 ∫[-π/2,π/2] (cos(t))/(sqrt(r^2(1 - sin^2(t)))) dt

 = r^2 ∫[-π/2,π/2] (cos(t))/(sqrt(r^2 cos^2(t))) dt

 = r^2 ∫[-π/2,π/2] (cos(t))/(|r cos(t)|) dt

 = r^2 ∫[-π/2,π/2] (cos(t))/(|cos(t)|) dt

Since the absolute value of cos(t) is always positive within the given interval, we can simplify the integral further:

L = r^2 ∫[-π/2,π/2] dt

 = r^2 [t]_(-π/2)^(π/2)

 = r^2 (π/2 - (-π/2))

 = r^2 π

Therefore, the arc length of the upper half of the circumference of a circle with radius r is L = r^2 π.

Learn more about arc length here: brainly.com/question/29079917

#SPJ11

Given A = (-3, 2, -4) and B = (-1, 4, 1). Find the vector proj_A B
a) 1/√29 (3,8,-4) . (-3,2,-4)
b) 7/29 (-3,2,-4)
c) 3√2 cosθ
d) 7/29
e) None of the above.

Answers

Substituting the values in the equation for projA B gives:projA B = (B · A / ||A||²) A= 7/29 (-3, 2, -4)Therefore, the correct option is (b) 7/29 (-3, 2, -4).

Given A

= (-3, 2, -4) and B

= (-1, 4, 1), the vector projection of vector B onto A, or projA B is given as follows:projA B

= (B · A / ||A||²) AHere, B · A is the dot product of vectors A and B which is as follows: B · A

= (-1)(-3) + 4(2) + 1(-4)

= 3 + 8 - 4

= 7So, we have the dot product B · A as 7 and ||A||² is the magnitude of A squared which is given as:||A||²

= (-3)² + 2² + (-4)²

= 9 + 4 + 16

= 29. Substituting the values in the equation for projA B gives:projA B

= (B · A / ||A||²) A

= 7/29 (-3, 2, -4)Therefore, the correct option is (b) 7/29 (-3, 2, -4).

To know more about values visit:

https://brainly.com/question/30145972

#SPJ11

Suppose r(t)=costi+sintj+2tk represents the position of a particle on a helix, where z is the height of the particle above the ground.
Is the particle ever moving downward? If the particle is moving downward, when is this? When t is in
(Enter none if it is never moving downward; otherwise, enter an interval or comma-separated list of intervals, e.g., (0,3],[4,5].

Answers

The particle moves downwards when the value of t is in the range (2π, 3π/2].

Given, r(t) = cost i + sint j + 2t k. Therefore, velocity and acceleration are given by, v(t) = -sint i + cost j + 2k, a(t) = -cost i - sint j.Now, since the z-component of the velocity is 2, it is always positive. Therefore, the particle never moves downwards. However, if we take the z-component of the acceleration, we get a(t).k = -2sin t which is negative in the interval π < t ≤ 3π/2. This implies that the particle moves downwards in this interval of t. Hence, the particle moves downwards when the value of t is in the range (2π, 3π/2].

Learn more about velocity here:

https://brainly.com/question/30540135

#SPJ11

Does the function satisfy the hypotheses of the Mean Value Theorem on the given interval? f(x) = 3x^2 + 4x + 3, [-1, 1)
o There is not enough information to verify if this function satisfies the Mean Value Theorem.
o No, f is not continuous on [-1, 1).
o No, f is continuous on [-1, 1] but not differentiable on (-1, 1).
o Yes, f is continuous on (-1, 1] and differentiable on (-1, 1) since polynomials are continuous and differentiable on R.
o Yes, it does not matter if f is continuous or differentiable; every function satisfies the Mean Value Theorem.
o If it satisfies the hypotheses, find all numbers c that satisfy the conclusion of the Mean Value Theorem. (Enter your answers as a comma-separated list. If it does not satisfy the hypotheses, enter DNE.) C= _____________

Answers

Hence, the answer is, Yes, f is continuous on (-1, 1] and differentiable on (-1, 1) since polynomials are continuous and differentiable on R. [tex]$C = 1$[/tex] satisfies the Mean Value Theorem.

The hypotheses of the Mean Value Theorem

The hypotheses of the Mean Value Theorem are as follows:

Continuous and differentiable on a closed interval [a, b].

The given function is f(x) = 3x² + 4x + 3, [-1, 1)

We are looking for a function that satisfies these hypotheses.

Polynomials are both continuous and differentiable over R, so f is continuous and differentiable over the interval [-1, 1].

Hence, the function satisfies the hypotheses of the Mean Value Theorem on the given interval.

Because we know that f(x) is both continuous and differentiable over the interval [-1, 1], we can use the Mean Value Theorem to find all numbers c that satisfy its conclusion.

The conclusion of the Mean Value Theorem is:

[tex]$$f'(c)=\frac{f(b)-f(a)}{b-a}$$[/tex]

Substituting the values into the above equation, we have:

[tex]$$f'(c)=\frac{f(1)-f(-1)}{1-(-1)}$$\\$$f'(c)=\frac{(3(1)^2+4(1)+3)-(3(-1)^2+4(-1)+3)}{2}$$[/tex]

After evaluating the above expression, we get,[tex]$$f'(c)=10$$[/tex]

Now we know that [tex]$f'(c)=10$[/tex], we can find the values of c that satisfy the above equation by equating [tex]$f'(c)$[/tex] to 10.

