The lower half of a 7-m-high cylindrical container is filled with water (rho = 1000 kg/m3) and the upper half with oil that has a specific gravity of 0.85. Determine the pressure difference between the top and the bottom of the cylinder. (Round the final answer to one decimal place.)

Answers

Answer 1

Answer:

Pressure difference (ΔP) = 63,519.75 kpa

Explanation:

Given:

ρ = 1,000 kg/m³

Height of cylindrical container used (h) = 7m / 2 = 3.5m

Specific gravity (sg) = 0.85

Find:

Pressure difference (ΔP).

Computation:

⇒ Pressure difference (ΔP) = h g [ ρ(sg) + ρ]                ∵ [ g = 9.81]

Pressure difference (ΔP) = (3.5)(9.81) [ 1,000(0.85) + 1,000]

Pressure difference (ΔP) = 34.335 [8,50 + 1,000]

Pressure difference (ΔP) = 34.335 [1,850]

⇒ Pressure difference (ΔP) = 63,519.75 kpa


Related Questions

An amplifier which needs a high input resistance and a high output resistance is : Select one: a. A voltage amplifier b. None of these c. A transresistance amplifier d. A current amplifier e. A transconductance amplifier Clear my choice

Answers

Answer:

None of these

Explanation:

There are different types of amplifiers, and each has different characteristics.

Voltage amplifier needs high input and low output  resistance.Current amplifier needs Low Input and High Output  resistance.Trans-conductance amplifier Low Input and High Output resistance.Trans-Resistance amplifier requires High Input and Low output  resistance.

Therefore, the correct answer is "None of these "

When you do a vehicle check, what do you NOT need to keep an eye on?
A. Proper tire inflation
B. Cleanliness of windows and mirrors
C. Functioning indicator lights and headlights
D. Blindspot locations

Answers

Answer:

Blindspot Location

Explanation:

Just took the quiz

When you do a vehicle check, you do NOT need to keep an eye on Blind spot locations. The correct option is D.

What is Blind spot location?

A blind spot is the area of the road that can't be seen by looking forward through windscreen, or by rear-view and side-view mirrors.

While doing vehicle check, we need to check tire inflation, cleanliness of windows and mirrors along with the functioning indicator lights and headlights.

Blind spot locations does not need to be checked.

Thus, the correct option is D.

Learn more about  Blind spot location

https://brainly.com/question/5097404

#SPJ2

Sometimes, steel studs may not be used on outside walls because they are?

Answers

Answer:

We can describe 15×-10 as an expression. we would describe 6×-2< 35 as an...

Explanation:

We can describe 15×-10 as an expression. we would describe 6×-2< 35 as an...

Find the largest number. The process of finding the maximum value (i.e., the largest of a group of values) is used frequently in computer applications. For example, an app that determines the winner of a sales contest would input the number of units sold by each salesperson. The sales person who sells the most units wins the contest. Write pseudocode, then a C# app that inputs a series of 10 integers, then determines and displays the largest integer. Your app should use at least the following three variables:
Counter: Acounter to count to 10 (i.e., to keep track of how many nimbers have been input and to determine when all 10 numbers have been processed).
Number: The integer most recently input by the user.
Largest: The largest number found so far.

Answers

Answer:

See Explanation

Explanation:

Required

- Pseudocode to determine the largest of 10 numbers

- C# program to determine the largest of 10 numbers

The pseudocode and program makes use of a 1 dimensional array to accept input for the 10 numbers;

The largest of the 10 numbers is then saved in variable Largest and printed afterwards.

Pseudocode (Number lines are used for indentation to illustrate the program flow)

1. Start:

2. Declare Number as 1 dimensional array of 10 integers

3. Initialize: counter = 0

4. Do:

4.1 Display “Enter Number ”+(counter + 1)

4.2 Accept input for Number[counter]

4.3 While counter < 10

5. Initialize: Largest = Number[0]

6. Loop: i = 0 to 10

6.1 if Largest < Number[i] Then

6.2 Largest = Number[i]

6.3 End Loop:

7. Display “The largest input is “+Largest

8. Stop

C# Program (Console)

Comments are used for explanatory purpose

using System;

namespace ConsoleApplication1

{

   class Program

   {

       static void Main(string[] args)

       {

           int[] Number = new int[10];  // Declare array of 10 elements

           //Accept Input

           int counter = 0;

           while(counter<10)

           {

               Console.WriteLine("Enter Number " + (counter + 1)+": ");

               string var = Console.ReadLine();

               Number[counter] = Convert.ToInt32(var);

               counter++;                  

           }

           //Initialize largest to first element of the array

           int Largest = Number[0];

           //Determine Largest

           for(int i=0;i<10;i++)

           {

               if(Largest < Number[i])

               {

                   Largest = Number[i];

               }

           }

           //Print Largest

           Console.WriteLine("The largest input is "+ Largest);

           Console.ReadLine();

       }

   }

}

Two blocks of rubber (B) with a modulus of rigidity G = 14 MPa are bonded to rigid supports and to a rigid metal plate A. Knowing that c = 80 mm and P = 46 kN, determine the smallest allowable dimensions a and b of the blocks if the shearing stress in the rubber is not to exceed 1.4 MPa and the deflection of the plate is to be at least 7 mm.

Answers

Answer:

a = 0.07m or 70mm

b = 0.205m or 205mm

Explanation:

Given the following data;

Modulus of rigidity, G = 14MPa=14000000Pa.

c = 80mm = 0.08m.

P = 46kN=46000N.

Shearing stress (r) in the rubber shouldn't exceed 1.4MPa=1400000Pa.

Deflection (d) of the plate is to be at least 7mm = 0.007m.

From shearing strain;

[

[tex]Modulus Of Elasticity, E = \frac{d}{a} =\frac{r}{G}[/tex]

Making a the subject formula;

[tex]a = \frac{Gd}{r}[/tex]

Substituting into the above formula;

[tex]a = \frac{14000000*0.007}{1400000}[/tex]

[tex]a = \frac{98000}{1400000}[/tex]

[tex]a = 0.07m or 70mm[/tex]

a = 0.07m or 70mm.

