The molar mass of NH3 is 17.03 g/mol. How many moles of NH3 are present in 107.1 g?
a. 0.1623 mol b. 3.614 mol c. 107.1 mol
d. 6.289 mol

Answers

Answer 1

Answer:D. 6.289

Explanation:


Related Questions

gallium-67 is used medically in tumor-seeking agents. the half-life of gallium-67 is 78.2 hours. if you begin with 46.4 mg of this isotope, what mass remains after 93.8 hours have passed?

Answers

After 93.8 hours have passed, 11.6 mg of gallium-67 remains from 46.4 mg of this gallium-67.


The half-life of gallium-67 is 78.2 hours, which means that every 78.2 hours, half of the original amount of the isotope will decay. Using this information, we can determine how much gallium-67 will remain after 93.8 hours have passed.
First, we need to determine how many half-lives have passed in 93.8 hours. We can do this by dividing 93.8 hours by the half-life of gallium-67:

93.8 hours ÷ 78.2 hours/half-life = 1.2 half-lives

This means that 1.2 half-lives have passed, and we can calculate how much gallium-67 remains using the formula:
Amount remaining = (Initial amount) x (1/2)^(number of half-lives)

Plugging in the values we have:

Amount remaining = (46.4 mg) x (1/2)^(1.2) = 11.6 mg

Therefore, after 93.8 hours have passed, 11.6 mg of gallium-67 remains.

Learn more about half-life here:

https://brainly.com/question/24710827

#SPJ11

how many moles of kcl are present in 50.0 ml of a 0.552 m solution?

Answers

To calculate the number of moles of KCl present in a 50.0 ml solution with a concentration of 0.552 M, we need to use the formula: moles = concentration x volume (in liters)

Therefore, there are 0.0276 moles of KCl present in a 50.0 ml solution with a concentration of 0.552 M.

To find the number of moles of KCl in a 50.0 mL solution with a concentration of 0.552 M, you'll need to use the formula:

Moles of solute = Volume of solution (in liters) × Molarity

So, there are 0.0276 moles of KCl present in 50.0 mL of a 0.552 M solution.

To learn more about KCl click here: brainly.com/question/23953654

#SPJ11

1. Magnesium sulfate (MgSO4), also known as Epsom salt, is a common ingredient in bathing salts. A typical formula calls for 2.5 pounds (1134g) of epsom salt to be added to a 30 gallon (136L) bathtub filled with water. What is the molarity of the resulting solution?

Answers

The molarity of the resulting solution of magnesium sulfate is 0.069 M.

To calculate the molarity of the resulting solution of magnesium sulfate, we need to first determine the number of moles of magnesium sulfate present in the solution. We can do this by using the formula:

moles = mass / molar mass

The molar mass of magnesium sulfate is 120.37 g/mol. Therefore, the number of moles of magnesium sulfate present in 2.5 pounds (1134g) can be calculated as:

moles = 1134g / 120.37 g/mol

moles = 9.43 mol

Now, we need to determine the volume of the solution. A 30-gallon (136L) bathtub filled with water is equivalent to 136,000 milliliters. However, not all of this volume will be occupied by the magnesium sulfate, since we are adding 2.5 pounds (1134g) of Epsom salt to the water. Assuming that the density of the magnesium sulfate solution is 1 g/mL, we can calculate the volume occupied by the magnesium sulfate as:

volume = mass / density

volume = 1134g / 1 g/mL

volume = 1134 mL

Thus, the total volume of the solution is:

total volume = 136,000 mL + 1134 mL

total volume = 137,134 mL

Finally, we can calculate the molarity of the solution using the formula:

molarity = moles / volume (in liters)

Converting the total volume to liters, we get:

total volume = 137,134 mL / 1000 mL/L

total volume = 137.134 L

Substituting the values we have obtained, we get:

molarity = 9.43 mol / 137.134 L

molarity = 0.069 M

for more questions on molarity

https://brainly.com/question/30404105

#SPJ11

For a standard cell made using gold (Au) and gold (III) nitrate, cobalt and cobalt (II) nitrate, write the spontaneous reaction and the reaction in cell notation form

Answers

The spontaneous reaction for the standard cell made using gold (Au) and gold (III) nitrate, cobalt and cobalt (II) nitrate is:
Au + Co2+ → Au3+ + Co+

The reaction in cell notation form is:

Au | Au3+ || Co2+ | Co+ | Co

Where Au represents the electrode made of gold, Au3+ represents the gold (III) nitrate solution, Co2+ represents the cobalt (II) nitrate solution, Co+ represents the cobalt electrode, and the double line represents the salt bridge.