[tex]$$\begin{aligned}&f'(x)=6x+4\\&6x+4=10\end{aligned}$$[/tex]

Solving the above equation, we get,

[tex]$$6x = 6$$\\

$$x = 1$$[/tex]

Therefore, c = 1.

Hence, the answer is, Yes, f is continuous on (-1, 1] and differentiable on (-1, 1) since polynomials are continuous and differentiable on R. [tex]$C = 1$[/tex] satisfies the Mean Value Theorem.

To know more about Mean Value Theorem, visit:

https://brainly.com/question/30403137

#SPJ11

please help: solve for x​

Answers

Answer:

Step-by-step explanation:

approximately 7.29

Answer:

[tex] {x}^{2} + {8.5}^{2} = {11.2}^{2} [/tex]

[tex] {x}^{2} + 72.25 = 125.44[/tex]

[tex] {x}^{2} = 53.19 = \frac{5319}{100} [/tex][tex] x = \frac{3 \sqrt{591} }{10} = about \: 7.3 [/tex]

Evaluate the limit. limh→π/2 1cos7h/h =

Answers

The limit of the expression limh→π/2 (1cos7h/h) can be evaluated using basic trigonometric properties and limit properties.

In summary, the limit of the expression limh→π/2 (1cos7h/h) is 0.
Now let's explain the steps to evaluate the limit. We can rewrite the expression as limh→π/2 (1/cos(7h))/h. Since the limit is in the form of 0/0, we can apply L'Hôpital's rule. Taking the derivative of the numerator and denominator separately, we get limh→π/2 (-7sin(7h))/1. Evaluating the limit again, we have (-7sin(7π/2))/1 = (-7)(-1)/1 = 7.
However, this is not the final answer. We need to consider that the original expression had a cosine term in the denominator. As h approaches π/2, the cosine function approaches 0, resulting in an undefined expression. Therefore, the limit of the expression is 0.
In conclusion, the limit of limh→π/2 (1cos7h/h) is 0, indicating that the expression approaches 0 as h approaches π/2.

Learn more about limit here
https://brainly.com/question/12207539



#SPJ11

Given a state-space model:

x= [0 1 ] x +=[0]
[-5 -21/4 ] [1] u
y = [5 4]x

a) Find the controllability matrix. (5 pts)

b) Is this system controllable? Justify your answer. (5 pts)

c) Find the observability matrix. (5 pts)

d) Is this system observable? Justify your answer. (5 pts)

Answers

The controllability matrix for the given state-space model is [0 1; 1 -21/4], indicating that the system is controllable. Similarly, the observability matrix is [0 1; -5 -21/4], indicating that the system is observable. These results suggest that the system can be both controlled and observed effectively.

a) The controllability matrix can be calculated by arranging the columns of the state matrix [0 1; -5 -21/4] and multiplying it with the input matrix [0; 1]. The resulting controllability matrix is [0 1; 1 -21/4].

b) To check the controllability of the system, we need to verify if the controllability matrix has full rank. If the controllability matrix is full rank, it means that all the states of the system can be controlled by applying appropriate inputs. In this case, the controllability matrix has full rank, so the system is controllable.

c) The observability matrix can be obtained by arranging the rows of the state matrix [0 1; -5 -21/4] and multiplying it with the output matrix [5 4]. The resulting observability matrix is [0 1; -5 -21/4].

d) To check the observability of the system, we need to verify if the observability matrix has full rank. If the observability matrix is full rank, it means that all the states of the system can be observed through the outputs. In this case, the observability matrix has full rank, so the system is observable.

Learn more about controllability matrix here:

https://brainly.com/question/30886490

#SPJ11

please help with this math question

Answers

a. To determine the most consistent results, Charles, Isabella, and Naomi should calculate the range.

b. Isabella achieved the most consistent results with the smallest range of 9, while Charles and Naomi had ranges of 18 and 33, respectively.

a) To determine who has the most consistent results, Charles, Isabella, and Naomi should calculate the range. The range measures the spread or variability of the data set and provides an indication of how dispersed the individual results are from each other.

By calculating the range, they can compare the differences between the highest and lowest scores for each person, giving them insight into the consistency of their performance.

b) To find out who achieved the most consistent results, we can calculate the range for each individual and compare the values.

For Charles: The range is the difference between the highest score (57) and the lowest score (39), which is 57 - 39 = 18.

For Isabella: The range is the difference between the highest score (71) and the lowest score (62), which is 71 - 62 = 9.

For Naomi: The range is the difference between the highest score (94) and the lowest score (61), which is 94 - 61 = 33.

Comparing the ranges, we can see that Isabella has the smallest range of 9, indicating the most consistent results among the three. Charles has a range of 18, suggesting slightly more variability in his scores. Naomi has the largest range of 33, indicating the most variation in her results.

For more such question on range. visit :

https://brainly.com/question/30389189

#SPJ8

Find the present value of an income stream with R(t)=60+0.4t,r=5 percent, and T=12. Round intermediate answers to eight decimal places and final answer to two decimal places.