Also, shearing stress;

[tex]r = \frac{P}{2bc}[/tex]

Making b the subject formula;

[tex]b = \frac{P}{2cr}[/tex]

Substituting into the above equation;

[tex]b = \frac{46000}{2*0.08*1400000}[/tex]

[tex]b = \frac{46000}{224000}[/tex]

[tex]b = 0.205m or 205mm[/tex]

b = 0.205m or 205mm

4. In its natural state, a soil weighs 2800 lb/cy, while in the loose and compacted states, it weighs 2500 lb/cy and 3300 lb/cy, respectively. a. Find the load and shrinkage factors for this soil. b. How many trucks loads with a capacity of 5 lcy/truck would be required to haul 750,000 ccy of this soil to a project

Answers

Answer:

a. load factor = 0.893

shrinkage factor = 0.848

b. Number of Trucks loads = 113,585 Trucks loads

Explanation:

Here, we start by identifying the factors as given in the question.

γn = 2800 lb/cy

γloose = 2500 lb/cy

and γcompacted = 3300 lb/cy

a. Mathematically,

Load factor = γloose/γn = 2500/2800 = 0.893

Shrinkage factor = γn/γcompacted = 2800/3300 = 0.848

b. To find the number of trucks loads with a capacity of 5 lcy/truck, we use the mathematical formula as follows;

ρlcy = 5

Load factor × Shrinkage factor = ρloose/γn × γn/γcompacted = ρlcy/ρccy

0.893 × 0.848 = 5/ρccy

ρccy =5/(0.893 × 0.848) = 6.603

The number of truck loads = 750,000/6.603 = 113,584.7 which is approximately 113,585 trucks loads

2) Consider schedules S3, S4, and S5 below. Determine whether each schedule is strict, cascadeless, recoverable, or non-recoverable. You need to explain your reason.



S3: r1(x), r2(z), r1(z), r3(x), r3(y), w1(x), c1, w3(y), c3, r2(y), w2(z),w2(y),c2


S4: r1(x), r2(z), r1(z), r3(x), r3(y),w1(x),w3(y), r2(y),w2(z),w2(y), c1,c2, c3


S5: r1(x), r2(z), r3(x), r1(z), r2(y), r3(y), w1(x), c1, w2(z), w3(y), w2(y), c3, c2

Answers

Answer:

Explanation:

Consider schedules S3, S4, and S5 below. Determine whether each schedule is strict, cascadeless, recoverable, or non-recoverable. You need to explain your reason.

S3: r1(x), r2(z), r1(z), r3(x), r3(y), w1(x), c1, w3(y), c3, r2(y), w2(z),w2(y),c2

S4: r1(x), r2(z), r1(z), r3(x), r3(y),w1(x),w3(y), r2(y),w2(z),w2(y), c1,c2, c3

S5: r1(x), r2(z), r3(x), r1(z), r2(y), r3(y), w1(x), c1, w2(z), w3(y), w2(y), c3, c2

Strict schedule:

A schedule is strict if it satisfies the following conditions:

Tj reads a data item X after Ti has written to X and Ti is terminated means aborted or committed.

Tj writes a data item X after Ti has written to X and Ti is terminated means aborted or committed.

S3 is not strict because In a strict schedule T3 must read X after C1 but here T3 reads X (r3(X)) before Then T1 has written to X (w1(X)) and T3 commits after T1.

S4 is not strict because In a strict schedule T3 must read X after C1, but here T3 reads X (r3(X)) before T1 has written to X (w1(X)) and T3 commits after T1.

S5 is not strict because T3 reads X (r3(X)) before T1 has written to X (w1(X))

but T3 commits after T1. In a strict schedule T3 must read X after C1.

Cascadeless schedule:

Cascadeless schedule follows the below condition:

Tj reads X only? after Ti has written to X and terminated means aborted or committed.

S3 is not cascadeless schedule because T3 reads X (r3(X)) before T1 commits.

S4 is not cascadeless schedule because T3 reads X (r3(X)) before T1 commits.

S5 is not cascadeless schedule because T3 reads X (r3(X)) before T1 commits or T2 reads Y (r2(Y)) before T3 commits.

But while come to the definition of cascadeless schedules S3, S4, and S4 are not cascadeless, and T3 is not affected if T1 is rolled back in any of the schedules, that is,

T3 does not have to roll back if T1 is rolled back. The problem occurs because these

schedules are not serializable.

Recoverable schedule:

Schedule that follows the below condition:

-----Tj commits after Ti if Tj has?read any data item written by Ti.

Ci > Cj means that Ci happens before Cj. Ai denotes abort Ti. To test if a schedule is

recoverable one has to include abort operations. Thus in testing the recoverability abort

operations will have to used in place of commit one at a time. Also the strictest condition is

------where a transaction neither reads nor writes to a data item, which was written to by a transaction that has not committed yet.

If A1?>C3>C2, then schedule S3 is recoverable because rolling back of T1 does not affect T2 and

T3. If C1>A3>C2. schedule S3 is not recoverable because T2 read the value of Y (r2(Y)) after T3 wrote X (w3(Y)) and T2 committed but T3 rolled back. Thus, T2 used non- existent value of Y. If C1>C3>A3, then S3 is recoverable because roll back of T2 does not affect T1 and T3.

Strictest condition of schedule S3 is C3>C2.

If A1?>C2>C3, then schedule S4 is recoverable because roll back of T1 does not affect T2 and T3. If C1>A2>C3, then schedule S4 is recoverable because the roll back of T2 will restore the value of Y that was read and written to by T3 (w3(Y)). It will not affect T1. If C1>C2>A3, then schedule S4 is not recoverable because T3 will restore the value of Y which was not read by T2.

Under normal operating conditions, the electric motor exerts a torque of 2.8 kN-m.on shaft AB. Knowing that each shaft is solid, determine the maximum shearing stress in a) shaft AB b) shaft BC c) shaft CD (25 points) Given that the torque at B

Answers

Answer:

Explanation:

The image attached to the question is shown in the first diagram below.

From the diagram given ; we can deduce a free body diagram which will aid us in solving the question.