For the standard cell made using the given components, we first need to determine the half-reactions. They are:

Au³⁺(aq) + 3e⁻ → Au(s) [Reduction]
Co(s) → Co²⁺(aq) + 2e⁻ [Oxidation]

Now we can balance the electrons and write the spontaneous reaction:

2Au³⁺(aq) + 3Co(s) → 2Au(s) + 3Co²⁺(aq)

For the cell notation, we can represent it as follows:

Co(s)|Co²⁺(aq)||Au³⁺(aq)|Au(s)

Visit here to learn more about half-reactions  :  https://brainly.com/question/18403544
#SPJ11

sharon is a gymnast. a personal trainer measured her body fat at 7 percent. sharon is

Answers

Sharon, a gymnast, has a body fat percentage of 7%. This is considered a very low body fat percentage, and is often associated with athletes and fitness competitors. Maintaining such a low body fat percentage requires strict diet and exercise regimes, and can have potential health risks.

Body fat percentage is the proportion of fat to total body weight. For athletes like Sharon, having a low body fat percentage is often desirable as it can improve performance and appearance.

A body fat percentage of 7% is considered very low, and is often only achieved by bodybuilders, fitness competitors, and other elite athletes.

However, maintaining such a low body fat percentage requires strict diet and exercise regimes, which can have potential health risks. Extremely low body fat levels can lead to hormonal imbalances, decreased immunity, and reproductive issues in women.

Therefore, it is important for athletes like Sharon to balance their desire for a low body fat percentage with maintaining overall health and well-being.

In conclusion, Sharon's body fat percentage of 7% is very low and reflects her dedication to fitness and athletics.

However, achieving and maintaining such a low body fat percentage can come with potential health risks and requires careful attention to diet and exercise.

Visit here to learn more about hormonal imbalances:

brainly.com/question/5498976

SPJ11

Two students are trying to figure out the Calories contained in a potato chip. They burn the potato chip and feel the heat. They decide to measure this heat by putting a can of water above the burning potato chip so they can measure the heat gained by the water.

1 Calorie = 1,000 calories

4.184 J = 1 cal

Specific heat of water is 4.184 J/g °C.

They collect the following data:

mass of water in can 47.2 g
initial temperature of water 20.0 °C
final temperature of water 25.9 °C

How many Cal were stored in the potato chip? Round your answer to 2 decimal places.

Answers

Approximately 0.28 calories were stored in the potato chip.

To determine the number of calories stored in a potato, we can use the principles of calorimetry and the given data. Calorimetry involves measuring the heat gained or lost by a substance, in this case water, to calculate the thermal energy released by the potato chips.

First we need to calculate the change in water temperature:

ΔT = final temperature - initial temperature

AT = 25.9°C - 20.0°C

AT = 5.9 °C

Next, we can calculate the heat gained by the water using the formula:

Heat gained by water = mass of water × specific heat capacity of water × ΔT

Heat gained by water = 47.2 g × 4.184 J/g °C × 5.9 °C

Heat gained by water = 1175.65 J

Now we convert the heat gained by the water into calories:

Heat gained by water (in cal) = heat gained by water (in J) / 4.184 J/cal

Heat gained by water (in cal) = 1175.65 J / 4.184 J/cal

Heat gained by water (in cal.) ≈ 281.01 cal

Finally, we convert calories to calories:

Calories = Heat gained by water (in cal) / 1000 cal/Cal

Calories = 281.01 cal / 1000 cal/cal

Calories ≈ 0.28 cal

For more such questions on Calorimetry,

https://brainly.com/question/3609481

#SPJ11

write the overall reaction that describes the effect of atomic chlorine on ozone in the stratosphere:

Answers

The overall reaction that describes the effect of atomic chlorine on ozone in the stratosphere is as follows:

Cl + O₃ → ClO + O₂

This is a chemical reaction that occurs in the stratosphere when atomic chlorine (Cl) reacts with ozone (O₃) to form chlorine monoxide (ClO) and oxygen gas (O₂).

The reaction is initiated by the photodissociation of chlorine-containing molecules, such as chlorofluorocarbons (CFCs), by high-energy ultraviolet radiation from the sun.