Answers

The smaller i-value is -1/√198, and the larger i-value is also -1/√198.

To find two unit vectors orthogonal to both ⟨5, 9, 1⟩ and ⟨−1, 1, 0⟩, we can use the cross product of these vectors. The cross product of two vectors will give us a vector that is orthogonal to both of them.

Let's calculate the cross product:

⟨5, 9, 1⟩ × ⟨−1, 1, 0⟩

To compute the cross product, we can use the determinant method:

|i  j  k|
|5  9  1|
|-1 1  0|

= (9 * 0 - 1 * 1) i - (5 * 0 - 1 * 1) j + (5 * 1 - 9 * (-1)) k
= -1i - (-1)j + 14k
= -1i + j + 14k

Now, to obtain unit vectors, we divide the resulting vector by its magnitude:

Magnitude = √((-1)^2 + 1^2 + 14^2) = √(1 + 1 + 196) = √198

Dividing the vector by its magnitude, we get:

(-1/√198)i + (1/√198)j + (14/√198)k

Now we have two unit vectors orthogonal to both ⟨5, 9, 1⟩ and ⟨−1, 1, 0⟩:

First unit vector: (-1/√198)i + (1/√198)j + (14/√198)k
Second unit vector: (-1/√198)i + (1/√198)j + (14/√198)k

Therefore, the smaller i-value is -1/√198, and the larger i-value is also -1/√198.

To know more about value click-
http://brainly.com/question/843074
#SPJ11

solve the differential equation dy/dx 3x^2/5y y(2)=-3

Answers

The given differential equation is dy/dx = (3[tex]x^2[/tex])/(5y) with the initial condition y(2) = -3. The solution to the differential equation is (5/2)[tex]y^2[/tex] = [tex]x^3[/tex] + 29/2.

To solve the given differential equation, we can separate the variables and then integrate them. Rearranging the equation, we have 5y dy = 3[tex]x^2[/tex] dx.

Integrating both sides, we get ∫5y dy = ∫3[tex]x^2[/tex] dx.

On the left side, integrating y with respect to y gives (5/2)[tex]y^2[/tex] + C1, where C1 is the constant of integration.

On the right side, integrating 3[tex]x^2[/tex] with respect to x gives [tex]x^3[/tex] + C2, where C2 is the constant of integration.

Combining the results, we have (5/2)[tex]y^2[/tex] = [tex]x^3[/tex] + C.

To find the constant C, we use the initial condition y(2) = -3. Substituting x = 2 and y = -3 into the equation, we get (5/2)[tex](-3)^2[/tex] = [tex]2^3[/tex] + C.

Simplifying, we have (5/2)(9) = 8 + C, which gives C = (45/2) - 8 = 29/2.

Therefore, the solution to the differential equation is (5/2)[tex]y^2[/tex] = [tex]x^3[/tex] + 29/2.

Learn more about differential equation here:

https://brainly.com/question/32645495

#SPJ11

A country imports in the vicinity of 100 million litres of diesel fuel (ADO) for use in diesel vehicles and 70 million litres of petrol fir petrol vehicles. It also produces molasses and cassava, which are feedstock for the production of ethanol, and coconut oil (CNO) that can be converted to biodiesel (CME) via trans-esterification.

a) Calculate the volume of B5 that can be produced from the coconut oil produced in Fiji, and the total volume of E10 that can be produced from all the molasses and the cassava that the country pr

Answers

The percentage of B5 produced from coconut oil is 0.045 X% of the imported diesel fuel. The percentage of E10 produced from molasses and cassava is 0.1143 Y% of the imported petrol.

To calculate the volume of B5 (a biodiesel blend of 5% biodiesel and 95% petroleum diesel) that can be produced from the coconut oil produced in Fiji, we need to know the total volume of coconut oil produced and the conversion efficiency of the trans-esterification process.

Let's assume that the volume of coconut oil produced in Fiji is X million litres, and the conversion efficiency is 90%. Therefore, the volume of biodiesel (CME) that can be produced from coconut oil is 0.9X million liters. Since B5 is a blend of 5% biodiesel, the volume of B5 that can be produced is 0.05 × 0.9X = 0.045X million liters.

To calculate the total volume of E10 (a gasoline blend of 10% ethanol and 90% petrol) that can be produced from the molasses and cassava, we need to know the total volume of molasses and cassava produced and the conversion efficiency of ethanol production.

Let's assume that the total volume of molasses and cassava produced is Y million liters, and the conversion efficiency is 80%. Therefore, the volume of ethanol that can be produced is 0.8Y million liters. Since E10 is a blend of 10% ethanol, the total volume of E10 that can be produced is 0.1 × 0.8Y = 0.08Y million liters.

The percentage of B5 produced from coconut oil is (0.045X / 100) × 100% = 0.045 X% of the imported diesel fuel.

The percentage of E10 produced from molasses and cassava is (0.08Y / 70) × 100% = 0.1143 Y% of the imported petrol.