IF we take a look at the second diagram attached below ; we will have a clear understanding of what the free body diagram of the system looks like :

From the diagram; we can determine the length of BC by using pyhtagoras theorem;

SO;

[tex]L_{BC}^2 = L_{AB}^2 + L_{AC}^2[/tex]

[tex]L_{BC}^2 = (3.5+2.5)^2+ 4^2[/tex]

[tex]L_{BC}= \sqrt{(6)^2+ 4^2}[/tex]

[tex]L_{BC}= \sqrt{36+ 16}[/tex]

[tex]L_{BC}= \sqrt{52}[/tex]

[tex]L_{BC}= 7.2111 \ m[/tex]

The cross -sectional of the cable is calculated by the formula :

[tex]A = \dfrac{\pi}{4}d^2[/tex]

where d = 4mm

[tex]A = \dfrac{\pi}{4}(4 \ mm * \dfrac{1 \ m}{1000 \ mm})^2[/tex]

A = 1.26 × 10⁻⁵ m²

However, looking at the maximum deflection  in length [tex]\delta[/tex] ; we can calculate for the force [tex]F_{BC[/tex] by using the formula:

[tex]\delta = \dfrac{F_{BC}L_{BC}}{AE}[/tex]

[tex]F_{BC} = \dfrac{ AE \ \delta}{L_{BC}}[/tex]

where ;

E = modulus elasticity

[tex]L_{BC}[/tex] = length of the cable

Replacing 1.26 × 10⁻⁵ m² for A; 200 × 10⁹ Pa for E ; 7.2111 m for [tex]L_{BC}[/tex] and 0.006 m for [tex]\delta[/tex] ; we have:

[tex]F_{BC} = \dfrac{1.26*10^{-5}*200*10^9*0.006}{7.2111}[/tex]

[tex]F_{BC} = 2096.76 \ N \\ \\ F_{BC} = 2.09676 \ kN[/tex]     ---- (1)

Similarly; we can determine the force [tex]F_{BC}[/tex] using the allowable  maximum stress; we have the following relation,

[tex]\sigma = \dfrac{F_{BC}}{A}[/tex]

[tex]{F_{BC}}= {A}*\sigma[/tex]

where;

[tex]\sigma =[/tex] maximum allowable stress

Replacing 190 × 10⁶ Pa for [tex]\sigma[/tex] ; we have :

[tex]{F_{BC}}= 1.26*10^{-5} * 190*10^{6} \\ \\ {F_{BC}}=2394 \ N \\ \\ {F_{BC}}= 2.394 \ kN[/tex]     ------ (2)

Comparing (1) and  (2)

The magnitude of the force [tex]F_{BC} = 2.09676 \ kN[/tex] since the elongation of the cable should not exceed 6mm

Finally applying the moment equilibrium condition about point A

[tex]\sum M_A = 0[/tex]

[tex]3.5 P - (6) ( \dfrac{4}{7.2111}F_{BC}) = 0[/tex]

[tex]3.5 P - 3.328 F_{BC} = 0[/tex]

[tex]3.5 P = 3.328 F_{BC}[/tex]

[tex]3.5 P = 3.328 *2.09676 \ kN[/tex]

[tex]P =\dfrac{ 3.328 *2.09676 \ kN}{3.5 }[/tex]

P = 1.9937 kN

Hence; the maximum load P that can be applied is 1.9937 kN

g A rectangular bar of length L has a slot in the central half of its length. The bar has width b, thickness t, and elastic modulus E. The slot has width b/3. The overall length of the bar is L = 570 mm, and the elastic modulus of the material is 77 GPa. If the average normal stress in the central portion of the bar is 200 MPa, calculate the overall elongation δ of the bar.

Answers

Answer:

the overall elongation δ of the bar is  1.2337 mm

Explanation:

From the information given :

According to the principle of superposition being applied to the axial load P of the system; we have:

[tex]\delta = \delta_{AB} +\delta_{BC} + \delta_{CD}[/tex]    

where;

δ = overall elongation

[tex]\delta _{AB}[/tex] = elongation of bar AB

[tex]\delta _{BC}[/tex] = elongation of  bar BC

[tex]\delta _{CD} =[/tex]  elongation of bar CD]

If we replace; [tex]\dfrac{PL}{AE}[/tex] for  δ  and bt for area;

we have:

[tex]\delta = \dfrac{P_{AB}L_{AB}}{(b_{AB}t)E} +\dfrac{P_{BC}L_{BC}}{(b_{BC}t)E}+\dfrac{P_{CD}L_{CD}}{(b_{CD}t)E}[/tex]

where ;

P = load

L = length of the bar

A = area of the cross-section

E = young modulus of elasticity

Let once again replace:

P for [tex]P_{AB}, P_{BC} , P_{CD}[/tex]  (since load in all member of AB, BC and CD will remain the same )

[tex]\dfrac{L}{4}[/tex] for [tex]L_{AB}[/tex],  

[tex]\dfrac{L}{2}[/tex] for [tex]L_{BC}[/tex] and

[tex]\dfrac{L}{4}[/tex] for [tex]L_{CD}[/tex]

[tex]2\dfrac{b}{3}[/tex] for  [tex]b_{BC}[/tex]

b for  [tex]b_{CD}[/tex]

[tex]\delta = \dfrac{P (\dfrac{L}{4})}{btE}+ \dfrac{P (\dfrac{L}{2})}{2 \dfrac{b}{3}tE}+\dfrac{P (\dfrac{L}{4})}{btE}[/tex]

[tex]\delta = \dfrac{PL}{btE}[\dfrac{1}{4}+ \dfrac{1}{2}*\dfrac{3}{2}+ \dfrac{1}{4}][/tex]

[tex]\delta = \dfrac{5}{4}\dfrac{PL}{btE} --- \ (1)[/tex]

The stress in the central portion can be calculated as:

[tex]\sigma = \dfrac{P}{A}[/tex]

[tex]\sigma = \dfrac{P}{\dfrac{2}{3}bt}[/tex]

[tex]\sigma = \dfrac{3P}{2bt}[/tex]

So; Now:

[tex]\delta = \dfrac{5}{4}* \dfrac{2 * \sigma}{3}*\dfrac{L}{E}[/tex]

