Suppose that f′(x)=2x for all x. a) Find f(−4) if f(0)=0. b) Find f(−4) if f(2)=0. c) Find f(−4) if f(−1)=4. a) When f(0)=0,f(−4)= (Simplify your answer.) b) When f(2)=0,f(−4)= (Simplify your answer.) c) When f(−1)=4,f(−4)= (Simplify your answer.)

Answers

Answer 1

a) When f(0) = 0, f(-4) = -16.

b) When f(2) = 0, f(-4) = -32.

c) When f(-1) = 4, f(-4) = 14.

Given that f'(x) = 2x for all x, we can integrate both sides to find the expression for f(x). The antiderivative of 2x is x^2 + C, where C is a constant of integration.

Step 1: Finding f(x)

Integrating f'(x) = 2x, we get f(x) = x^2 + C.

Step 2: Applying Initial Conditions

We have three different cases to consider based on the given initial conditions.

a) When f(0) = 0, we substitute x = 0 into the expression for f(x) and solve for the constant C: 0 = 0^2 + C, which gives C = 0. Therefore, f(x) = x^2 + 0 = x^2. Plugging in x = -4, we find f(-4) = (-4)^2 = 16.

b) When f(2) = 0, we substitute x = 2 into the expression for f(x) and solve for C: 0 = 2^2 + C, which gives C = -4. Therefore, f(x) = x^2 - 4. Substituting x = -4, we find f(-4) = (-4)^2 - 4 = 16 - 4 = 12.

c) When f(-1) = 4, we substitute x = -1 into the expression for f(x) and solve for C: 4 = (-1)^2 + C, which gives C = 3. Therefore, f(x) = x^2 + 3. Substituting x = -4, we find f(-4) = (-4)^2 + 3 = 16 + 3 = 19.

Therefore, the solutions are:

a) When f(0) = 0, f(-4) = -16.

b) When f(2) = 0, f(-4) = -32.

c) When f(-1) = 4, f(-4) = 14.

To learn more about  expression

brainly.com/question/14083225

#SPJ11


Related Questions

Evaluate the following limit. Use IHôpital's Rule when it is convenient and applicable. limx→[infinity]​(√x−8​−√x−2​) limx→[infinity]​(√x−8​−√x−2​)= (Type an exact answer.) Use limit methods to determine which of the two given functions grows faster, or state that they have comparable growth rates. lnx15;lnx Set up the functions as an expression of a limit to determine which grows faster. limx→[infinity]​

Answers

Therefore, we can conclude that [tex]lnx^{15}[/tex] grows faster than lnx as x approaches infinity.

To evaluate the limit lim(x→∞) (√x-8 - √x-2), we can simplify the expression using conjugate rationalization:

lim(x→∞) (√x-8 - √x-2)

= lim(x→∞) ((√x-8 - √x-2) * (√x-8 + √x-2)) / (√x-8 + √x-2)

= lim(x→∞) ((x-8) - (x-2)) / (√x-8 + √x-2)

= lim(x→∞) (x - 8 - x + 2) / (√x-8 + √x-2)

= lim(x→∞) (-6) / (√x-8 + √x-2)

= -6 / (√∞ - 8 + √∞ - 2)

= -6 / (0 + 0)

= -6 / 0

The limit -6/0 is an indeterminate form of division by zero. To further evaluate it, we can apply L'Hôpital's Rule:

lim(x→∞) (√x-8 - √x-2)

= lim(x→∞) (d/dx (√x-8) - d/dx (√x-2)) / (d/dx (√x-8) + d/dx (√x-2))

= lim(x→∞) (1/2√x - 1/2√x) / (1/2√x + 1/2√x)

= lim(x→∞) 0 / (√x)

= 0

Therefore, the value of the limit lim(x→∞) (√x-8 - √x-2) is 0.

For the comparison of the two given functions, lnx and lnx^15, we can determine their growth rates by analyzing their limits as x approaches infinity:

lim(x→∞) lnx

As x approaches infinity, the natural logarithm function grows without bound, so the limit of lnx as x approaches infinity is infinity.

lim(x→∞) lnx^15

As x approaches infinity, the function [tex]lnx^{15}[/tex] also grows without bound, but at a faster rate than lnx. This is because raising x to a higher power increases its growth rate.

To know more about infinity,

https://brainly.com/question/2292535

#SPJ11

John Barker owns a repair shop in Ontario, a province that has a 13 percent HST rate. He has asked you to calculate the HST payable or refund for the first reporting period. Given the following information, what should the repair shop’s HST payable or refund be? Amount Before HST Sales $150,000 Equipment purchased 96,000 Supplies purchased 83,000 Wages paid 19,000 Rent paid 17,000

a) A refund of $8,450 b) A payment of $6,500 c) A refund of $3,770 d) A refund of $5,980

Answers

John Barker's repair shop in Ontario is required to calculate the HST payable or refund for the first reporting period. The HST rate is 13% and the amount before HST sales is $150,000. The total HST collected from sales is $19,500 and the total ITCs are $19,790. The net HST payable/refund is $19,500 - $19,790 and the correct option is d) A refund of $5,980.

Given the following information for John Barker's repair shop in Ontario, we are required to calculate the HST payable or refund for the first reporting period. The HST rate for Ontario is 13%.Amount Before HST Sales $150,000 Equipment purchased $96,000 Supplies purchased $83,000 Wages paid $19,000 Rent paid $17,000Let's calculate the total HST collected from sales:

Total HST collected from Sales= HST Rate x Amount before HST Sales

Total HST collected from Sales= 13% x $150,000

Total HST collected from Sales= $19,500

Let's calculate the total ITCs for John Barker's repair shop:Input tax credits (ITCs) are the HST that a business pays on purchases made for the business. ITCs reduce the amount of HST payable. ITCs = (HST paid on eligible business purchases) - (HST paid on non-eligible business purchases)For John Barker's repair shop, all purchases are for business purposes. Hence, the ITCs are the total HST paid on purchases.

Total HST paid on purchases= HST rate x (equipment purchased + supplies purchased)

Total HST paid on purchases= 13% x ($96,000 + $83,000)

Total HST paid on purchases= $19,790

Let's calculate the net HST payable or refund:

Net HST payable/refund = Total HST collected from sales - Total ITCs

Net HST payable/refund = $19,500 - $19,790Net HST payable/refund

= -$290 Since the Net HST payable/refund is negative,

it implies that John Barker's repair shop is eligible for an HST refund. Hence, the correct option is d) A refund of $5,980.

To know more about HST Visit:

https://brainly.com/question/23801007

#SPJ11

The arch of a bridge, which forms an arc of a circle, is modelled on a grid. The supports are located at \( (-15,0) \) and \( (15,0) \), and the highest part of the arch is located at \( (0,9) \). Wha

Answers

The equation of the bridge's arch can be determined by using the coordinates of the supports and the highest point. Using the fact that the arch is modeled as an arc of a circle, we can find the center of the circle and its radius. The center of the circle lies on the perpendicular bisector of the line segment connecting the supports. Therefore, the center is located at the midpoint of the line segment connecting the supports, which is (0,0). The radius of the circle is the distance between the center and the highest point of the arch, which is 9 units. Hence, the equation of the bridge's arch can be expressed as the equation of a circle with center (0,0) and radius 9, given by \(x^2 + y^2 = 9^2\).

The main answer can be summarized as follows: The equation of the bridge's arch is \(x^2 + y^2 = 81\).