The resulting atomic chlorine reacts with ozone molecules, leading to the destruction of ozone in the stratosphere. This reaction is one of the major causes of the ozone hole over the Antarctic and Arctic regions.

To learn more about the stratosphere, follow the link:

https://brainly.com/question/13497783

#SPJ1

If you were to attempt to make 45.0 g of methane from carbon dioxide and water (with O₂ also being produced), how much heat would be absorbed during the reaction?

Answers

The heat absorbed during the production of 45.0 g of methane from carbon dioxide and water is 2,455 kJ.

What is the heat absorbed during the reaction?

The chemical reaction of the reaction is given as;

CO₂ + 4H₂O → CH₄ + 2O₂

The standard enthalpies of formation;

CO₂ = -393.5 kJ/mol

H₂O = -285.8 kJ/mol

CH₄ =  -74.8 kJ/mol

O₂ = - 0 kJ/mol

The enthalpy change of the reaction can be calculated as follows:

ΔH = Σ(nΔH (products)) - Σ(nΔH(reactants))

Where;

n is the coefficient of each compoundΔH is the standard enthalpy of formation

The enthalpy change is calculated as;

ΔH = [(1 mol CH₄ × -74.8 kJ/mol) + (2 mol O₂ × 0 kJ/mol)] - [(1 mol CO₂ × -393.5 kJ/mol) + (4 mol H₂O × -285.8 kJ/mol)]

ΔH = (-74.8 kJ/mol + 0 kJ/mol) - (-393.5 kJ/mol + (-1143.2 kJ/mol))

ΔH = 874.9 kJ/mol

moles CH₄ = 45.0 g ÷ 16.04 g/mol = 2.81 mol

The heat absorbed during the reaction can be calculated as follows;

q = ΔH × moles CH₄

q = 874.9 kJ/mol × 2.81 mol

q = 2,455 kJ

Learn more about heat absorbed here: https://brainly.com/question/8828503

#SPJ1

A student is using a calorimeter to determine the specific heat of a metallic sample. She measures out 135.7 grams of her metal and heats it to 81.7 degrees Celsius. Then, she puts the sample into a calorimeter containing 10.82 grams of water at 48.9 degrees Celsius. She measures the temperature of the water in the calorimeter until the number stops changing, then records the final temperature to be 68.3 degrees Celsius. What is the specific heat of the metal? Please answer to three digits after the decimal point.

Answers

The specific heat of the metal can be calculated using the formula:

q = m × c × ΔT

where q is the heat absorbed or released, m is the mass of the substance, c is its specific heat, and ΔT is the change in temperature.

The heat absorbed by the metal is equal to the heat released by the water:

m_metal × c_metal × ΔT_metal = m_water × c_water × ΔT_water

Solving for c_metal, we get:

c_metal = (m_water × c_water × ΔT_water) / (m_metal × ΔT_metal)

Plugging in the given values, we get:

c_metal = (10.82 g × 4.184 J/g°C × (68.3 - 48.9)°C) / (135.7 g × (81.7 - 68.3)°C)

c_metal = 0.427 J/g°C (rounded to three decimal places)

Therefore, the specific heat of the metal is 0.427 J/g°C.

a mineral with a hardness of 6 and a white streak has been found in igneous rocks near richmond. if the mineral sample has a volume of 3 . 1 c and a mass of , what is the density of the mineral?

Answers

The density of the mineral cannot be calculated with the given information because the mass of the mineral is missing in the question.

Hardness and streak color are not directly related to density, and thus cannot be used to determine the density of a mineral. To calculate the density of a mineral, both its mass and volume are required. However, only the volume is given in the question. The mass of the mineral sample is missing, so the density cannot be calculated.

Density is the amount of mass in a given volume, and without knowing the mass, it is impossible to calculate the density. It is important to note that each mineral has a unique density, which can be used as a identifying characteristic. To find the density of a mineral, both its mass and volume need to be measured using proper instruments such as a balance and a graduated cylinder.

Learn more about density here:

https://brainly.com/question/29775886

#SPJ11

What is the molecular geometry of ClCN as predicted by the VSEPR theory? (Carbon is the central atom.)
A) linear
B) bent
C) tetrahedral
D) trigonal planar
E) none of these choices is correct

Answers

Using the VSEPR theory and the Lewis structure of ClCN, we can predict that the molecular geometry of this compound is bent.  The answer is B) bent.