[tex]\delta= \dfrac{5}{4}* \dfrac{2 * 200}{3}*\dfrac{570}{77*10^3 \ MPa}[/tex]

δ = 1.2337 mm

Therefore, the overall elongation δ of the bar is  1.2337 mm

A cylinder of metal that is originally 450 mm tall and 50 mm in diameter is to be open-die upset forged to a final height of 100 mm. The strength coefficient is 230 MPa and the work hardening exponent is 0.15 while the coefficient of friction of the metal against the tool is 0.1. If the maximum force that the forging hammer can deliver is 3 MN, can the forging be completed

Answers

Answer:

Yes, the forging can be completed

Explanation:

Given h = 100 mm, ε = ㏑(450/100) = 1.504

[tex]Y_f = 230 \times 1.504^{0.15} = 244.52[/tex]

V = π·D²·L/4 = π × 50²×450/4 = 883,572.93 mm³

At h = 100 mm, A = V/h = 883,572.93 /100 = 8835.73 mm²

D = √(4·A/π) = 106.07 mm

[tex]K_f[/tex] = 1 + 0.4 × 0.1 × 106.07/100 = 1.042

F = 1.042 × 244.52 × 8835.73 = 2252199.386 N =2.25 MN

Hence the required force = 2.25 MN is less than the available force = 3 MN therefore, the forging can be completed.

Describe with an example how corroded structures can lead to environment pollution? ​

Answers

An example to describe how it can lead to environment pollution is littering into the oceans , that’s one example how it can help lead to environment pollution , Hope this helps !

A motor vehicle has a mass of 1.8 tonnes and its wheelbase is 3 m. The centre of gravity of the vehicle is situated in the central plane 0.9 m above the ground and 1.7 m behind the front axle. When moving on the level at 90 km/h the brakes applied and it comes to a rest in a distance of 50 m.
Calculate the normal reactions at the front and rear wheels during the braking period and the least coefficient of friction required between the tyres and the road. (Assume g = 10 m/s2)

Answers

Answer:

1) The normal reactions at the front wheel is 9909.375 N

The normal reactions at the rear wheel is 8090.625 N

2) The least coefficient of friction required between the tyres and the road is 0.625

Explanation:

1) The parameters given are as follows;

Speed, u = 90 km/h = 25 m/s

Distance, s it takes to come to rest = 50 m

Mass, m = 1.8 tonnes = 1,800 kg

From the equation of motion, we have;

v² - u² = 2·a·s

Where:

v = Final velocity = 0 m/s

a = acceleration

∴ 0² - 25² = 2 × a × 50

a = -6.25 m/s²

Force, F =  mass, m × a = 1,800 × (-6.25) = -11,250 N

The coefficient of friction, μ, is given as follows;

[tex]\mu =\dfrac{u^2}{2 \times g \times s} = \dfrac{25^2}{2 \times 10 \times 50} = 0.625[/tex]

Weight transfer is given as follows;

[tex]W_{t}=\dfrac{0.625 \times 0.9}{3}\times \dfrac{6.25}{10}\times 18000 = 2109.375 \, N[/tex]

Therefore, we have for the car at rest;

Taking moment about the Center of Gravity CG;

[tex]F_R[/tex] × 1.3 = 1.7 × [tex]F_F[/tex]

[tex]F_R[/tex] + [tex]F_F[/tex] = 18000

[tex]F_R + \dfrac{1.3 }{1.7} \times F_R = 18000[/tex]

[tex]F_R[/tex] = 18000*17/30 = 10200 N

[tex]F_F[/tex] = 18000 N - 10200 N = 7800 N

Hence with the weight transfer, we have;

The normal reactions at the rear wheel [tex]F_R[/tex]  = 10200 N - 2109.375 N = 8090.625 N

The normal reactions at the front wheel [tex]F_F[/tex] =  7800 N + 2109.375 N = 9909.375 N

2) The least coefficient of friction, μ, is given as follows;

[tex]\mu = \dfrac{F}{R} = \dfrac{11250}{18000} = 0.625[/tex]

The least coefficient of friction, μ = 0.625.

cubical tank 1 meter on each edge is filled with water at 20 degrees C. A cubical pure copper block 0.46 meters on each edge with an initial temperature of 100 degrees C is quickly submerged in the water, causing an amount of water equal to the volume of the smaller cube to spill from the tank. An insulated cover is placed on the tank. The tank is adiabatic. Estimate the equilibrium temperature of the system (block + water). Be sure to state all applicable assumptions.

Answers

Answer:

final temperature = 26.5°

Explanation:

Initial volume of water is 1 x 1 x 1 = 1 [tex]m^{3}[/tex]

Initial temperature of water = 20° C

Density of water = 1000 kg/[tex]m^{3}[/tex]

volume of copper block = 0.46 x 0.46 x 0.46 = 0.097 [tex]m^{3}[/tex]

Initial temperature of copper block = 100° C

Density of copper = 8960 kg/[tex]m^{3}[/tex]

Final volume of water = 1 - 0.097 = 0.903 [tex]m^{3}[/tex]

Assumptions:

since tank is adiabatic, there's no heat gain or loss through the wallsthe tank is perfectly full, leaving no room for cooling airtotal heat energy within the tank will be the summation of the heat energy of the copper and the water remaining in the tank.

mass of water remaining in the tank will be density x volume = 1000 x 0.903 = 903 kg

specific heat capacity of water c = 4186 J/K-kg

heat content of water left Hw = mcT = 903 x 4186 x 20 = 75.59 Mega-joules

mass of copper will be density x volume = 8960 x 0.097 = 869.12 kg

specific heat capacity of copper is 385 J/K-kg

heat content of copper Hc = mcT = 869.12 x 385 x 100 = 33.46 Mega-joules

total heat in the system = 75.59 + 33.46 = 109.05 Mega-joules

this heat will be distributed in the entire system

heat energy of water within the system = mcT

where T is the final temperature

= 903 x 4186 x T = 3779958T

for copper, heat will be

mcT = 869.12 x 385 = 334611.2T

these component heats will sum up to the final heat of the system, i.e

3779958T + 334611.2T = 109.05 x [tex]10^{6}[/tex]

4114569.2T = 109.05 x [tex]10^{6}[/tex]

final temperature T = (109.05 x [tex]10^{6}[/tex])/4114569.2 = 26.5°

The basic behind equal driving is to

Answers

Follow traffic signs , Keep distance between cars , Be patient in traffic.