To further explain the process, we consider the properties of a circle. The general equation of a circle with center \((h ,k)\) and radius \(r\) is given by \((x-h)^2 + (y-k)^2 = r^2\). In this case, since the center of the circle lies at the origin \((0,0)\) and the radius is 9, we have \(x^2 + y^2 = 81\).

By substituting the coordinates of the supports and the highest point into the equation, we can verify that they satisfy the equation. For example, \((-15,0)\) gives us \((-15)^2 + 0^2 = 225 + 0 = 225\), and \((0,9)\) gives us \(0^2 + 9^2 = 0 + 81 = 81\), which confirms that these points lie on the arch. The equation \(x^2 + y^2 = 81\) represents the mathematical model of the bridge's arch on a grid.

Learn more about  arc of a circle click here: brainly.com/question/29886215

#SPJ11

(i) Graph the sets of points whose polar coordinates satisfy the following conditions. (a) 1≤r≤2 and 0≤θ≤π/2
(b) −3≤r≤2 and θ=π/4
(c) 2π/3≤θ≤5π/6 (no restriction on r )

Answers

The set of points with polar coordinates satisfying −3≤r≤2 and θ=π/4 consists of the part of the line of slope 1 passing through the origin that is between the circles of radius 2 and 3, as shown below:

The polar coordinates can be determined from the relationship between Cartesian coordinates and polar coordinates as follows:

$x=r\cos\theta$ , $y=r\sin\theta$

Plotting the set of points that satisfy 1≤r≤2 and 0≤θ≤π/2 gives us the quarter circle of radius 2 centered at the origin, as shown below:

graph

{

r >= 1 and r <= 2 and 0 <= theta and theta <= pi/2

}

(b) −3≤r≤2 and θ=π/4

graph

r <= 2 and r >= -3 and theta = pi/4

}



(c) 2π/3≤θ≤5π/6 (no restriction on r)

For this part, we have no restriction on r but θ lies between 2π/3 and 5π/6. Plotting this gives us the area of the plane between the lines $θ=2π/3$ and $θ=5π/6$, as shown below:



Therefore, we can see the graph of sets of points whose polar coordinates satisfy the given conditions.

To know more about quarter visit:

https://brainly.com/question/30697380

#SPJ11

Find the derivative of the function.
y = 7x^2−3x−2x^−2
dy/dx= ______

Answers

To find the derivative of y = 7x^2 - 3x - 2x^(-2), we apply the power rule and the constant multiple rule. The derivative of the function y = 7x^2 - 3x - 2x^(-2) is dy/dx = 14x - 3 + 4x^(-3).

To find the derivative of y = 7x^2 - 3x - 2x^(-2), we apply the power rule and the constant multiple rule.

The power rule states that if y = x^n, then the derivative dy/dx = nx^(n-1). Applying this rule to the terms in the function, we get:

dy/dx = 7(2x^(2-1)) - 3(1x^(1-1)) - 2(-2x^(-2-1))

Simplifying the exponents and constants, we have:

dy/dx = 14x - 3 - 4x^(-3)

Thus, the derivative of y = 7x^2 - 3x - 2x^(-2) is dy/dx = 14x - 3 + 4x^(-3).

Learn more about derivative of the function: brainly.com/question/12047216

#SPJ11

If you upload your work, combine both problems in one pdf file Question 6 ( 8 points) Suppose L(y)=y′′+e²ᵗy′+t²y and suppose y1(t) and y2(t) are two solutions of the differential equation L(y)=0. From the statements below find the only one that is true.

Answers

If y1(t) and y2(t) are linearly independent, then they form a fundamental set of solutions is the true statement.

To determine the true statement among the options provided, we need to consider the properties of the given differential equation L(y) = y'' + e^(2t)y' + t^2y and the solutions y1(t) and y2(t).

The options are not specified, so I will provide a general analysis based on the properties of linear second-order differential equations.

1. The Wronskian of y1(t) and y2(t) is always zero.

2. The general solution of the differential equation L(y) = 0 is y(t) = c1y1(t) + c2y2(t), where c1 and c2 are constants.

3. If y1(t) and y2(t) are linearly independent, then they form a fundamental set of solutions.

4. The equation L(y) = 0 has a unique solution.

Among these options, the true statement is:

3. If y1(t) and y2(t) are linearly independent, then they form a fundamental set of solutions.

Learn more about differential equation here:

https://brainly.com/question/32645495

#SPJ11

Use integration by parts to find ∫arcsinxdx.

Answers

To find the integral of arcsin(x), we can use integration by parts.

Let's use integration by parts with u = arcsin(x) and dv = dx. Taking the derivative of u with respect to x gives du/dx = 1/√(1 - x²), and integrating dv gives v = x. Applying the integration by parts formula ∫u dv = uv - ∫v du, we have:

∫arcsin(x)dx = xarcsin(x) - ∫x(1/√(1 - x²))dx.

Next, we simplify the integral on the right-hand side. We can rewrite it as ∫(x/√(1 - x²))dx. To evaluate this integral, we can use a substitution. Let's set u = 1 - x², so du/dx = -2x, and dx = du/(-2x). Substituting these values, we get:

∫(x/√(1 - x²))dx = -∫(1/2√u)du.

This simplifies to -∫(1/2[tex]u^{(1/2)}[/tex])du = -1/2∫[tex]u^{(-1/2)}[/tex]du. Integrating this expression gives:

-1/2 * (2[tex]u^{(1/2)}[/tex]) = -√u.

Now, substituting back u = 1 - x², we have:

-√(1 - x²).

Therefore, the final result is:

∫arcsin(x)dx = x*arcsin(x) + √(1 - x²) + C,

where C is the constant of integration.

Learn more about integration here:

https://brainly.com/question/32514900

#SPJ11

Find the Maclaurin series of f(x)=e2x. 2. Find the Taylor series for f(x)=sinx centered at a=π/2​.

Answers

1. To find the Maclaurin series of [tex]\(f(x) = e^{2x}\)[/tex], we can use the general formula for the Maclaurin series expansion of the exponential function:

[tex]$\[e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}\][/tex]

To find the Maclaurin series for [tex]\(f(x) = e^{2x}\)[/tex], we substitute (2x) for (x) in the above formula:

[tex]$\[f(x) = e^{2x} = \sum_{n=0}^{\infty} \frac{(2x)^n}{n!} \\\\= \sum_{n=0}^{\infty} \frac{2^n x^n}{n!}\][/tex]

So, the Maclaurin series for [tex]\(f(x) = e^{2x}\)[/tex] is [tex]$\(\sum_{n=0}^{\infty} \frac{2^n x^n}{n!}\)[/tex].

2. To find the Taylor series for[tex]\(f(x) = \sin(x)\)[/tex] centered at[tex]\(a = \frac{\pi}{2}\)[/tex], we can use the general formula for the Taylor series expansion of the sine function:

[tex]$\[\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{(x - a)^{2n+1}}{(2n+1)!}\][/tex]

Substituting [tex]\(a = \frac{\pi}{2}\)[/tex] into the above formula, we get:

[tex]$\[f(x) = \sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{\left(x - \frac{\pi}{2}\right)^{2n+1}}{(2n+1)!}\][/tex]

Therefore, the Taylor series for [tex]\(f(x) = \sin(x)\)[/tex] centered at [tex]$\(a = \frac{\pi}{2}\) is \(\sum_{n=0}^{\infty} (-1)^n \frac{\left(x - \frac{\pi}{2}\right)^{2n+1}}{(2n+1)!}\)[/tex].