According to the VSEPR theory, the molecular geometry of ClCN (with carbon as the central atom) can be determined by considering the arrangement of electron pairs around the central atom. Cl has 7 valence electrons, C has 4, and N has 5. When we draw the Lewis structure, we see that there are 3 regions of electron density around C, with 2 bonding pairs and 1 lone pair. This results in a bent molecular geometry, with a bond angle of approximately 117 degrees. Therefore, the answer is B) bent.

To know more about Lewis structure visit:

brainly.com/question/29603042

#SPJ11

what volume of 0.160 mli2s solution is required to completely react with 130 ml of 0.160 mco(no3)2?

Answers

We need 0.130 liters (130 mL) of the 0.160 M Li2S solution to completely react with 130 mL of 0.160 M Co(NO3)2.

To answer your question, we can use the equation:

mLi2S x VLi2S = mCo(NO3)2 x VCo(NO3)2

where m represents the molarity and V represents the volume in liters.

We are given that the molarity of the Li2S solution is 0.160 M, and we need to find the volume required to completely react with 130 mL of 0.160 M Co(NO3)2.

First, we need to convert the volumes to liters:

130 mL = 0.130 L
VCo(NO3)2 = 0.130 L

Now we can plug in the values and solve for VLi2S:

0.160 M x VLi2S = 0.160 M x 0.130 L
VLi2S = (0.160 M x 0.130 L) / 0.160 M
VLi2S = 0.130 L

Therefore, we need 0.130 liters (130 mL) of the 0.160 M Li2S solution to completely react with 130 mL of 0.160 M Co(NO3)2.

Visit here to learn more about molarity brainly.com/question/2817451

#SPJ11

if the reactant solution is used to write on a piece of paper and the paper is allowed to partially dry the ink disappears. what can be done to bring out the colored handwriting

Answers

It is important to note that the specific reactant solution used to write on the paper may also affect the outcome, so it may be helpful to experiment with different solutions to see which yields the best results.

To bring out the colored handwriting on the paper, there are a few options to consider. First, you could try re-wetting the paper by lightly dabbing it with a wet cloth or sponge. This will help to reactivate the ink and allow it to show through once again. Another option is to hold the paper up to a light source, such as a lamp or window, to see if the ink becomes more visible. If these methods do not work, it is possible that the ink has completely evaporated or been absorbed by the paper fibers, in which case there may not be a way to bring back the colored handwriting. It is important to note that the specific reactant solution used to write on the paper may also affect the outcome, so it may be helpful to experiment with different solutions to see which yields the best results.
To know more about Reactant solutions visit:

https://brainly.com/question/30256063

#SPJ11

what type of motorcycle should i get quiz

Answers

Choosing the right type of motorcycle depends on several factors, such as your level of experience, riding preferences, and intended use. Taking a quiz or questionnaire can be a fun way to get a general idea of the type of motorcycle that may suit you best, but it's important to do your own research and consult with experts to make an informed decision.

There are many different types of motorcycles on the market, each with its own strengths and weaknesses. Some popular categories include cruisers, sport bikes, touring bikes, dual-sport bikes, and standard motorcycles.

The best type of motorcycle for you will depend on a variety of factors, including your level of experience, your riding preferences, and what you plan to use the motorcycle for.

To get a general idea of the type of motorcycle that may be a good fit for you, taking a quiz or questionnaire can be a helpful starting point. Many online quizzes will ask you questions about your experience level, body type, and riding style to help narrow down your options.

However, it's important to keep in mind that these quizzes are just a general guide and should not be relied upon as the sole source of information.

Ultimately, the best way to determine the right type of motorcycle for you is to do your own research and consult with experts. Visit local dealerships, read reviews and product specifications, and talk to experienced riders to get a better understanding of what each type of motorcycle has to offer.

Visit here to learn more about Motorcycle:

brainly.com/question/26399187

#SPJ11

(4) Zinc metal reacts with hydrochloric acid according to the following balanced equation:
Zn + 2 HCI (
ZnCl₂ + H₂
Data from an experiment to determine the en
Mass of zinc dust: .103 g
Mass of calorimeter: 3.24g
Mass of calorimeter + HCl+Zn: 53.35g
Initial solution temperature 22.5 degrees C
Final solution temperature: 23.7 degrees C
(a) Is the reaction endo- or exothermic? Explain. [2]

(b) Use the data in the table to work out the enthalpy change for the reaction, in kilojoules per
mole of zinc. [5]

Answers

a. The reaction is exothermic.

b. The enthalpy change for the reaction is 160.13 kJ/mol of zinc.