(a) Consider a message signal containing frequency components at 100, 200, and 400 Hz. This signal is applied to a SSB modulator together with a carrier at 100 kHz, with only the upper sideband retained. In the coherent detector used to recover the local oscillator supplies a sinusoidal wave of frequency 100.02 kHz. Determine the frequency components of the detector output. (b) Repeat your analysis, assuming that only the lower sideband is transmitted.

Answers

Answer:

Explanation:

The frequency components in the message signal are

f1 = 100Hz, f2 = 200Hz and f3 = 400Hz

When amplitude modulated with a carrier signal of frequency fc = 100kHz

Generates the following frequency components

Lower side band

[tex]100k - 100 = 99.9kHz\\\\100k - 200 = 99.8kHz\\\\100k - 400 = 99.6kHz\\\\[/tex]

Carrier frequency 100kHz

Upper side band

[tex]100k + 100 = 100.1kHz\\\\100k + 200 = 100.2kHz\\\\100k + 400 = 100.4kHz[/tex]

After passing through the SSB filter that filters the lower side band, the transmitted frequency component will be

[tex]100k, 100.1k, 100.2k\ \texttt {and}\ 100.4kHz[/tex]

At the receive these are mixed (superheterodyned) with local ocillator frequency whichh is 100.02KHz, the output frequencies will be

[tex]100.02 - 100.1k = 0.08k = 80Hz\\\\100.02 - 100.2k = 0.18k = 180Hz\\\\100.02 - 100.4 = 0.38k = 380Hz[/tex]

After passing through the SSB filter that filters the higher side band, the transmitted frequency component will be

[tex]100k, 99.9k, 99.8k\ \ and \ \99.6kHz[/tex]

At the receive these are mixed (superheterodyned) with local oscillator frequency which is 100.02KHz, and then fed to the detector whose output frequencies will be

[tex]100.02 - 99.9k = 0.12k = 120Hz\\\\100.02 - 99.8k = 0.22k = 220Hz\\\\100.02 - 99.6k = 0.42k = 420Hz[/tex]

A) The frequency Components of the Detector Output are;

80 Hz, 120 Hz and 380 Hz

B) The frequency Components if only the lower sideband is transmitted are; 120 Hz, 220 Hz and 420 Hz

Message Signals

A) We are given the frequency components in the message signal as;

f1 = 100Hzf2 = 200Hzf3 = 400Hz

We are told that the carrier signal has a frequency; fc = 100kHz

Thus, the frequency components generated are;

Lower side band:

100 kHz - 100 Hz = 99.9 kHz100 kHz - 200 Hz = 99.8 kHz100 kHz - 400 Hz = 99.6 kHz

Upper side band:

100 kHz + 100 Hz = 100.1 kHz100 kHz + 200 Hz = 100.2 kHz100 kHz + 400 Hz = 100.4 kHz

We are told that the local oscillator now supplies a sinusoidal wave of frequency 100.02 kHz.

Thus, the output frequencies are;

100.02 kHz - 100.1 kHz = 80 Hz

100.02 kHz - 100.2 kHz = 180 Hz

100.02 kHz - 100.4 kHz = 380 Hz

B) Repeating the analysis assuming only the lower sideband is repeated gives us the frequencies as;

100.02 kHz - 99.9 kHz = 120 Hz

100.02 kHz - 99.8 kHz = 220 Hz

100.02 kHz - 99.6 kHz = 420 Hz

Read more about Message Signals at; https://brainly.com/question/25904079

A walrus loses heat by conduction through its blubber at the rate of 220 W when immersed in −1.00°C water. Its internal core temperature is 37.0°C, and it has a surface area of 2.23 m2. What is the average thickness of its blubber? The conductivity of fatty tissue without blood is 0.20 (J/s · m · °C).

Answers

Answer:

The average thickness of the blubber is 0.077 m

Explanation:

Here, we want to calculate the average thickness of the Walrus blubber.

We employ a mathematical formula to calculate this;

The rate of heat transfer(H) through the Walrus blubber = dQ/dT = KA(T2-T1)/L

Where dQ is the change in amount of heat transferred

dT is the temperature gradient(change in temperature) i.e T2-T1

dQ/dT = 220 W

K is the conductivity of fatty tissue without blood = 0.20 (J/s · m · °C)

A is the surface area which is 2.23 m^2

T2 = 37.0 °C

T1 = -1.0 °C

L is ?

We can rewrite the equation in terms of L as follows;

L × dQ/dT = KA(T2-T1)

L = KA(T2-T1) ÷ dQ/dT

Imputing the values listed above;

L = (0.2 * 2.23)(37-(-1))/220

L = (0.2 * 2.23 * 38)/220 = 16.948/220 = 0.077 m

A spherical tank for storing gas under pressure is 25 m in diameter and is made of steel 15 mm thick. The yield point of the material is 240 MPa. A factor of safety of 2.5 is desired. The maximum permissible internal pressure is most nearly: 90 kPa 230 kPa 430 kPa D. 570 kPa csauteol psotolem here Pcr 8. A structural steel tube with a 203 mm x 203 mm square cross section has an average wall thickness of 6.35 mm. The tube resists a torque of 8 N m. The average shear flow is most nearly
A. 100 N/m
B. 200 N/m
C. 400 N/m
D. 800 N/m

Answers

Answer:

1) 2304 kPa

2) B. 200 N/m

Explanation:

The internal pressure of the of the tank  can be found from the following relations;

Resisting wall force F = p×(1/4·π·D²)

σ×A = p×(1/4·π·D²)

Where:

σ = Allowable stress of the tank

A = Area of the wall of the tank = π·D·t

t = Thickness of the tank = 15 mm. = 0.015 m

D = Diameter of the tank = 25 m

p = Maximum permissible internal pressure pressure

∴ σ×π·D·t = p×(1/4·π·D²)

p = 4×σ×t/D = 4 × 240 ×0.015/2.5 = 5.76 MPa

With a desired safety factor of 2.5, the permissible internal pressure = 5.76/2.5 = 2.304 MPa

2) The formula for average shear flow is given as follows;

[tex]q = \dfrac{T}{2 \times A_m}[/tex]

Where:

q = Average shear flow

T = Torque = 8 N·m

[tex]A_m[/tex] = Average area enclosed within tube

t = Thickness of tube = 6.35 mm = 0.00635 m

Side length of the square cross sectioned tube, s = 203 mm = 0.203 m

Average area enclosed within tube, [tex]A_m[/tex] = (s - t)² = (0.203 - 0.00635)² = 0.039 m²

[tex]\therefore q = \dfrac{8}{2 \times 0.039} = 206.9 \, N/m[/tex]

Hence the average shear flow is most nearly 200 N/m.