Learn more about percentage here:

https://brainly.com/question/29759036

#SPJ11

The complete question is:

A country imports in the vicinity of 100 million litres of diesel fuel (ADO) for use in diesel vehicles and 70 million litres of petrol fir petrol vehicles. It also produces molasses and cassava, which are feedstock for the production of ethanol, and coconut oil (CNO) that can be converted to biodiesel (CME) via trans-esterification.

a) Calculate the volume of B5 that can be produced from the coconut oil produced in Fiji, and the total volume of E10 that can be produced from all the molasses and cassava that the country produces annually. Express your results as the percentages of the respective imported fuel.

7/4(5/8+1/2) using distributive property

Answers

Answer:

1.98

Step-by-step explanation:

I rounded up, but because the answer goes in decimal, I used a graphing calculator.

The full ans: 1.96875

if a typical somatic cell (somatic cell = typical body cell) has 64 chromosomes, how many chromosomes are expected in each gamete of that organism?

Answers

If a typical somatic cell has 64 chromosomes, each gamete of that organism is expected to have 32 chromosomes.

In sexually reproducing organisms, somatic cells are the cells that make up the body and contain a full set of chromosomes, which includes both sets of homologous chromosomes. Gametes, on the other hand, are the reproductive cells (sperm and egg) that contain half the number of chromosomes as somatic cells.

During the process of gamete formation, called meiosis, the number of chromosomes is halved. This reduction occurs in two stages: meiosis I and meiosis II. In meiosis I, the homologous chromosomes pair up and undergo crossing over, resulting in the shuffling of genetic material. Then, the homologous chromosomes separate, reducing the chromosome number by half. In meiosis II, similar to mitosis, the sister chromatids of each chromosome separate, resulting in the formation of four haploid daughter cells, which are the gametes.

Since a typical somatic cell has 64 chromosomes, the gametes produced through meiosis will have half that number, which is 32 chromosomes. These gametes, with 32 chromosomes, will combine during fertilization to restore the full set of chromosomes in the offspring, creating a diploid zygote with 64 chromosomes.

Learn more about zygote here :

brainly.com/question/29769026

#SPJ11

Let L = {a(^i)bbw|w ∈ {a, b} ∗ and the length of w is i}.
(a) Give two strings that are in L.
(b)Give two strings over the same alphabet that are not in
L.
(c)Give the state diagram for a determin

Answers

(a) Strings in L: "abb", "aabbb". (b) Strings not in L: "aabb", "bb".

(c) State diagram for a deterministic Turing Machine with 10 states is given below.

(a) Two strings that are in L are:

1. `abb` (Here, i = 0, and w is an empty string).

2. `aabbb` (Here, i = 2, and w = "aa").

(b) Two strings over the same alphabet that are not in L are:

1. `aabb` (Here, the length of w is 2, but there are more than two 'a's before the 'bb').

2. `bb` (Here, the length of w is 0, but there are 'b's before the 'bb', violating the condition).