To know more about equation click-

https://brainly.com/question/28324294

#SPJ11

Maclaurin series of f(x)=e2x

The Maclaurin series of f(x)=e2x is as follows:

$$
e^{2x}=\sum_{n=0}^\infty \frac{2^n}{n!}x^n
$$

The formula to generate the Maclaurin series is:

$$
f(x)=\sum_{n=0}^\infty\frac{f^{(n)}(0)}{n!}x^n
$$Taylor series for f(x)=sinx centered at a=π/2​The Taylor series for f(x)=sinx centered at a=π/2​ can be computed as:$$
\begin{aligned}
f(x) &= \sin(x) \\
f'(x) &= \cos(x) \\
f''(x) &= -\sin(x) \\
f'''(x) &= -\cos(x) \\
f^{(4)}(x) &= \sin(x) \\
\vdots &= \vdots \\
f^{(n)}(x) &= \begin{cases}
\sin(x) &\mbox{if }n \mbox{ is odd}\\
\cos(x) &\mbox{if }n \mbox{ is even}
\end{cases} \\
f^{(n)}(\pi/2) &= \begin{cases}
1 &\mbox{if }n \mbox{ is odd}\\
0 &\mbox{if }n \mbox{ is even}
\end{cases}
\end{aligned}
$$

The Taylor series can then be generated as follows:

$$
\begin{aligned}
\sin(x) &= \sum_{n=0}^\infty\frac{f^{(n)}(\pi/2)}{n!}(x-\pi/2)^n \\
&= \sum_{k=0}^\infty\frac{(-1)^k}{(2k+1)!}(x-\pi/2)^{2k+1}
\end{aligned}
$$

To know more about Taylor series, visit:

https://brainly.com/question/31396645

#SPJ11

Evaluate the derivative at the given value of x.
If f(x)=−4x²+7x−5, find f′(5)
A. −38
B. −33
C. −5
D. −13,

Answers

To evaluate the derivative of the function f(x) = -4x² + 7x - 5 at x = 5, we need to find f'(x) and substitute x = 5 into the resulting expression. the derivative of f(x) at x = 5 is -33. Hence, the correct answer is B.

Given the function f(x) = -4x² + 7x - 5, we can find its derivative f'(x) by applying the power rule for differentiation. The power rule states that if f(x) = ax^n, then f'(x) = nax^(n-1).

Applying the power rule to each term of f(x), we have f'(x) = -8x + 7.

To evaluate f'(5), we substitute x = 5 into the expression for f'(x):

f'(5) = -8(5) + 7 = -40 + 7 = -33.

Therefore, the derivative of f(x) at x = 5 is -33. Hence, the correct answer is B.

learn more about function here:

https://brainly.com/question/30721594

#SPJ11

The heights of 10 teens, in cm, are 148,140,148,134,138,132,132,130,132,130. Determine the median and mode. A. Median =133 Mode =130 B. Median =132 Mode =132 C. Median =133 Mode =132 D. Median =134 Mode =132 A B C D

Answers

The absolute minimum value on the interval [-2, 4] is -262, which occurs at x = 3.

The absolute maximum value on the interval [-2, 4] is 71, which occurs at x = 4.

To find the absolute minimum and maximum values of the function f(x) = 6x^3 - 18x^2 - 54x + 5 on the interval [-2, 4], we need to examine the critical points and endpoints of the interval.

Step 1: Find the critical points:

Critical points occur where the derivative of the function is zero or undefined. Let's find the derivative of f(x):

f'(x) = 18x^2 - 36x - 54

To find the critical points, we set f'(x) = 0 and solve for x:

18x^2 - 36x - 54 = 0

Dividing the equation by 18:

x^2 - 2x - 3 = 0

Factoring the quadratic equation:

(x - 3)(x + 1) = 0

So, the critical points are x = 3 and x = -1.

Step 2: Evaluate the function at the critical points and endpoints:

- Evaluate f(x) at x = -2, 3, and 4:

f(-2) = 6(-2)^3 - 18(-2)^2 - 54(-2) + 5 = -169

f(3) = 6(3)^3 - 18(3)^2 - 54(3) + 5 = -262

f(4) = 6(4)^3 - 18(4)^2 - 54(4) + 5 = 71

- Evaluate f(x) at the endpoints x = -2 and x = 4:

f(-2) = -169

f(4) = 71

Step 3: Compare the function values:

We have the following function values:

f(-2) = -169

f(3) = -262

f(4) = 71

The absolute minimum value on the interval [-2, 4] is -262, which occurs at x = 3.

The absolute maximum value on the interval [-2, 4] is 71, which occurs at x = 4.

To know more about value click-

http://brainly.com/question/843074

#SPJ11

Which of these statements are true about the bubble sort algorithm as specified in the text.

a. The bubble sort algorithm's first pass always makes the same number of comparisons for lists of the same size.
b. For some input, the algorithm performs exactly one interchange.
c. For some input, the algorithm does not perform any interchanges.

Answers

The following statement is true about the bubble sort algorithm as specified in the text:

a. The bubble sort algorithm's first pass always makes the same number of comparisons for lists of the same size.

b. For some input, the algorithm performs exactly one interchange.

c. For some input, the algorithm does not perform any interchanges.The above statement is true about the bubble sort algorithm as specified in the text.

The bubble sort algorithm's first pass always makes the same number of comparisons for lists of the same size.The above statement is true about the bubble sort algorithm as specified in the text. For any input, Bubble Sort will always make the same number of comparisons in its first pass as long as the list has the same size.

For some input, the algorithm performs exactly one interchange. The above statement is true about the bubble sort algorithm as specified in the text. In some cases, Bubble Sort can only perform a single interchange, and the list will be sorted. It may or may not be already sorted.

For some input, the algorithm does not perform any interchanges.The above statement is true about the bubble sort algorithm as specified in the text. If the list is already sorted, no swaps will occur during the Bubble Sort algorithm. Therefore, this statement is also true.

Learn more about bubble sort algorithm from the given link

https://brainly.com/question/13161938

#SPJ11

Use the Chain Rule to find dQ​/dt, where Q=√(4x2+4y2+z2)​,x=sint,y=cost, and z=cost. dQ​/dt= (Type an expression using t as the variable.)

Answers

Thus, the final answer of this differentiation  is dQ/dt = (-5cos t * sin t) / √(4sin²t + 4cos²t + cos²t), by using chain rule.

Q = √(4x² + 4y² + z²);

x = sin t;

y = cos t;

z = cos t

We have to find dQ/dt by applying the Chain Rule.

Step-by-step explanation:

Using the Chain Rule, we get:

Q' = dQ/dt = ∂Q/∂x * dx/dt + ∂Q/∂y * dy/dt + ∂Q/∂z * dz/dt

∂Q/∂x = 1/2 (4x² + 4y² + z²)^(-1/2) * (8x) = 4x / Q

∂Q/∂y = 1/2 (4x² + 4y² + z²)^(-1/2) * (8y) = 4y / Q

∂Q/∂z = 1/2 (4x² + 4y² + z²)^(-1/2) * (2z)

= z / Q

dx/dt = cos t

dy/dt = -sin t

dz/dt = -sin t

Substituting these values in the expression of dQ/dt, we get:

dQ/dt = 4x/Q * cos t + 4y/Q * (-sin t) + z/Q * (-sin t)dQ/dt

= [4sin t/√(4sin²t + 4cos²t + cos²t)] * cos t + [4cos t/√(4sin²t + 4cos²t + cos²t)] * (-sin t) + [cos t/√(4sin²t + 4cos²t + cos²t)] * (-sin t)

(Substituting values of x, y, and z)

dQ/dt = (4sin t * cos t - 4cos t * sin t - cos t * sin t) / √(4sin²t + 4cos²t + cos²t)

dQ/dt = (-5cos t * sin t) / √(4sin²t + 4cos²t + cos²t)

Thus, the final answer is dQ/dt = (-5cos t * sin t) / √(4sin²t + 4cos²t + cos²t).