Following are the solution to the given question:

Calculating the allowable stress:

[tex]\to \sigma_{allow} = \frac{\sigma_y}{FS} \\\\[/tex]

              [tex]= \frac{240}{2.5} \\\\= 96\\\\[/tex]

Calculating the Thickness:

[tex]\to t =15\ mm = \frac{15\ }{1000}= 0.015\ m\\\\[/tex]

The stress in a spherical tank is defined as

[tex]\to \sigma = \frac{pD}{4t}\\\\\to 96 = \frac{p(25)}{4(0.015)}\\\\\to p = 0.2304\;\;MPa\\\\\to p = 230.4\;\;kPa\\\\\to p \approx 230\;\;kPa\\\\[/tex]

[tex]\bold{\to A= 203^2= 41209\ mm^2} \\\\[/tex]

Calculating the shear flow:

[tex]\to q=\frac{T}{2A}[/tex]

      [tex]=\frac{8}{2 \times 41209 \times 10^{-6}}\\\\=\frac{8}{0.082418}\\\\=97.066\\\\[/tex]

[tex]\to q=97 \approx 100 \ \frac{N}{m}\\[/tex]

Therefore, the final answer is "".

Learn more:

brainly.com/question/15744940

Consider a series RC circuit at the left where C = 6 µ F, R = 2 MΩ, and ε = 20 V. You close the switch at t = 0. Find (a) the time constant for the circuit, (b) the half-life of the circuit, (c) the current at t = 0, (d) the voltage across the capacitor at t = 0, and (e) the voltage across the resistor after a very long time.

Answers

Answer:

(a) 12 seconds (b) t = 8.31 seconds (c) 10µ A (d) V = 20 V (e) V =0

Explanation:

Solution

Given that:

C = 6 µ which is = 6 * 10^ ⁻6

R = 2 MΩ, which is = 2 * 10^ 6

ε = 20 V

(a) When it is at the time constant we have the following:

λ = CR

= 6 * 10^ ⁻6 * 2 * 10^ 6

λ =12 seconds

(b) We solve for the half life of the circuit which is given below:

d₀ = d₀ [ 1- e ^ ⁺t/CR

d = decay mode]

d₀/2 =  d₀  1- e ^ ⁺t/12

2^⁻1 = e ^ ⁺t/12

Thus

t/12 ln 2

t = 12 * ln 2

t = 12 * 0.693

t = 8.31 seconds

(c) We find the current at t = 0

So,

I = d₀/dt

I = d₀/dt e ^ ⁺t/CR

= CE/CR e ^ ⁺t/CR

E/R e ^ ⁺t/CR

Thus,

at t = 0

I  E/R = 20/  2 * 10^ 6

= 10µ A

(d) We find the voltage across the capacitor at t = 0 which is shown below:

V = IR

= 10 * 10^ ⁻6 * 2 * 10^ 6

V = 20 V

(e)  We solve for he voltage across the resistor.

At t = 0

I = 0

V =0

Solid spherical particles having a diameter of 0.090 mm and a density of 2002 kg/m3 are settling in a solution of water at 26.7C. The volume fraction of the solids in the water is 0.45. Calculate the settling velocity and the Reynolds number.

Answers

Answer:

Settling Velocity (Up)= 2.048*10^-5 m/s

Reynolds number Re = 2.159*10^-3

Explanation:

We proceed as follows;

Diameter of Particle = 0.09 mm = 0.09*10^-3 m

Solid Particle Density = 2002 kg/m3

Solid Fraction, θ= 0.45

Temperature = 26.7°C

Viscosity of water = 0.8509*10^-3 kg/ms

Density of water at 26.7 °C = 996.67 kg/m3

The velocity between the interface, i.e between the suspension and clear water is given by,

U = [ ((nf/ρf)/d)D^3] [18+(1/3)D^3)(1/2)]

D = d[(ρp/ρf)-1)g*(ρf/nf)^2]^(1/3)

D = 2.147

U = 0.0003m/s (n = 4.49)

Up = 0.0003 * (1-0.45)^4.49 = 2.048*10^-5 m/s

Re=0.09*10^-3*2.048*10^-5*996.67/0.0008509 = 2.159*10^-3

Caulking is recommended around the edges of partitions between apartments to... Group of answer choices reduce the need for trim. reduce sound transmission. reduce heat loss. increase the fire rating of the partition

Answers

Answer:

Reduce sound transmission.

Explanation:

A caulking is a flexible material used to seal joints, cracks or gaps formed between building materials and pipes against leakage.

Caulking is recommended around the edges of partitions between apartments to reduce sound transmission.

Hence, in the event that an individual notices that air or sound is gaining entrance into their apartment, a caulking can be used to mitigate this noise or unwanted sound.

The caulking when applied to the gap or edges of partitions between apartments would create a tight seal and block the flow or entry of air, thereby reducing sound transmission.

Design a decimal arithmetic unit with two selection variables, V1, and Vo, and two BCD digits, A and B. The unit should have four arithmetic operations which depend on the values of the selection variables as shown below. V1=0011, V0=0101 and output functions are as follows;
1- A+9's complement of B
2- A+B
3- A+10's complement of B
4- A+1 (add 1 to A)
(You can see question number 3 in the attached file)

Answers

Ucsaaaaauxx627384772938282’cc ed un e uff ridicolizzarla +golfista

The guy wires AB and AC are attached to the top of the transmission tower. The tension in cable AB is 8.7 kN. Determine the required tension T in cable AC such that the net effect of the two cables is a downward force at point A. Determine the magnitude R of this downward force.