(a) To determine whether the reaction is endothermic or exothermic, we can analyze the change in temperature during the reaction. In this case, the temperature increased from 22.5°C to 23.7°C. Since the final temperature is higher than the initial temperature, it indicates that heat was released during the reaction. Therefore, the reaction is exothermic.

(b) To calculate the enthalpy change (ΔH) for the reaction, we need to use the formula:

ΔH = q / n

Where ΔH is the enthalpy change, q is the heat absorbed or released, and n is the number of moles of zinc involved in the reaction.

First, we need to calculate the heat (q) absorbed or released during the reaction. The heat gained or lost by the reaction is equal to the heat gained or lost by the surroundings, which can be determined using the calorimetry equation:

q = mcΔT

Where q is the heat gained or lost, m is the mass of the solution (calorimeter + HCl + Zn), c is the specific heat capacity of the solution, and ΔT is the change in temperature (final temperature - initial temperature).

In this case, the mass of the solution is 53.35 g - 3.24 g = 50.11 g, and the specific heat capacity of the solution can be assumed to be the same as water (4.18 J/g°C).

Using the given values, we can calculate:

ΔT = 23.7°C - 22.5°C = 1.2°C = 1.2 K

q = (50.11 g)(4.18 J/g°C)(1.2 K) = 251.3 J

Next, we need to determine the number of moles of zinc involved in the reaction. The molar mass of zinc (Zn) is 65.38 g/mol, and the mass of zinc used in the experiment is 0.103 g.

n = 0.103 g / 65.38 g/mol = 0.00157 mol

Finally, we can calculate the enthalpy change (ΔH):

ΔH = q / n = 251.3 J / 0.00157 mol = 160,127 J/mol

To convert the result to kilojoules per mole, we divide by 1000:

ΔH = 160,127 J/mol / 1000 = 160.13 kJ/mol

Therefore, the enthalpy change for the reaction is 160.13 kJ/mol of zinc.

Know more about calorimetry equation here:

https://brainly.com/question/11477213

#SPJ11

which of the following octahedral complex ions will have the fewest number of unpaired electrons? 1) [FeF_6]^3 2)[Cr(H_2O)_6]^3+ 3) [Ni(NH_3))_6]^2+ 4) [RhCl_6]^3- 5)[V(H_2O)_6]^3+

Answers

The number of unpaired electrons in a complex ion depends on the number of electrons in the d-orbitals of the metal ion. The d-electron configuration of each complex ion is as follows: 1) d5, 2) d3, 3) d8, 4) d5, and 5) d2.

The complex ion with the fewest number of unpaired electrons will be the one with the highest d-electron pairing energy, which is the energy required to pair up electrons in the same orbital. The complex ion with the highest pairing energy is [Ni(NH3)6]2+, with all of its electrons paired up. Therefore, the answer is 3) [Ni(NH3)6]2+.

The octahedral complex ion with the fewest number of unpaired electrons is 3) [Ni(NH_3)_6]^2+. This is because Ni^2+ has an electron configuration of 3d^8, which means all its d-orbitals are either completely filled or contain paired electrons. In contrast, the other complex ions have metal ions with more unpaired electrons in their d-orbitals, such as Fe^3+ (3d^5), Cr^3+ (3d^3), Rh^3+ (4d^6), and V^3+ (3d^2). The ligands in each complex do not significantly affect the number of unpaired electrons. Thus, [Ni(NH_3)_6]^2+ has the lowest number of unpaired electrons among the given options.

To know about electron:

https://brainly.com/question/2288405

#SPJ11

Consider the following reaction,
Al2S3(s) + 6 H2O (l) → 2 Al(OH)3(s) + 3 H2S(g)
Calculate
Amount of Al(OH)3(s) in grams that can be formed when 25.00 g of Al2S3
Amount of Al(OH)3(s) in grams that can be formed when 25.00 g of H2O.
What is the maximum amount of Al(OH)3 that can be formed in this given reaction?
Identify the limiting reagent in this reaction, if any.