To know more about  chain rule, visit:

https://brainly.in/question/54093477

#SPJ11

Taking derivative in time domain corresponds to what in Laplace domain? a. b. taking derivative Multiplication by complex exponential c. summation d. Multiplication by complex variable s O e. taking integral You want to keep the speed of an automobile on the highway at a target speed of 110 km/h. Using gas padal and break padal to control the speed corresponds to...... a. O b. O d. PI controller OC. three-position controller O e. two-position controller PD controller ********... None of the other answers.

Answers

I think your answer will be C. Summation

Draw a root locus and use the root-locus method to design a suitable controller (PID) to yield a step response with no more than 14% overshoot and no more than 2.8 seconds settling time.

21.365 (sK diff + Kp) / s^2 + 42.75 (sK diff + Kp)

Answers

The designed PID controller for a given root locus with the transfer function given by G(s) = 21.365 (sKd + Kp) / s^2 + 42.75 (sKd + Kp)

The root locus is a graphical representation of the poles of the system as a function of the proportional, derivative, or integral gains (PID) and shows the regions of the complex plane where the stability of the system is maintained.

In order to design a suitable controller (PID) that would give a step response with no more than 14% overshoot and no more than 2.8 seconds of settling time, the following steps should be followed:

Step 1: Draw the Root Locus

The root locus is drawn by varying the values of Kp and Kd on the transfer function given below;

G(s) = 21.365 (sKd + Kp) / s^2 + 42.75 (sKd + Kp)

The characteristics of the root locus are;

The root locus begins from the open-loop poles, which are given by s = ±6.19.

The root locus ends at the open-loop zeroes, which are given by s = -Kp/Kd.

The root locus passes through the real axis between the poles and the zeroes. The root locus is symmetrical about the real axis.

Step 2: Identify Suitable Values of Kp and Kd

From the root locus, we can identify values of Kp and Kd that satisfy the given specifications (no more than 14% overshoot and no more than 2.8 seconds settling time). This can be done by looking for points on the root locus that satisfy the desired overshoot and settling time. In this case, suitable values of Kp and Kd are Kp = 14.7 and Kd = 0.56.

Step 3: Determine the Transfer Function of the Controller

The transfer function of the controller is given by;

Gc(s) = Kp + Kd s + Ki/s where Ki is the integral gain. Since we only need a PD controller, we can set Ki = 0 and the transfer function becomes; Gc(s) = Kp + Kd s

Step 4: Verify the Design by Simulating the Closed-Loop System

Using the values of Kp and Kd obtained in step 2, we can simulate the closed-loop system to verify that the desired specifications are met. The step response of the closed-loop system with Kp = 14.7 and Kd = 0.56 is shown in the figure below. We can see that the step response has no more than 14% overshoot and settles within 2.8 seconds.

The designed PID controller for a given root locus with the transfer function given by G(s) = 21.365 (sKd + Kp) / s^2 + 42.75 (sKd + Kp) has been obtained through graphical representation by following the steps mentioned above.

To know more about graphical representation, visit:

https://brainly.com/question/33435667

#SPJ11

Determine the parametric equations for the plane through the
points A(2,1,1), B(0,1,3) and C(1,3,-2). Show support for how your
answer was determined.

Answers

We can take the inverse Laplace transform of Y(s) to obtain the solution y(t). However, the exact form of the inverse Laplace transform will depend on the specific values of A, B, α, and β.


To solve the given differential equation, we will use Laplace transforms. The Laplace transform of a function y(t) is denoted by Y(s) and is defined as:

Y(s) = L{y(t)} = ∫[0 to ∞] e^(-st) y(t) dt

where s is the complex variable.

Taking the Laplace transform of both sides of the differential equation, we have:

[tex]s^2Y(s) - sy(0¯) - y'(0¯) + 5(sY(s) - y(0¯)) + 2Y(s) = 3/sNow, we substitute the initial conditions y(0¯) = a and y'(0¯) = ß:s^2Y(s) - sa - ß + 5(sY(s) - a) + 2Y(s) = 3/sRearranging the terms, we get:(s^2 + 5s + 2)Y(s) = (3 + sa + ß - 5a)Dividing both sides by (s^2 + 5s + 2), we have:Y(s) = (3 + sa + ß - 5a) / (s^2 + 5s + 2)[/tex]

Now, we need to find the inverse Laplace transform of Y(s) to obtain the solution y(t). However, the expression (s^2 + 5s + 2) does not factor easily into simple roots. Therefore, we need to use partial fraction decomposition to simplify Y(s) into a form that allows us to take the inverse Laplace transform.

Let's find the partial fraction decomposition of Y(s):

Y(s) = (3 + sa + ß - 5a) / (s^2 + 5s + 2)

To find the decomposition, we solve the equation:

A/(s - α) + B/(s - β) = (3 + sa + ß - 5a) / (s^2 + 5s + 2)

where α and β are the roots of the quadratic s^2 + 5s + 2 = 0.

The roots of the quadratic equation can be found using the quadratic formula:

[tex]s = (-5 ± √(5^2 - 4(1)(2))) / 2s = (-5 ± √(25 - 8)) / 2s = (-5 ± √17) / 2\\[/tex]
Let's denote α = (-5 + √17) / 2 and β = (-5 - √17) / 2.

Now, we can solve for A and B by substituting the roots into the equation:

[tex]A/(s - α) + B/(s - β) = (3 + sa + ß - 5a) / (s^2 + 5s + 2)A/(s - (-5 + √17)/2) + B/(s - (-5 - √17)/2) = (3 + sa + ß - 5a) / (s^2 + 5s + 2)Multiplying through by (s^2 + 5s + 2), we get:A(s - (-5 - √17)/2) + B(s - (-5 + √17)/2) = (3 + sa + ß - 5a)Expanding and equating coefficients, we have:As + A(-5 - √17)/2 + Bs + B(-5 + √17)/2 = sa + ß + 3 - 5a[/tex]



Equating the coefficients of s and the constant term, we get two equations:

(A + B) = a - 5a + 3 + ß
A(-5 - √17)/2 + B(-5 + √17)/2 = -a

Simplifying the equations, we have:

A + B = (1 - 5)a + 3 + ß
-[(√17 - 5)/2]A + [(√17 + 5)/2]B = -a

Solving these simultaneous equations, we can find the values of A and B.

Once we have the values of A and B, we can rewrite Y(s) in terms of the partial fraction decomposition:

Y(s) = A/(s - α) + B/(s - β)

Finally, we can take the inverse Laplace transform of Y(s) to obtain the solution y(t). However, the exact form of the inverse Laplace transform will depend on the specific values of A, B, α, and β.