(c) Here is the state diagram for a deterministic Turing Machine with 10 states that decides L:

```START --> A --> B --> C --> D --> E --> F --> G --> H --> ACCEPT

  a      b      b      a      a      b      b      a      b

  |      |      |      |      |      |      |      |      |

  v      v      v      v      v      v      v      v      v

REJECT  REJECT REJECT  A      E      F      REJECT REJECT REJECT

  |      |      |      |      |      |      |      |      |

  v      v      v      v      v      v      v      v      v

REJECT  REJECT REJECT  REJECT REJECT REJECT  G      H      REJECT

  |      |      |      |      |      |      |      |      |

  v      v      v      v      v      v      v      v      v

REJECT  REJECT REJECT  REJECT REJECT REJECT REJECT REJECT REJECT```

In this state diagram, the machine starts at the START state and reads input symbols 'a' or 'b'. It transitions through states A, B, C, D, E, F, G, and H depending on the input symbols.

If the machine reaches the ACCEPT state, it accepts the input, and if it reaches any of the REJECT states, it rejects the input. The machine accepts inputs of the form `a^i b^bw` where the length of w is i.

Learn more about length here: https://brainly.com/question/30625256

#SPJ11

The complete question is:

Let L = {a(^i)bbw|w ∈ {a, b} ∗ and the length of w is i}.

(a) Give two strings that are in L.

(b)Give two strings over the same alphabet that are not in L.

(c)Give the state diagram for a deterministic Turing Machine that decides L. To receive full credit, your Turing Machine shall have no more than 10 states.

A p-chart has been developed for a process. The collected data and features of the control are shown below. Is the following process in a state of control?

Sample Proportion of Defects

1 0.325

2 0.075

3 0.38

4 0.25

5 0.25

6 0.15

7 0.175

8 0.125

LCL = 0.0024 UCL = 0.37

a.) Yes

b.) No

c.) Unknown

d.) Cpk is required

Answers

Based on the provided data and control limits, the process is not in a state of control.

To determine whether the process is in a state of control, we compare the sample proportion of defects to the control limits on the p-chart. The lower control limit (LCL) and upper control limit (UCL) for the p-chart have been given as 0.0024 and 0.37, respectively.

Looking at the data, we observe that in sample 2, the proportion of defects is 0.075, which is below the LCL. Similarly, in samples 5 and 6, the proportions of defects are 0.25 and 0.15, respectively, both of which are below the LCL. This indicates that the process is exhibiting points outside the control limits, which suggests that the process is out of control.Therefore, the correct answer is option b: No. The process is not in a state of control.

Learn more about limits here:

https://brainly.com/question/12207539

#SPJ11

Based on the function 1/(x^3(x^2−1)(x^2+3)^2)write the FORM of the partial fraction decomposition

Answers

To write the form of the partial fraction decomposition of the given function we have to follow these steps:

Step 1: Factoring of the given polynomial x³(x²−1)(x²+3)²

To factorize x³(x²−1)(x²+3)², we use the difference of squares, namely,

x²-1=(x-1)(x+1) And x²+3 can't be factored any further

So, we have the polynomial x³(x-1)(x+1)(x²+3)²

Step 2: Write the partial fraction decomposition

We write the function as:

1/(x³(x-1)(x+1)(x²+3)²)

= A/x + B/x² + C/x³ + D/(x-1) + E/(x+1) + F/(x²+3) + G/(x²+3)²

Where A, B, C, D, E, F, and G are constants.

To know  more about partial fraction decomposition visit:

https://brainly.com/question/29097300

#SPJ11

The given function is 1/ (x^3(x^2 - 1) (x^2 + 3)^2)

To write the form of partial fraction decomposition, we must first factor the denominator of the given function. The factorization of the denominator of the given function can be done as below:(x^3)(x-1)(x+1)(x^2+3)^2

Now, we can rewrite the function 1/ (x^3(x^2 - 1) (x^2 + 3)^2) as below:A/x + B/x^2 + C/x^3 + D/(x-1) + E/(x+1) + F/(x^2 + 3) + G/(x^2+3)^2

Let's simplify the above expression as follows:By finding a common denominator, we can add all the terms on the right side.

A(x^2 - 1) (x^2 + 3)^2 + B(x-1)(x^2+3)^2 + C(x-1)(x+1)(x^2+3) + D(x^3)(x+1)(x^2+3)^2 + E(x^3)(x-1)(x^2+3)^2 + F(x^3)(x-1)(x+1) (x^2+3) + G(x^3)(x-1)(x+1) = 1

Now, substituting x=1, x=-1, x=0, x=√-3i and x=-√-3i, we obtain the values of A, B, C, D, E, F, and G, respectively as below:A = 1/ 3B = 0C = 1/ 9D = 1/ 9E = 1/ 9F = -1/ 81G = -2/ 243

Hence, the partial fraction decomposition of the given function is:A/x + B/x^2 + C/x^3 + D/(x-1) + E/(x+1) + F/(x^2 + 3) + G/(x^2+3)^2= 1/ 3x + 1/ 9x^3 + 1/ 9(x - 1) + 1/ 9(x + 1) - 1/ 81(1/x^2 + 3) - 2/ 243(1/ x^2 + 3)^2

To know more about function, visit:

https://brainly.com/question/11624077

#SPJ11

Find the area of the region bounded by the given curves.
y=x^2, y=8x−x^2

Answers

The area of the region bounded by the curves y = x^2 and y = 8x - x^2 is approximately 16.667 square units. We need to calculate the definite integral of the difference between the two functions over their common interval of intersection.  

To find the intersection points of the curves, we set the two equations equal to each other and solve for x:

x^2 = 8x - x^2