Answers

To calculate the amount of Al(OH)³ formed from 25.00 g of Al₂S₃ and 25.00 g of H₂O .The limiting reagent is Al₂S₃. Maximum mass of Al(OH)₃= 25.99 g (approximately)

1. Molar mass of Al₂S₃ = (2 * atomic mass of Al) + (3 * atomic mass of S)

Molar mass of Al₂S₃ = (2 * 26.98 g/mol) + (3 * 32.07 g/mol)

Molar mass of Al₂S₃ = 150.16 g/mol

Moles of Al₂S₃ = Mass of Al₂S₃ / Molar mass of Al₂S₃

Moles of Al₂S₃ = 25.00 g / 150.16 g/mol

Molar mass of Al(OH)³ = (1 * atomic mass of Al) + (3 * atomic mass of O) + (3 * atomic mass of H)

Molar mass of Al(OH)³ = (1 * 26.98 g/mol) + (3 * 16.00 g/mol) + (3 * 1.01 g/mol)

Molar mass of Al(OH)³ = 78.00 g/mol

2.Amount of Al(OH)³ formed from 25.00 g of H₂O:

Moles of H₂O = Mass of H2O / Molar mass of H₂O

Moles of H₂O = 25.00 g / 18.02 g/mol

6 moles of H₂O produce 2 moles of Al(OH)³

Moles of Al(OH)³ = (2/6) * Moles of H₂O

Now, we can calculate the mass of Al(OH)³ formed using its molar mass.

To determine the maximum amount of Al(OH)³ that can be formed, we compare the amounts of Al(OH)³ calculated from the two reactants.

To learn more about  molar mass.

brainly.com/question/31545539

#SPJ4

what is the molarity of calcium bicarbonate if 9.78 ml of 1.00 m hno3 is required in a titration to neutralize 50.0 ml of a solution of ca(hco3)2?

Answers

The molarity of calcium bicarbonate is 0.0978 M. To determine the molarity of calcium bicarbonate, we first need to use the balanced chemical equation:

Ca(HCO3)2 + 2HNO3 → Ca(NO3)2 + 2H2O + 2CO2

From the equation, we can see that 1 mole of Ca(HCO3)2 reacts with 2 moles of HNO3. Therefore, the number of moles of HNO3 used in the titration is:

n(HNO3) = M(HNO3) × V(HNO3) = 1.00 M × 9.78 ml = 0.00978 moles

Since 1 mole of Ca(HCO3)2 reacts with 2 moles of HNO3, the number of moles of Ca(HCO3)2 in the solution is:

n(Ca(HCO3)2) = 0.00978 moles / 2 = 0.00489 moles

Finally, we can calculate the molarity of Ca(HCO3)2 by dividing the number of moles by the volume of the solution:

M(Ca(HCO3)2) = n(Ca(HCO3)2) / V(Ca(HCO3)2) = 0.00489 moles / 50.0 ml = 0.0978 M

Therefore, the molarity of calcium bicarbonate is 0.0978 M.

To know about Solution:

https://brainly.com/question/15757469

#SPJ11

Arrange the following isoelectronic series in order of decreasing radius: Cl-, P3-,s2-,ca2+,K+

Answers

Answer: P3-, S2-, Cl-, K+, Ca2+

Explanation:

All of the ions are isoelectronic, so the largest ions will be the ones with extra repulsion between their electrons due to the presence of additional electrons that decrease the Zeff of the valence electrons of the ion, increasing the distance between the valence electrons and the nucleus and the ionic radius. Positive ions represent a deficiency in electrons, and their positive charge strongly attracts the electrons, causing them to be close to the nucleus, thus making their ionic radius small.

With the ionic radius patterns for charges, the largest ion will be the most negative one and the following ions will become less and less negative until we reach the smallest ion, which will be the most positive ion.

Thus, the answer is P3-, S2-, Cl-, K+, Ca2+

When a light of wavelength 470nm is forced on the surface of potassium metal, electrons are emitted with a velocity of 6. 4x10^4m/s. What is the minimum energy required to remove an electron from the surface of potassium metal?

Answers

The minimum energy required to remove an electron from the surface of potassium metal can be calculated using the following formula:

E = hf - Φ

where E is the energy required to remove an electron, h is Planck's constant (6.626 x 10^-34 J s), f is the frequency of the light, and Φ is the work function of the metal (the minimum amount of energy required to remove an electron).