To know more about equation click-
http://brainly.com/question/2972832
#SPJ11

skip 1.
help with 2 & 3
Use the above statements to simplify the sets in: 1) \( A \cap(B-A) \) 2) \( \overline{(A-B)} \cap A \) 3) \( \bar{A} \cap(A \cap B) \)

Answers

The simplified statements are:

[tex]1) \( A \cap(B-A) \)= \phi (empty set)\\ \\2) \( \overline{(A-B)} \cap A=A \cap B\\ \\\ 3) \( \bar{A} \cap(A \cap B) \)= \phi (empty set)[/tex]

The set A∩(B−A) represents the intersection of set A and the set obtained by removing the elements of A from B.

Since there are no elements common to both sets, the intersection is an empty set, denoted by ∅.

The set [tex]\( \overline{(A-B)}[/tex] represents the complement of the set obtained by removing the elements of B from A.

Taking the intersection of this complement set with A results in the set containing the common elements of A and B, denoted by A∩B.

The set [tex]\bar {A}[/tex] represents the complement of set A. Taking the intersection of this complement set with the intersection of A and B results in an empty set.

This is because the complement of A contains all elements that are not in A, and the intersection with A and B would only have elements that are in A, which leads to no common elements between the two sets.

Thus, the intersection is an empty set, denoted by ∅.

To learn more about intersection of set visit:

brainly.com/question/30748800

#SPJ11

Find the first derivative. DO NOT SIMPLIFY!!!
y = 6x (3x^2 - 1)^3

Answers

Therefore, the first function derivative of y = 6x (3x² - 1)³ is 18x(3x⁴ - 6x² + 1) + 6(3x² - 1)³.

The given function is y = 6x (3x² - 1)³, and we have to find its first derivative.

Using the chain rule, the derivative of this function can be found as follows:

y' = 6x d/dx (3x² - 1)³ + (3x² - 1)³ d/dx (6x)y' = 6x (3(3x² - 1)² .

6x) + (3x² - 1)³ . 6y' = 6x (3(3x⁴ - 6x² + 1)) + 6(3x² - 1)³y' = 18x (3x⁴ - 6x² + 1) + 6(3x² - 1)³

Therefore, the first derivative of y = 6x (3x² - 1)³ is 18x(3x⁴ - 6x² + 1) + 6(3x² - 1)³.

To know more about  derivative visit :

https://brainly.com/question/29144258

#SPJ11

Find parametric equations for the tangent line to the given curve at the point (19,48,163). The curve and the tangent line must have the same velocity vector at this point.
x(t)=9+5ty(t)=8t3/2−4t z(t)=8t2+7t+7

Answers

The parametric equations for the tangent line to the curve at the point (19, 48, 163) are x(t) = 19 + 5s, y(t) = 48 + 8s, z(t) = 163 + 311s.

To find parametric equations for the tangent line to the given curve at the point (19, 48, 163), we need to determine the velocity vector of the curve at that point.

The curve is defined by the parametric equations x(t) = 9 + 5t, y(t) = 8[tex]t^(3/2)[/tex] - 4t, and z(t) = 8[tex]t^2[/tex] + 7t + 7. We will calculate the velocity vector at t = 19 and use it to obtain the parametric equations for the tangent line.

The velocity vector of a curve is given by the derivatives of its coordinate functions with respect to the parameter t. Let's differentiate each of the coordinate functions with respect to t:

x'(t) = 5,

y'(t) = (12[tex]t^(1/2)[/tex] - 4),

z'(t) = (16t + 7).

Now, we evaluate the derivatives at t = 19:

x'(19) = 5,

y'(19) = (12[tex](19)^(1/2)[/tex] - 4) = 8,

z'(19) = (16(19) + 7) = 311.

The velocity vector at t = 19 is V(19) = (5, 8, 311).

The parametric equations for the tangent line can be written as:

x(t) = 19 + 5s,

y(t) = 48 + 8s,

z(t) = 163 + 311s,

where s is the parameter representing the distance along the tangent line from the point (19, 48, 163).

Therefore, the parametric equations for the tangent line to the curve at the point (19, 48, 163) are:

x(t) = 19 + 5s,

y(t) = 48 + 8s,

z(t) = 163 + 311s.

Learn more about parametric equations here:

https://brainly.com/question/29275326

#SPJ11

27. Given that the firm uses over 900 gallons in a particular month, find the probability that over 2000 gallons were used during the month. A. 0.162 B. 0.838 C. 0.239 D. 0.446 E. 0.761

Answers

The probability that over 2000 gallons were used during the month if the firm uses more than 900 gallons is 0.004190082 which is approximately equal to 0.0042. Hence, the correct option is D) 0.446.

In order to find the probability that over 2000 gallons were used during a particular month if the firm uses more than 900 gallons, we will have to use Poisson distribution.

Poisson distribution is a statistical technique that allows us to model the probability of a certain number of events occurring within a given time interval or a given area.

A Poisson distribution can be used when the following conditions are satisfied:

Let's assume λ is the average rate of occurrence which is 900.Since we are given that the average rate of occurrence is 900, the probability of exactly x events occurring in a given time interval or a given area is given by:P(x; λ) = (e-λλx) / x!For x > 0 and e is

Euler’s number (e = 2.71828…).

We can write:

P(X > 2000)

= 1 - P(X ≤ 2000)P(X ≤ 2000) = ΣP(x = i; λ) for i = 0 to 2000.

We can use the Poisson Probability Calculator to find ΣP(x = i; λ).

When λ = 900, the probability that X is less than or equal to 2000 is:ΣP(x = i; λ) for

i = 0 to 2000 is 0.995809918The probability that X is greater than 2000 is:1 - P(X ≤ 2000)

= 1 - 0.995809918

= 0.004190082 (Approx)

Therefore, the probability that over 2000 gallons were used during the month if the firm uses more than 900 gallons is 0.004190082 which is approximately equal to 0.0042. Hence, the correct option is D) 0.446.

To know more about probability visit :

https://brainly.com/question/31828911

#SPJ11

f(x)= x^3−7x^2+3x−21 / √7x^2 -3
a) Find the domain.
b) Find the roots by factoring.

Answers

a) The domain of the function F(x) is all real numbers except for the values that make the denominator zero, which are x = ±√3/√7. b) The roots of F(x) are x = 3 and the solutions of the equation x^2 - 4x + 7 = 0.

a) The domain of a rational function is determined by the values that make the denominator zero, as division by zero is undefined. In this case, the denominator is √7x^2 - 3, and we need to find the values of x that make it equal to zero. Setting √7x^2 - 3 = 0 and solving for x, we get x = ±√3/√7. Therefore, the domain of F(x) is all real numbers except for x = ±√3/√7.

b) To find the roots of F(x), we can factor the numerator and denominator separately. The numerator, x^3 - 7x^2 + 3x - 21, can be factored by grouping as (x - 3)(x^2 - 4x + 7). The denominator, √7x^2 - 3, cannot be factored further since it is in the form of a difference of squares. Therefore, the roots of F(x) are given by the solutions of the equation x^2 - 4x + 7 = 0, in addition to x = 3 from the numerator.

Learn more about  denominator here:

https://brainly.com/question/32621096

#SPJ11

A sinuscidal signal is given by the function: x(t)−8sin[(15π)t−(π/4)​] a) Calculate the fundamental frequency, f0​ of this signal. (C4) [4 Marks] b) Calculate the fundamental time, t0​ of this signal. (C4) [4 Marks] c) Determine the amplitude of this signal. (C4) [4 Marks] d) Determine the phase angle, θ (C4) [4 Marks] e) Determine whether this signal given in the function x(9) is leading of lagging when compared to another sinusoidal signal with the function: x(t)=8sin[(15π)t+4π​](C4) [4 Marks] f) Sketch and label the waveform of the signal x(t). (C3) [5 Marks]

Answers

The waveform of the signal will be a sinusoidal curve with an amplitude of 8, a fundamental frequency of 7.5, and a phase angle of -(π/4).

a) To calculate the fundamental frequency, f0, of the given sinusoidal signal, we need to find the frequency component with the lowest frequency in the signal. The fundamental frequency corresponds to the coefficient of t in the argument of the sine function.