2x^2 - 8x = 0

2x(x - 4) = 0

This equation gives us two solutions: x = 0 and x = 4. These are the x-values at which the two curves intersect.

To calculate the area between the curves, we integrate the difference between the upper curve (8x - x^2) and the lower curve (x^2) over the interval [0, 4]. The integral represents the sum of infinitely small areas between the curves.

The integral to calculate the area is given by:

∫[0,4] (8x - x^2 - x^2) dx

Simplifying, we have:

∫[0,4] (8x - 2x^2) dx

Integrating, we get:

[4x^2 - (2/3)x^3] from 0 to 4

Evaluating the integral at the upper and lower limits, we have:

[4(4)^2 - (2/3)(4)^3] - [4(0)^2 - (2/3)(0)^3]

Simplifying further, we get:

[64 - (128/3)] - [0 - 0]

Which equals:

[192/3 - 128/3] = 64/3 ≈ 21.333

Learn more about integral here:

https://brainly.com/question/31109342

#SPJ11

The curves \( y=x-x^{2} \) and \( y=x^{2}-1 \) limits an area. Determime the anea of the bounded region.
This turo curves \( y=x-x^{2} \) and \( y=x^{2}-1 \) is limit an area. What is the area?

Answers

The area of the bounded region is [(√5-1)/2] square units.

To find the area of the bounded region, we first need to find the points of intersection of the given curves:

We have the curves y=x-x² and y=x²-1

Equating them we get:

x-x²=x²-1

Rearranging:

x²+x-1=0

Solving the above quadratic equation we get:

x=(-1±√5)/2

So, the points of intersection are:

(-1+√5)/2 and (-1-√5)/2

Now, to find the area of the bounded region, we integrate the difference between the two curves between the points of intersection:

Area = ∫[(x²-1)-(x-x²)]dx

[limits: (-1-√5)/2 to (-1+√5)/2]

Area = ∫(2x²-x-1)dx

[limits: (-1-√5)/2 to (-1+√5)/2]

Area = [2x³/3 - x²/2 - x]

[limits: (-1-√5)/2 to (-1+√5)/2]

Area = [(√5-1)/2] square units

Therefore, the area of the bounded region is [(√5-1)/2] square units.

Learn more about the area;

https://brainly.com/question/33314324

#SPJ4

Abdulbaasit would like to buy a new car that costs $ 30000. The dealership offers to finance the car at 2.4% compounded monthly for 5 years with monthly payments. Instead, Abdulbaasit could get a 5-year loan from his bank at 5.4% compounded monthly and the dealer will reduce the selling price by $3000
when Abdulbaasit pays immediately in cash. Which is the best way to buy a car?

Answers

The best way for Abdulbaasit to buy the car would be to opt for the bank loan with the cash discount, as it offers a lower monthly payment and immediate cost savings.

To determine the best way to buy a car, we need to compare the financing options provided by the dealership and the bank. Let's evaluate both scenarios:

1. Financing at the dealership:

- Car price: $30,000

- Interest rate: 2.4% per year, compounded monthly

- Loan term: 5 years (60 months)

Using the provided interest rate and loan term, we can calculate the monthly payment using the formula for monthly loan payments:

Monthly interest rate = [tex](1 + 0.024)^(1/12)[/tex] - 1 = 0.001979

Loan amount = Car price = $30,000

Monthly payment = Loan amount * (Monthly interest rate) / (1 - (1 + Monthly interest rate)^(-Loan term))

Plugging in the values:

Monthly payment = $30,000 * 0.001979 /[tex](1 - (1 + 0.001979)^(-60)) =[/tex]$535.01 (approximately)

2. Bank loan with a cash discount:

- Car price with the $3,000 cash discount: $30,000 - $3,000 = $27,000

- Interest rate: 5.4% per year, compounded monthly

- Loan term: 5 years (60 months)

Using the provided interest rate and loan term, we can calculate the monthly payment using the same formula as above:

Monthly interest rate = (1 + 0.054)^(1/12) - 1 = 0.004373

Loan amount = Car price with cash discount = $27,000

Monthly payment = $27,000 * 0.004373 / (1 - (1 + 0.004373)^(-60)) = $514.10 (approximately)

Comparing the two options, we can see that the bank loan with the cash discount offers a lower monthly payment of approximately $514.10, compared to the dealership financing with a monthly payment of approximately $535.01. Additionally, with the bank loan option, Abdulbaasit can pay immediately in cash and save $3,000 on the car purchase.

Therefore, the best way for Abdulbaasit to buy the car would be to opt for the bank loan with the cash discount, as it offers a lower monthly payment and immediate cost savings.

Learn more about  bank loan here:

https://brainly.com/question/29032004

#SPJ11

Use doble integral to find the area of the following regions. The region inside the circle r=3cosθ and outside the cardioid r=1+cosθ The smaller region bounded by the spiral rθ=1, the circles r=1 and r=3, and the polar axis

Answers

1) Use double integral to find the area of the following regions:

The region inside the circle r = 3 cosθ and outside the cardioid r = 1 + cosθ

The area of the region inside the circle r = 3 cosθ and outside the cardioid r = 1 + cosθ can be determined using double integral.

When calculating the area of the enclosed region, use a polar coordinate system.In the Cartesian coordinate system, the region is defined as:

(−1, 0) ≤ x ≤ (3/2) and −√(9 − x2) ≤ y ≤ √(9 − x2)

In the polar coordinate system, the region is defined as: 0 ≤ r ≤ 3 cosθ, and 1 + cosθ ≤ r ≤ 3 cosθ.The area of the enclosed region can be calculated as shown below:

Area = ∫∫R r dr dθ;where R represents the enclosed region. Integrating with respect to r first, we obtain:

Area = ∫θ=0^π/2 ∫r=1+cosθ^3

cosθ r dr dθ= ∫θ=0^π/2 [(1/2) r2 |

r=1+cosθ^3cosθ] dθ

= ∫θ=0^π/2 [(1/2) (9 cos2θ − (1 + 2 cosθ)2)] dθ

= ∫θ=0^π/2 [(1/2) (5 cos2θ − 2 cosθ − 1)] dθ

= [(5/4) sin2θ − sinθ − (θ/2)]|0^π/2

= (5/4) − 1/2π

Thus, the area of the enclosed region is (5/4 − 1/2π).2) Use double integral to find the area of the following regions: The smaller region bounded by the spiral rθ = 1, the circles r = 1 and r = 3, and the polar axis

In polar coordinates, the region is defined as:0 ≤ θ ≤ 1/3,1/θ ≤ r ≤ 3.The area of the enclosed region can be calculated as shown below:

Area = ∫∫R r dr dθ;where R represents the enclosed region. Integrating with respect to r first, we obtain:

Area =

[tex]∫θ=0^1/3 ∫r=1/θ^3 r dr dθ\\= ∫θ=0^1/3 [(1/2) r2\\ |r=1/θ^3] dθ+ ∫θ=0^1/3 [(1/2) r2\\ |r=3] \\dθ= ∫θ=0^1/3 [(1/2) θ6] dθ+ ∫θ=0^1/3 (9/2) dθ\\= [(1/12) θ7]|0^1/3+ (9/2)(1/3)\\= 1/972 + 3/2 = (145/162).[/tex]

Therefore, the area of the enclosed region is (145/162).

To know more about integral visit :

https://brainly.com/question/31109342

#SPJ11

Given f(x,y) = 9xy^5-4x^6y . Compute:
∂^2f/∂x^2 = ____
∂^2f/∂y^2 = _____

Answers

Given[tex]f(x,y) = 9xy^5-4x^6y[/tex]. To compute [tex]∂^2f/∂x^2 and ∂^2f/∂y^2[/tex], we need to find the second partial derivatives with respect to x and y. Using the power rule of differentiation,[tex]∂f/∂x = (d/dx) (9xy^5) - (d/dx) (4x^6y)[/tex]

[tex]= 9y^5 - 24x^5y∂f/∂y

= (d/dy) (9xy^5) - (d/dy) (4x^6y)[/tex]

[tex]= 45x^2y^4 - 4x^6[/tex]The second partial derivatives can be found using the power rule and differentiating again[tex]. ∂^2f/∂x^2 = (d/dx) (9y^5) - (d/dx) (24x^5y)[/tex]

[tex]= 0 - 120x^4y∂^2f/∂y^2[/tex]

[tex]= (d/dy) (45x^2y^4) - (d/dy) (4x^6)[/tex]

[tex]= 180x^2y^2 - 0[/tex][tex]∂^2f/∂x^2

= (d/dx) (9y^5) - (d/dx) (24x^5y)

= 0 - 120x^4y∂^2f/∂y^2

= (d/dy) (45x^2y^4) - (d/dy) (4x^6)

= 180x^2y^2 - 0[/tex] Therefore, [tex]∂^2f/∂x^2[/tex]

[tex]= -120x^4y[/tex]and[tex]∂^2f/∂y^2

= 180x^2y^2.[/tex]

To know more about compute visit:

https://brainly.com/question/15707178

#SPJ11

Calculate the derivative. (Use symbolic notation and fractions where needed.)
d/ds ∫−8stan(u2+91)du=

Answers

The derivative of the integral ∫[-8stan(u^2+91)]du with respect to s can be found using the fundamental theorem of calculus and the chain rule.

d/ds ∫[-8stan(u^2+91)]du = -8stan(s^2+91) * 2s

The fundamental theorem of calculus states that if F(x) = ∫[a to x]f(t)dt, then d/dx F(x) = f(x). In this case, we have an integral with an upper limit of s^2+91, so we can apply this theorem.

We can rewrite the integral as F(s) = ∫[-8stan(u^2+91)]du. Now, to differentiate F(s) with respect to s, we apply the chain rule. The chain rule states that if F(x) = g(h(x)), then dF(x)/dx = g'(h(x)) * h'(x).

In our case, h(x) = s^2+91, and g(x) = -8tan(x). We differentiate g(x) with respect to x, giving us g'(x) = -8sec^2(x). Then, we differentiate h(x) with respect to s, which gives us h'(x) = 2s.

Applying the chain rule, we multiply g'(h(x)) and h'(x):

dF(s)/ds = -8tan(s^2+91) * 2s

Therefore, the derivative of the integral with respect to s is -8tan(s^2+91) * 2s.

Learn more about  derivative  here:

https://brainly.com/question/29144258

#SPJ11

(a) Write the function \( z(t)=e^{(2+3 i) t} \) in the form \( a(t)+b(t) i \) where \( a(t) \) and \( b(t) \) are real, and \( i=\sqrt{-1} \). (b) Suppose the charge \( q=q(t) \) in an LRC circuit is

Answers

The differential equation for the charge in the LRC circuit is given by \[L\left(-abc b e^{bt}\sin ct +abc be^{bt}\cos ct -abc ce^{bt}\cos ct -ace^{bt}\sin ct\right)+Ra e^{bt}\cos ct+\frac{q}{C}=0.\]

(a) We need to determine the real and imaginary parts of the given function as follows:

\begin{aligned} z(t)&=e^{(2+3i)t}\\ &

=e^{2t}e^{3it}\\

=e^{2t}(\cos 3t+i\sin 3t)\\ &

=e^{2t}\cos 3t +ie^{2t}\sin 3t \end{aligned}

Therefore, we can write the function in the required form as

\[z(t) = e^{2t}\cos 3t +ie^{2t}\sin 3t=a(t)+ib(t)\]

where \[a(t)=e^{2t}\cos 3t \]and \[b(t)=e^{2t}\sin 3t.\]

(b) Suppose that the charge q = q(t) in an LRC circuit is given by \[q(t)=ae^{bt}\cos ct\]

where a, b and c are constants.

Then, the current i = i(t) in the circuit is given by

\[i(t)=\frac{dq}{dt}=-abc e^{bt}\sin ct +ace^{bt}\cos ct.\]

Given that the voltage v = v(t) across the capacitor is \[v(t)=L\frac{di}{dt}+Ri +\frac{q}{C}.\]

We can substitute the expression for i(t) in terms of q(t) and find v(t) as follows:

\[\begin{aligned} v(t)&=L\frac{d}{dt}\left(-abc e^{bt}\sin ct +ace^{bt}\cos ct\right)+R\left(ae^{bt}\cos ct\right)+\frac{q}{C}\\ &=L\left(-abc b e^{bt}\sin ct -abc ce^{bt}\cos ct +abc be^{bt}\cos ct -ace^{bt}\sin ct\right)+Ra e^{bt}\cos ct+\frac{q}{C}\\ &=L\left(-abc b e^{bt}\sin ct +abc be^{bt}\cos ct -abc ce^{bt}\cos ct -ace^{bt}\sin ct\right)+Ra e^{bt}\cos ct+\frac{q}{C} \end{aligned}\]

Therefore, the differential equation for the charge in the LRC circuit is given by \[L\left(-abc b e^{bt}\sin ct +abc be^{bt}\cos ct -abc ce^{bt}\cos ct -ace^{bt}\sin ct\right)+Ra e^{bt}\cos ct+\frac{q}{C}=0.\]

To learn more about function follow the given link

https://brainly.com/question/11624077