Answers

Answer:

[tex] T_A_C = 6.296 kN [/tex]

[tex] R = 10.06 kN [/tex]

Explanation:

Given:

[tex] T_A_B = 8.7 kN[/tex]

Required:

Find the tension TAC and magnitude R of this downward force.

First calculate [tex] \alpha, \beta, \gamma [/tex]

[tex] \alpha = tan^-^1 =\frac{40}{50} = 38. 36 [/tex]

[tex] \beta = tan^-^1 =\frac{50}{30} = 59.04 [/tex]

[tex] \gamma = 180 - 38.36 - 59.04 = 82.6 [/tex]

To Find tension in AC and magnitude R, use sine rule.

[tex] \frac{sin a}{T_A_C} = \frac{sin b}{T_A_B} = \frac{sin c}{R} [/tex]

Substitute values:

[tex]\frac{sin 38.36}{T_A_C} = \frac{sin 59.04}{8.7} = \frac{82.6}{R}[/tex]

Solve for T_A_C:

[tex] T_A_C = 8.7 * \frac{sin 38.36}{sin 59.04} = [/tex]

[tex] T_A_C = 8.7 * 0.724 = 6.296 kN [/tex]

Solve for R.

[tex] R = 8.7 * \frac{sin 82.6}{sin 59.04} = [/tex]

[tex] R = 8.7 * 1.156 [/tex]

R = 10.06 kN

Tension AC = 6.296kN

Magnitude,R = 10.06 kN

Use a delta-star conversion to simplify the delta BCD (40 , 16 , and 8 ) in the
bridge network in Fig. f and find the equivalent resistance that replaces the network
between terminals A and B, and hence find the current I if the source voltage is 52 V.​

Answers

Answer:

Current, I = 4A

Explanation:

Since the connection is in delta, let's convert to star.

Simplify BCD:

[tex] R1 = \frac{40 * 8}{40 + 16 + 8} = \frac{320}{64} = 5 ohms [/tex]

[tex] R2 = \frac{16 * 8}{40 + 16 + 8} = \frac{128}{64} = 2 ohms [/tex]

[tex] R3 = \frac{40 * 16}{40 + 16 + 8} = \frac{640}{64} = 10 ohms [/tex]

From figure B, it can be seen that 6 ohms and 6 ohms are connected in parallel.

Simplify:

[tex] \frac{6 * 6}{6 + 6} = \frac{36}{12} = 3 \ohms [/tex]

Req = 10 ohms + 3 ohms

Req = 13 ohms

To find the current, use ohms law.

V = IR

Where, V = 52volts and I = 13 ohms

Solve for I,

[tex] I = \frac{V}{R} = \frac{52}{13} = 4A[/tex]

Current, I = 4 A

Scheduling can best be defined as the process used to determine:​

Answers

Answer:

Overall project duration

Explanation:

Scheduling can best be defined as the process used to determine a overall project duration.

An Ideal gas is being heated in a circular duct as while flowing over an electric heater of 130 kW. The diameter of duct is 500 mm. The gas enters the heating section of the duct at 100 kPa and 27 deg C with a volume flow rate of 15 m3/s. If heat is lost from the gas in the duct to the surroundings at a rate of 80 kW, Calculate the exit temperature of the gas in deg C. (Assume constant pressure, ideal gas, negligible change in kinetic and potential energies and constant specific heat; Cp =1000 J/kg K; R = 500 J/kg K)

Answers

Answer:

Exit temperature = 32 °C

Explanation:

We are given;

Initial Pressure;P1 = 100 KPa

Cp =1000 J/kg.K = 1 KJ/kg.k

R = 500 J/kg.K = 0.5 Kj/Kg.k

Initial temperature;T1 = 27°C = 273 + 27K = 300 K

volume flow rate;V' = 15 m³/s

W = 130 Kw

Q = 80 Kw

Using ideal gas equation,

PV' = m'RT

Where m' is mass flow rate.

Thus;making m' the subject, we have;

m' = PV'/RT

So at inlet,

m' = P1•V1'/(R•T1)

m' = (100 × 15)/(0.5 × 300)

m' = 10 kg/s

From steady flow energy equation, we know that;

m'•h1 + Q = m'h2 + W

Dividing through by m', we have;

h1 + Q/m' = h2 + W/m'

h = Cp•T

Thus,

Cp•T1 + Q/m' = Cp•T2 + W/m'

Plugging in the relevant values, we have;

(1*300) - (80/10) = (1*T2) - (130/10)

Q and M negative because heat is being lost.

300 - 8 + 13 = T2

T2 = 305 K = 305 - 273 °C = 32 °C

13000 + 300 - 8000 = T2

A non-inductive load takes a current of 15 A at 125 V. An inductor is then connected in series in order that the same current shall be supplied from 240 V, 50 Hz mains. Ignore the resistance of the inductor and calculate: i. the inductance of the inductor; ii. the impedance of the circuit; iii. the phase difference between the current and the applied voltage.

Answers

Answer:

(i) The inductance of the inductor is = 43.43 mH (ii) the impedance of the circuit is = 16∠58.61° Ω (iii) the phase difference for current and the voltage applied is Q = 58.61°

Explanation:

Solution

Given that:

I= 5 A

V = 125V

Resistance R= Not known yet

Thus

To find the resistance we have the following formula which is shown below:

R = V/I

=125/15

R =8.333Ω

Now,

Voltage = 240

Frequency = 50Hz

Current (I) remain at = 15A

Z= not known (impedance)

so,

To find the impedance we have the formula which is shown below:

Z = V/I =240/15

Z= 16Ω⇒ Z = R + jXL

Z = 8.333 + jXL = 16

Thus

√8.333² + XL² = 16²

8.333² + XL² = 16²

XL² = 186.561

XL = 13.658Ω

Now

We find the inductance of the Inductor and the impedance of the circuit.