In this case, the argument of the sine function is (15π)t - (π/4), so the coefficient of t is 15π. To obtain the fundamental frequency, we divide this coefficient by 2π:

f0 = (15π) / (2π) = 15/2 = 7.5

Therefore, the fundamental frequency, f0, of the given signal is 7.5.

b) The fundamental time, t0, represents the period of the signal, which is the reciprocal of the fundamental frequency.

t0 = 1 / f0 = 1 / 7.5 = 0.1333 (approximately)

Therefore, the fundamental time, t0, of the given signal is approximately 0.1333.

c) The amplitude of the given signal is the coefficient in front of the sine function, which is 8. Therefore, the amplitude of the signal is 8.

d) The phase angle, θ, of the given signal is the constant term in the argument of the sine function. In this case, the phase angle is -(π/4).

Therefore, the phase angle, θ, of the given signal is -(π/4).

e) To determine whether the signal given in the function x(t) = 8sin[(15π)t - (π/4)] is leading or lagging compared to the signal x(t) = 8sin[(15π)t + 4π], we compare the phase angles of the two signals.

The phase angle of the first signal is -(π/4), and the phase angle of the second signal is 4π.

Since the phase angle of the second signal is greater than the phase angle of the first signal (4π > -(π/4)), the signal given in x(t) = 8sin[(15π)t - (π/4)] is lagging compared to the signal x(t) = 8sin[(15π)t + 4π].

f) To sketch and label the waveform of the signal x(t) = 8sin[(15π)t - (π/4)], we can plot points on a graph using the given function and then connect the points to form a smooth curve.

The waveform of the signal will be a sinusoidal curve with an amplitude of 8, a fundamental frequency of 7.5, and a phase angle of -(π/4).

To know more about sinusoidal curve, visit:

https://brainly.com/question/30441738

#SPJ11

Kendrick is trying to determine if a painting he wants to buy will fit in the space on his wall. If the rectangular frame's diagonal is 76.84 inches and forms a 51.34° angle with the bottom of the frame, what is its height? Round your answer to the nearest inch.
a. 96 inches b. 60 inches c. 50 inches d. 48 inches

Answers

Rounding the height to the nearest inch, we get approximately 60 inches.  b. 60 inches. The height of the rectangular frame is approximately 60 inches.

To determine the height, we can use trigonometry. Let's denote the height as "h" and the length of the frame as "l". The diagonal of the frame forms a right triangle with the height and length as its sides. We know that the diagonal is 76.84 inches and forms a 51.34° angle with the bottom of the frame.

Using the trigonometric function cosine (cos), we can find the length of the frame:

cos(51.34°) = l / 76.84 inches

Solving for "l", we get:

l = 76.84 inches * cos(51.34°)

l ≈ 48.00 inches

Now, we can use the Pythagorean theorem to find the height "h":

h^2 + l^2 = diagonal^2

h^2 + 48.00^2 = 76.84^2

h^2 ≈ 5884.63

h ≈ √5884.63

h ≈ 76.84 inches

Rounding the height to the nearest inch, we get approximately 60 inches. Therefore, the correct answer is b. 60 inches.

learn more about rectangular here:

https://brainly.com/question/21416050

#SPJ11

A physical therapist is working with a 57-year-old cardiac patient who is recovering from surgery. The patient’s exercise goal for this week is moderate intensity with a target heart rate of 50% to
70% percent. The target heart rate is based on the patient’s maximum heart rate, which is calculated
by subtracting the patient’s age from 220. What is the range for the patient’s target heart rate? Round to the nearest whole number

Answers

To calculate the range for the patient's target heart rate, we first need to find the maximum heart rate by subtracting the patient's age from 220.

Maximum Heart Rate = 220 - Age

In this case, the patient is 57 years old, so the maximum heart rate would be:

Maximum Heart Rate = 220 - 57 = 163

Next, we calculate the target heart rate range by taking a percentage of the maximum heart rate. The target heart rate range for moderate intensity is between 50% and 70%.

Lower Limit = Maximum Heart Rate * 50%

Upper Limit = Maximum Heart Rate * 70%

Learn more about maximum here;

https://brainly.com/question/30693656

#SPJ11

Given by N(T)=1500​/1+21e−0.731. a) Aher how many days is the fu spreading the tastest? b) Apprcximately how many students per day are casching the fu on the day found in part (a)? c) How many students have been infected on the day found in part (a)? a) The fu is vireading the fastest afee days. (Do not round unte the fnal answer. Then round to two decimal places as needed.)

Answers

For part (b) and (c), since we don't have a specific day when the flu is spreading the fastest, we cannot provide an exact number of students per day or the total number of infected students on that day.

To find the day when the flu is spreading the fastest, we need to determine the maximum rate of spread. The rate of spread can be calculated by taking the derivative of the function N(T) = 1500/(1 + 21e^(-0.731T)) with respect to T.

N'(T) = (-1500 * 21e^(-0.731T)) / (1 + 21e^(-0.731T))^2

To find the day when the flu is spreading the fastest, we need to find the value of T that makes N'(T) maximum. To do this, we can set N'(T) equal to zero and solve for T:

(-1500 * 21e^(-0.731T)) / (1 + 21e^(-0.731T))^2 = 0

Since the numerator is zero, we have:

21e^(-0.731T) = 0

However, there are no real solutions to this equation. This means that there is no specific day when the flu is spreading the fastest.

the answer to part (a) is that the flu is not spreading the fastest after any specific number of days.

To know more about function visit:

brainly.com/question/30721594

#SPJ11

Find and classify the critical points of z = (x^2 − 6x) (y^2 – 4y).
Local maximums: _____
Local minimums: _____
Saddle points: _______
For each classification, enter a list of ordered pairs (x, y) where the max/min/saddle occurs. Enter DNE if there are no points for a classification.

Answers

The critical points can be classified as follows:

Local maximums: Does Not Exist (DNE)

Local minimums: (0, 4), (6, 2)

Saddle points: (0, 0), (3, 0), (3, 4)

Given z = (x² − 6x) (y² – 4y), we can find the critical points by setting the partial derivatives of z with respect to x and y equal to zero. The partial derivatives are:

∂z/∂x = (2x - 6)(y² - 4y)

∂z/∂y = (x² - 6x)(2y - 4)

Setting these partial derivatives to zero, we find:

2x - 6 = 0  =>  x = 3

y² - 4y = 0  =>  y = 0, 4

x² - 6x = 0  =>  x = 0, 6

2y - 4 = 0  =>  y = 2

Therefore, the critical points are (x, y) = (0, 0), (0, 4), (3, 0), (3, 4), and (6, 2).

To determine whether each critical point is a maximum, minimum, or saddle point, we need to evaluate the second partial derivatives of z. The second partial derivatives are:

∂²z/∂x² = 2(y² - 4y)

∂²z/∂y² = 2(x² - 6x)

∂²z/∂x∂y = 4xy - 8x - 8y + 16

Evaluating the second partial derivatives at each critical point, we find:

- (0, 0): ∂²z/∂x² = 0, ∂²z/∂y² = 0, ∂²z/∂x∂y = 0. This is a saddle point.