#SPJ11

Other Questions
authentic assessment for english language learners: practical approaches for teachers You are a software engineer at a software development firm thatworks mainly with small businesses. Your company is about to starta new software project that will help manage the operations of anind if next years expected earnings equal $6 and dividends are $3, investors require a 10% required rate of return, the return on equity is 15%.A. Calculate the plowback ratio and payout ratioB. what is the growth rate?C. what would the value price without growth beD. what is the present value of growth opportunity? All of the following are excluded under advertising regulations EXCEPT:A: Marketing materials created by the insurer for agent use onlyB: A general announcement about new group enrollmentC: A producer answering a policyholder's question that does not urge a client to modify coverageD: A producer explaining that a senior's policy is endorsed by the federal government (a) Discuss the roles of an Audit Committee within an organisation. Citing appropriate examples, discuss how some of the Audit Committees in the past have failed in their duties. (15 marks) (b) "Professional ethics are the lifeline for professional accountants". Discuss about the statement and the various ways in which professional accountants can enhance their professional ethics. 4: What are the three primary types of threaded fasteners? a) Rivets b) Wedges c) Nails d) Nuts e) Bolts f) Screws 5: For a thick cylindrical pressure vessel, what is close to the hoop stress if the internal pressure is Batm, and the inner and outer radii are 1m and 2m, respectively? Use the relation lim0 sin/ = 1 to determine the limit. limx0 3x+3xcos(3x)/ 5sin(3x)cos(3x). Select the correct answer below and, if necessary, fill in the answer box to complete your choice. How should we sum up the worldview of the metamorphoses? If you accepted that worldview, what would your attitude be toward science? Read the following passage from Langston Hughes's "Theme for English B* and answer the question.It's not easy to know what is true for you or meat twenty-two, my age. But I guess I'm whatI feel and see and hear, Harlem, I hear you:hear you, hear me-we two-you, me, talk onthis page.(I hear New York, too.) Me-who?While Hughes uses repetition, alliteration, and assonance to create patterns of sound, heO does use the Elizabethan sonnet formO doesn't use imageryO does use blank verseO doesn't use a formal rhyme scheme Melissa, Sally, Kathleen, and Lynne went mountain climbing. According to the self-justification approach, which one of the women would most appreciate the view from the top of the mountain?a. Melissa, who climbed while listening to arousing music on her headphones.b. Sally, who pulled a muscle and got scratched by thorns.c. Kathleen, who enjoyed seeing the different types of trees on the mountain.d. Lynne, who daydreamed about her husband while she climbed. 1. According to the video on micronutrient fortification, what percent of the GDP is lost due to micronutrient malnutrition2. The process of providing or obtaining the food necessary for health and growth is ____ Coordinate System: (1). L x =z p^y y p^z Assignment #2. Convert into spherical coordinates Q20 Using the equation for Newtons 2nd Law for uniform circular motion and the parameters currently set in your interactive, calculate the magnitude of the force acting on the object to keep it in circular motion.Values are:Vo= 0 m/sg = 9.8 m/s m = 5 kg angle = 20 degrees Us = 0.26 Uk = 0.15 Explain how adopting a Parent-Teen Driving Agreement can benefit (a) a teen driver, (b) the family and (c) the driving population as a whole.a) Never driving when fatigued, angry or upsetb) Require all participants to wear a seat beltc) Being positive. focus on the drivers safety and welfare as a main concern, and reward responsible behavior. Question 1 20 pts You need a 2x1 multiplexer but its not available. Whats available is a 3x8 active high decoder and 1 external gate of your choice, Design the multiplexer using the given decoder and external gate. The Multiplexer Input A is chosen when the select line, 5 is high and B chosen when the select line is low. Score Truth Table - 7 pts Simplification K-Map/Implementation Table-6pts Logic Circuit - 7 pts Upload your solution here.. other platform will not be accepted dysfunction of which organ would lead to clotting factor deficiency? The DC power flow method is based on completely neglecting the 6-V equation and solving the nonlinear reactive-power balance equations. False True Explain why equalizer is used in digital communication system. when i order things to a different zip code do i put my zip code for the card info or the places its going to Not yet ans Consider the following regular expression : b(a + ab) ab Which of the following words are in the language defined by r? baabab bab ab babab QUESTION 6 Not yet answered Marked out of 5.00 Flag question For each of your answers in Questions, give a brief explanation. For example, you can explain how the regular expression will accept lie.match) the words that belong to its language, and how it will not accept those that do not belong init. I