(i) In solving for the inductance of the inductor, a formula is applied here, which is shown below:

L =  XL/w

=13.658/ 2π * 50

=13.658/314.15 = 0.043 = 43.43 mH

Note: w= 2πf

(ii) For the impedance of the circuit we have the following:

z = 8.333 + j 13.658

z = 16∠58.61° Ω

(iii) The next step is to find the phase difference between the applied voltage and current.

Q =  this is the voltage across the inductor in a series of resonant circuit.

Q can also be called the applied voltage

Thus,

Q is described as an Impedance angle

Therefore, Q = 58.81°

Technician A says that one planetary gear set can provide gear reduction, overdrive, and reverse. Technician B says that most transmissions today use compound (multiple) planetary gear sets. Which technician is correct?

Answers

Answer:

Both technician A and technician B are correct

Explanation:

A planetary gearbox consists of a gearbox with the input shaft and the output shaft that is aligned to each other. It is used to transfer the largest torque in the compact form. A planetary gearbox has a compact size and low weight and it has high power density.

One planetary gear set can provide gear reduction, overdrive, and reverse. Also, most transmissions today use compound (multiple) planetary gears set.

So, both technician A and technician B are correct.

Given in the following v(t) signal.
a. Find the first 7 harmonics of the Fourier series function in cosine form.
b. Plot one side spectrum
c. Find the first 7 harmonics of the Fourier series function in exponential form.
d. Plot two side spectrum Given in the following v(t) signal.

Answers

Answer:

Check the v(t) signal referred to in the question and the solution to each part in the files attached

Explanation:

The detailed solutions of parts a to d are clearly expressed in the second file attached.

Sensors are used to monitor the pressure and the temperature of a chemical solution stored in a vat. The circuitry for each sensor produces a HIGH voltage when a specified maximum value is exceeded. An alarm requiring a LOW voltage input must be activated when either the pressure or the temperature is excessive. Design a circuit for this application

Answers

Circle because it’s round and we all love round things

A 10-mm-diameter Brinell hardness indenter produced an indentation 1.55 mm in diameter in a steel alloy when a load of 500 kg was used. Calculate the Brinell hardness (in HB) of this material. Enter your answer in accordance to the question statement HB

Answers

Answer:

HB = 3.22

Explanation:

The formula to calculate the Brinell Hardness is given as follows:

[tex]HB = \frac{2P}{\pi D\sqrt{D^{2}- d^{2} } }[/tex]

where,

HB = Brinell Hardness = ?

P = Applied Load in kg = 500 kg

D = Diameter of Indenter in mm = 10 mm

d = Diameter of the indentation in mm = 1.55 mm

Therefore, using these values, we get:

[tex]HB = \frac{(2)(500)}{\pi (10)\sqrt{10^{2}- 1.55^{2} } }[/tex]

HB = 3.22

Other Questions
A horizontal force of 150 N is used to push a 40.0-kg packing crate a distance of 6.00 m on a rough horizontal surface. If the crate moves at constant speed, find (a) the work done by the 150-N force and (b) the coefficient of kinetic friction between the crate and surface. Which of the following machines most likely has the greatest efficiency?aA. AirplaneB. AutomobileC. BicycleD. Human body NEED HELP WITH SPANISH 3 !!!Complete the report with the clubs accomplishments and failures using present perfect. Jana ran 7 days last week. She ran the same number of miles every day, and she ran 28 miles in all. What is Janas rate? Which of these the BEST example of interdependence? A)a fisherman buys a net to catch more fish B)a seamstress needs fabric to make dresses C)a ship's captain has to make repairs to his sails D)a lumberjack trades wood to a person who makes axes Given OR, how is it known that QS=YT? A 5.50-kg bowling ball moving at 9.00 m/s collides with a 0.850-kg bowling pin, which is scattered at an angle of 85.0 0 to the initial direction of the bowling ball and with a speed of 15.0 m/s. (a) Calculate the final velocity (magnitude and direction) of the bowling ball. Which statement Describes a common belief of philosophers Thomas Hobbes,John Locke and jean-Jacques Rousseau 1. What is the main idea in High Incomes Don't Bring You Happiness"|| what are some of the factors to promote national unity? The supreme courts use of selective incorporationA. Only applies to amendments added before 1850B. Only applies in cases where there is not enough evidence of a crime. C. Takes a subjective case by case approach to the question of incorporation. D. Takes the same approach to the question of incorporation in all cases. Does anyone have any good quotes that relate to sacrifice and relationships. l Active transportIL Simple diffusionlll Facilitated diffusionIV. OsmosisWhich of the above type of transport moves molecules against a concentration gradient?Your answer:ll and lV only l onlyll only not sure what this one is A 2 kg car moving towards the right at 4 m/s collides head on with an 8 kg car moving towards the left at 2 m/s, and they stick together. After the collision, the velocity of the combined bodies is:_____________.a) 2.4 m/s towards the left.b) 2.4 m/s towards the right.c) 0.8 m/s towards the left.d) 0e) 0.8 m/s towards the right. What ethnic group is regarded as second-class citizens in BulgariaTurksRomasArmeniansMacedonians four steps that should be followed to make virtual learning interesting and more affordable For delivering the ethics message effectively, Bailey and Burch (2011) recommend good communication skills and familiarity with the BACB compliance code. In some cases, the behavior analyst will have an immediate response to address an ethical dilemma. In other cases, the behavior analyst may be caught by surprise or be unsure of what to say, especially if the issue is unclear or falls in a gray area. In order to refer to the guidelines or speak with a supervisor, the behavior analyst may "buy some time" to respond by saying: The total energy need during pregnancy is normally distributed, with a mean of 2600 kcal/day and a standard deviation of 50 kcal/day. Include your Normal curve for all parts! a) [4 pts] If one pregnancy is randomly selected, find the probability that the total energy need is more than 2650 kcal/day. b) [4 pts] The middle 30% of total energy need during pregnancy are between what values? c) [4 pts] What is the probability that a random sample of 20 pregnant women has a mean energy need of more than 2625 kcal/day? Write letter to your friend suggesting new ways to stay fit physically and mentally