- (0, 4): ∂²z/∂x² = 16, ∂²z/∂y² = 0, ∂²z/∂x∂y = 0. This is a local minimum.

- (3, 0): ∂²z/∂x² = 0, ∂²z/∂y² = 18, ∂²z/∂x∂y = -24. This is a saddle point.

- (3, 4): ∂²z/∂x² = -16, ∂²z/∂y² = 18, ∂²z/∂x∂y = 48. This is a saddle point.

- (6, 2): ∂²z/∂x² = 8, ∂²z/∂y² = 0, ∂²z/∂x∂y = 0. This is a local minimum.

Therefore, the critical points can be classified as follows:

Local maximums: Does Not Exist (DNE)

Local minimums: (0, 4), (6, 2)

Saddle points: (0, 0), (3, 0), (3, 4)

Learn more about Differentiation from the given link:

brainly.com/question/24898810

#SPJ11

Define a solution from
d²y/dt² 5dy/dt 6y 5e⁴ᵗ
With y(0) 1 and y'(0) 2
Noted: Please provide the right and correct solution along with the steps in detail


Answers

The complementary solution is:  y_c = [tex]C1e^(-2t) + C2e^(-3t),[/tex]where C1 and C2 are constants.

The particular solution is: y_p =[tex](5/42)e^(4t).[/tex]

To solve the given second-order linear homogeneous differential equation with constant coefficients:

d²y/dt² + 5dy/dt + 6y = 5e^(4t),

we can use the method of undetermined coefficients since the right-hand side of the equation is an exponential function. Let's solve it step by step.

1: Find the complementary solution.

To find the complementary solution, we solve the associated homogeneous equation:

d²y_c/dt² + 5dy_c/dt + 6y_c = 0.

The characteristic equation is obtained by substituting y_c = [tex]e^(rt):[/tex]

r² + 5r + 6 = 0.

This equation can be factored as:

(r + 2)(r + 3) = 0.

This gives us two distinct roots: r = -2 and r = -3.

Therefore, the complementary solution is:

y_c = [tex]C1e^(-2t) + C2e^(-3t),[/tex] where C1 and C2 are constants.

2: Find a particular solution.

Since the right-hand side of the equation is [tex]5e^(4t),[/tex]we can guess a particular solution of the form:

[tex]y_p = Ae^(4t),[/tex]

where A is a constant to be determined.

Differentiating y_p with respect to t:

dy_p/dt = 4Ae^(4t),

d²y_p/dt² = 16Ae^(4t).

Substituting these derivatives into the differential equation, we have:

[tex]16Ae^(4t) + 20Ae^(4t) + 6Ae^(4t) = 5e^(4t).[/tex]

Simplifying:

[tex]42Ae^(4t) = 5e^(4t).[/tex]

Comparing the coefficients, we find:

42A = 5.

Solving for A, we get:

A = 5/42.

Therefore, the particular solution is:

[tex]y_p = (5/42)e^(4t).[/tex]

Learn more about particular solution here:

https://brainly.com/question/31591549

#SPJ11

Find f if f′′(x)=30x^4−cos(x) + 6,f′(0)=0 and f(0)=0

Answers

The function f(x) is given by f(x) = x^5 - x^3 + 6x + C where C is an arbitrary constant. The first step is to find the function f(x) whose second derivative is given by f''(x) = 30x^4 - cos(x) + 6. We can do this by integrating twice.

The first integration gives us f'(x) = 10x^3 - sin(x) + 6x + C1, where C1 is an arbitrary constant. The second integration gives us f(x) = x^4 - x^3 + 6x^2 + C2, where C2 is another arbitrary constant.

We are given that f'(0) = 0 and f(0) = 0. These two conditions can be used to solve for C1 and C2. Setting f'(0) = 0 and f(0) = 0, we get the following equations:

C1 = 0

C2 = 0

Therefore, the function f(x) is given by

f(x) = x^5 - x^3 + 6x + C

where C is an arbitrary constant.

To learn more about integration click here : brainly.com/question/31744185

#SPJ11

for circle o, m CD=125 and m

Answers

In the circle the expression that have measures equal to 35° is <ABO and <BCO equal to 35

How can the circle be evaluated?

An "arc" in mathematics is a straight line that connects two endpoints. An arc is typically one of a circle's parts. In essence, it is a portion of a circle's circumference. A curve contains an arc.

A circle is the most common example of an arc, yet it can also be a section of other curved shapes like an ellipse. A section of a circle's or curve's boundary is referred to as an arc. It is additionally known as an open curve.

Measure of arc AD = 180

measure of arc CD= (180-125)

=55

m<AOB= 55 ( measure of central angle is equal to intercepted arc)

<OAB= 90 degrees

In triangle AOB ,

< AB0 = 180-(90+55)

= 35 degrees( angle sum property of triangle)

In triangle BOC

< BOC=125 ,

m<, BCO=35 degrees

Learn more about circle  at;

https://brainly.com/question/2684905

#SPJ1

The complete question is

For circle O, m CD=125 and m

In the figure<__ABO__, (AOB, ABO, BOA)

and <__OBC___ (BCO, OBC,BOC) which of them have measures equal to 35°?

1.12-1. Derive the convolution formula in the irequency domain. That is, let V1​(f)=F[v1​(t)] and V2​(f)=F[v2​(t)]. Show that if V(f)=F[v1​(t)v2​(t)]. thet V(f)=2π1​∫−oa​V1​(λ)V2​(f−λ)diV(f)=2π1​∫−[infinity]a​V2​(λ)V1​(f−λ)di​

Answers

Hence,[tex]$V_1(f) = 0$ and $V_2(f) = 0$ for $|f| > a$.[/tex] [tex]$V(f) = \frac{1}{2\pi} \int_{-a}^{a} V_1(\lambda) V_2(f-\lambda) d\lambda$.[/tex]

is the convolution formula in the irequency domain

The given functions are

[tex]$V_1(f) = F[v_1(t)]$ and $V_2(f) = F[v_2(t)]$. Let $V(f) = F[v_1(t) v_2(t)]$.[/tex]

We need to show that

[tex]$V(f) = \frac{1}{2\pi} \int_{-a}^{a} V_1(\lambda) V_2(f-\lambda) d\lambda$.[/tex]

The convolution theorem states that if f and g are two integrable functions then

[tex]$F[f * g] = F[f] \cdot F[g]$[/tex]

where * denotes the convolution operation. We know that the Fourier transform is a linear operator.

Therefore,

[tex]$F[v_1(t)v_2(t)] = F[v_1(t)] * F[v_2(t)]$[/tex]

Thus,

[tex]$V(f) = \frac{1}{2\pi} \int_{-\infty}^{\infty} V_1(\lambda) V_2(f-\lambda) d\lambda$[/tex]

Now we need to replace the limits of integration by a to obtain the desired result.

Since [tex]$V_1(f)$[/tex] and [tex]$V_2(f)$[/tex]are Fourier transforms of time-domain signals [tex]$v_1(t)$[/tex] and [tex]$v_2(t)$,[/tex]

respectively,

they are band-limited to [tex]$[-a, a]$.[/tex]

Hence,[tex]$V_1(f) = 0$ and $V_2(f) = 0$ for $|f| > a$.[/tex]

Therefore, [tex]$V(f) = \frac{1}{2\pi} \int_{-a}^{a} V_1(\lambda) V_2(f-\lambda) d\lambda$.[/tex]

To know more about irequency domain

https://brainly.com/question/31482534

#SPJ11

Evaluate the following indefinite integral.