We can start by calculating the frequency of the light using the formula:

c = λf

where c is the speed of light (3.00 x 10^8 m/s) and λ is the wavelength of the light (470 nm):

f = c/λ = (3.00 x 10^8 m/s) / (470 x 10^-9 m) = 6.38 x 10^14 Hz

Now we can use the formula for the energy required to remove an electron:

E = hf - Φ

where Φ for potassium is 2.31 eV (or 3.70 x 10^-19 J).

First, we need to convert the frequency to energy using the formula:

E = hf

E = (6.626 x 10^-34 J s) x (6.38 x 10^14 Hz) = 4.23 x 10^-19 J

Now we can calculate the minimum energy required to remove an electron:

E = hf - Φ = (4.23 x 10^-19 J) - (3.70 x 10^-19 J) = 0.53 x 10^-19 J

Therefore, the minimum energy required to remove an electron from the surface of potassium metal is 0.53 x 10^-19 J.

Learn more about wavelength here:

brainly.com/question/32142372

#SPJ11

A student finds the average Keq to be 370.
a. Calculate the approximate [FeSCN2+]/[SCN-] in Part 3 if [Fe3+] = 0.10 M.
b. (b) what percent of the SCN − present initially have been converted to FeSCN2+ at equilibrium?

Answers

For an equilibrium constant, K꜀=370,

a) The approximate value of [tex]\frac { [FeSCN²⁺]}{ [SCN⁻ ]} [/tex] is 37.

b) The percent of the SCN⁻ present initially have been converted to FeSCN²⁺ at equilibrium is equals to the 37%.

The equilibrium constant is equal to the rate constant of the forward reaction divided by the rate constant of the reverse reaction, i.e., Concentration of products to the concentration of reactants. Formula, [tex] K_{eq }= K_c = \frac { [FeSCN²⁺]}{[Fe³⁺ ] [SCN⁻ ]}[/tex]

K is equilibrium constantA, B are reactants C, D are products[A]--> equilibrium concentration of A a --> number of moles of A

We have a the average Equilibrium constant, K꜀ = 370

The concentration of [Fe³⁺] = 0.10 M

a) The equilibrium reaction in this problem is Fe³⁺ + SCN⁻ ⇌ FeSCN²⁺ + H⁺.

From the definition of equilibrium constant, [tex] K_{eq }= \frac { [FeSCN²⁺]}{[Fe³⁺ ] [SCN⁻ ]}[/tex],

Substitute all known values in above formula, [tex]370= \frac { [FeSCN²⁺]}{ [SCN⁻ ]} \frac{1}{0.10} [/tex]

[tex]\frac{[FeSCN²⁺]}{ [SCN⁻ ]} = 370 × 0.10[/tex] = 37

So, the required approximate value is 37.

b) Let the final concentration of FeSCN²⁺ be x. Now, consider

Fe³⁺ + SCN⁻ → FeSCN²⁺

intital 0.10 M

-x -x x

so, the percent of initial concentration of SCN⁻, x = K꜀ × 0.10 × 100%

= 370 × 0.10 × 100%

= 37%

Hence, required percent value is 37%.

For more information about equilibrium constant, visit:

https://brainly.com/question/19340344

#SPJ4

Order from lowest to highest pH (or highest to lowest acidity) the following items.
coffee
blood
soap
milk

Answers

The order from lowest to highest pH (or highest to lowest acidity) for the given items is:

Soap (pH around 10-11)

Milk (pH around 6.5-6.7)

Blood (pH around 7.35-7.45)

Coffee (pH around 4.5-5.0)

So the correct order is: coffee, milk, blood, soap.

Acids and bases are substances that have opposite properties, with acids having a sour taste, ability to corrode metals, and ability to change litmus paper from blue to red, while bases have a bitter taste, feel slippery, and change litmus paper from red to blue. The pH scale is used to measure the acidity or basicity of a substance, ranging from 0 to 14, with 7 being neutral, values below 7 being acidic, and values above 7 being basic.

In the given list of items, soap has the highest pH and is the most basic, followed by milk, blood, and coffee. Soap is a common household item that is used for cleaning, and it is alkaline in nature, with a pH of around 9-10. Milk is slightly acidic, with a pH of around 6.5-6.7, while blood has a slightly basic pH of around 7.35-7.45, which is crucial for maintaining the body's pH balance. Coffee is acidic, with a pH of around 5.0, which gives it a slightly bitter taste.