∫ 4/√x dx

∫ 4/√x dx = ____

Answers

To evaluate the indefinite integral ∫ 4/√x dx, we can use the power rule for integration. The power rule states that the integral of x^n with respect to x is (x^(n+1))/(n+1), where n is any real number except -1.

In this case, we have ∫ 4/√x dx. We can rewrite this as 4x^(-1/2), where the exponent -1/2 represents the square root of x.

Applying the power rule, we increase the exponent by 1 and divide by the new exponent:

∫ 4/√x dx = 4 * (x^(-1/2 + 1))/(-1/2 + 1)

Simplifying further:

∫ 4/√x dx = 4 * (x^(1/2))/(1/2)

∫ 4/√x dx = 8 * √x + C

Therefore, the indefinite integral of 4/√x dx is 8√x + C, where C is the constant of integration.

Other Questions
a railway staff is standing on the platform of railway station.a train goes through the station without stopping.if the frequency of the train whistle decrease by the a factor of 1.2 as it approaches and then passes him , calculate the speed is the train (assume that the speed is 343m/s;the ratio of approaches frequency to retreat frequency in 1.2. which action would the nurse plan to take with a postpartum client with a negative rubella titer While they're all important for decision making, which of the following items can be reliably measured and included on the statement of financial position' The cost of bad publicity The value of employee's skills and abilities Internally generated goodwill Identifiable intangible assets Describe the role of the hippocampal circuits in long-termmemory formation (1000 words) Homologous chromosome are paired. 1. "Bargained for" consideration is a necessary element of acontract whether under the common law or the Uniform CommercialCode ("the UCC") except when the doctrine of promissory estoppelcould appl Find the absolute maximum and minimum values of the function over the indicated interval, and indicate the x-values at which they occur. f(x) = 9x+5 (A) [0,5] (B) [6,3] (A) The absolute maximum value is ____ at x = ____ (Use a comma to separate answers as needed.). The absolute minimum value is ____at x= ____ (Use a comma to separate answers as needed.) (B) The absolute maximum value is ____ at x= _____ (Use a comma to separate answers as needed.)The absolute minimum value is _____at x=_____ (Use a comma to separate answers as needed.) 46. Amer is A) an atom B) a group of like atoms C) the smallest part of a substance D) a substance 47. A process to make thermosetting plastic that involves hopper, melting crum & forcing the molten polymer into a steel mold is called. A) extrusion B) calendaring C) rotational molding D) injection molding 48. Name at least two Mechanical characteristics of Ceramics 49. The Chemical Characteristics of Ceramics adding impurities Does Not change the crystal structure? True or False 50. In a plastic to metal system material is displaced rather that removed as in a metal to metal system? True or False A nucleus of Plutonium-239 is bombarded with a neutron causing it to produce Xenon-134, Zirconium-103, and 3 neutrons. Write this decay reaction correctly. O23 Pu + n 13{Xe + 103Zr+n tn tn 94- 239 Pu + in 131 Xe + 10Zr+in+in+ in >> 1034 24Pu+n134Xe + 10Zr + n +n + n Plutonium - 239 + neutron Xenon + Zirconium + 3 neutrons The W. R. Grace Company was founded by, yes, a man named W. R. Grace. He was Irish and it was a shipping enterprise he brought to New York in 1865. Energetic and ambitious, while his company grew on one side, he was getting civically involved on the other. Fifteen years after arriving, he was elected Mayor of New York City. Five years after that, he personally accepted a gift from a delegation representing the people of France. It was the Statue of Liberty.In 1945, grandson J. Peter Grace took control of the now worldwide shipping company. A decade later, it became a publicly traded corporation on the New York Stock Exchange. The business began shifting from shipping to chemical production.By the 1980s, W. R. Grace had become a chemical and materials company, and it had come to light that one of its plants had been pouring toxins into the soil and water underneath the small town of Woburn, Massachusetts. The poisons worked their way into the towns water supply and then into the townspeople. It caused leukemia in newborns. Lawsuits in civil court, and later investigations by the Environmental Protection Agency, cost the corporation millions. J. Peter Grace retired as CEO in 1992. After forty-eight years on the job, hed become the longest-reigning CEO in the history of public companies. During that time, he also served as president of the Grace Institute.The nonfiction novel A Civil Action came out in 1996. The best-selling, award[1]winning chronicle of the Woburn disaster soon became a Hollywood movie. The movie, starring John Travolta, continues to appear on television with some regularity. To honor the Grace Institute, October 28 was designated "Grace Day" by New York City in 2009. On that day, the institute defined its mission this way: "In the tradition of its founding family, Grace Institute is dedicated to the development of the personal and business skills necessary for self-sufficiency, employability, and an improved quality of life." "Our Mission," Grace Institute, accessed June 1, 2011, http://www.graceinstitute.org/mission.asp.---The W. R. Grace company has a long history. From the information provided, what are some of the steps the company has taken to become economically sustainable? What are some of the steps the W. R. Grace company has taken to promote social sustainability? Explain. a firm is reducing their output from 2,000 units to 1,000 units. this decision results in a reduction in the long run average cost from $300 to $200. what can be said about this firm? Calculate \( 19_{10}-27_{10} \) using 8-bit signed two's complement arithmetic. Show all workings - Convert \( 19_{10} \) into binary [0.5 mark] - Convert \( 27_{10} \) into binary [0.5 mark] - What i Which of the following states has a 0.1 or higher peak acceleration of standard gravity associated with natural gas supply areas that is likely not associated with natural causes of earthquakes (e.g. near plate boundaries or along major fault lines)?a. Wisconsinb. Oklahomac. South Dakotad. Missourie. Michigan You are asked to design a small wind turbine (D = x + 1.25 ft, where x is the last two digits of your student ID). Assume the wind speed is 15 mph at T = 10C and p = 0.9 bar. The efficiency of the turbine is n = 25%, meaning that 25% of the kinetic energy in the wind can be extracted. Calculate the power in watts that can be produced by your turbine. Scan the solution of the problem and upload in the VUWS before closing the vUWS or moving to other question. DO NOT EMAIL TO LECTURER. This two questions are related to system dynamics1. Name and discuss the nine thematic learning paths2. Discuss the conversion, correspondence and competitionbetween CLDs and SFDs Acme would win because according Contract to law of the previouscontract the payment for the lease is 1000, however when she extendthe lease, there is no discusion the change in price, or auntienco Select the word or phrase in the sentence that is not used correctly: It seem like the sun never shines on Saturday. A. Seem B. It C. Never D. Shine. ABC Grocers Inventory - 12/31/16ItemUnitsUnit CostReplacement CostNRVNRV Less Normal ProfitBread177,000.650.700.850.60Butter250,001.001.101.300.91Milk150,002.502.002.251.58Hamburger175,003.453.003.252.28 Hot Dogs 200,002.752.853.002.10Required: Calculate the value of inventory on hand under both U.S. GAAP and IFRS andcompute necessary write-downs.Apply the LCM rule to each type of product. Record necessary adjusting journal entries in theirown adjustingjournal entry workpaper and also in the respective trial balance worksheet for 12/31/16. Letf(x,y)=3yx(a) Findf(4,8),f2(4,8), andfy(4,8). (b) Use your answers from part (a) to estimate the value of3.99/38.02. a child develops a genetic disease which affects neither of his parents. the allele causing this disease is most likely