Understanding the pH scale and the properties of acids and bases is important in various fields, including chemistry, biology, and medicine, as it helps in the understanding of chemical reactions, body function, and the effects of substances on the environment.

Learn more about pH here:

https://brainly.com/question/2288405

#SPJ11

What would be negative consequences of certain aspects of water chemistry being too high or low? (IE how would it be problematic if the pH was very high or low? What about Calcium? Phosphates?)

Answers

i) Water chemistry  negative consequences on the aquatic organisms living within it. If the pH is too high or too low, it can have detrimental effects on aquatic life. If the pH is too high, it can cause fish to develop respiratory problems, and their eggs can also be affected.

ii) Calcium is important for the formation of bones and teeth in aquatic animals, and it also helps in the formation of shells of some organisms and Phosphates are essential nutrients for plants and algae, but excessive amounts of phosphates can lead to eutrophication.

Water chemistry is an important aspect of aquatic ecosystems, and any significant changes in water chemistry can have negative consequences on the aquatic organisms living within it.

One critical aspect of water chemistry is pH, which is a measure of the acidity or basicity of the water. If the pH is too high or too low, it can have detrimental effects on aquatic life.

If the pH is too high, it can cause fish to develop respiratory problems, and their eggs can also be affected. On the other hand, if the pH is too low, it can lead to metal toxicity, which can harm aquatic organisms.

Calcium is important for the formation of bones and teeth in aquatic animals, and it also helps in the formation of shells of some organisms. If calcium levels are too low, it can lead to deformities and weakened shells.

Phosphates are essential nutrients for plants and algae, but excessive amounts of phosphates can lead to eutrophication, a process where the water becomes nutrient-rich and can cause the growth of harmful algal blooms.

Overall, it is crucial to maintain the right balance of water chemistry in aquatic ecosystems to ensure the survival of its inhabitants. Any significant changes in water chemistry can have far-reaching consequences on the health of the ecosystem.

Know more about  Calcium   here:

https://brainly.com/question/26636816

#SPJ11

What is the specific heat of an unknown substance if a 3.50 gram sample releases 50.21 joules of energy
as its temperature changes from 25°C to 20°C?

Answers

The amount of heat per unit mass needed to raise the temperature by one degree Celsius is known as the specific heat.

Thus, The formula below, where c is the specific heat, is typically used to explain the relationship between heat and temperature change. If a phase shift occurs, the relationship is invalid because the temperature is unaffected by the heat added or lost during a phase transition.

Water has the highest specific heat of any common substance at 1 calorie/gram °C = 4.186 joule/gram °C. Water thus plays a crucial part in controlling temperature.

Water has a far higher specific heat per gram than a metal does. Most of the time, comparing the molar specific temperatures of different substances makes more sense.

Thus, The amount of heat per unit mass needed to raise the temperature by one degree Celsius is known as the specific heat.

Learn more about Heat, refer to the link:

https://brainly.com/question/1429452

#SPJ1

given the value for h2 that you just calculated, how much heat is released or absorbed when methane and oxygen react to produce 1 mole of methanol? g

Answers

If we produce 1 mole of methanol, 201.2 kJ of heat will be released. It is important to note that the sign of the enthalpy change indicates whether the reaction is exothermic (heat released) or endothermic (heat absorbed).

To answer this question, we need to know the enthalpy change for the reaction of methane and oxygen to produce methanol. This value can be found using Hess's law and the enthalpies of formation for each compound. Once we have the enthalpy change, we can use the balanced equation to determine the amount of heat released or absorbed per mole of methanol produced.

Assuming standard conditions, the enthalpy change for the reaction is -201.2 kJ/mol. This means that 201.2 kJ of heat is released per mole of methanol produced.

Therefore, if we produce 1 mole of methanol, 201.2 kJ of heat will be released. It is important to note that the sign of the enthalpy change indicates whether the reaction is exothermic (heat released) or endothermic (heat absorbed).

Using the calculated value of h2, we can determine the heat released or absorbed when 1 mole of methanol is produced through the reaction between methane and oxygen. The balanced equation for this reaction is:

CH4 + 1.5 O2 → CH3OH

Since the stoichiometry is one-to-one for methane and methanol, we can directly use the h2 value to find the heat change. If h2 is positive, it indicates heat is absorbed (endothermic reaction), whereas a negative h2 value signifies heat is released (exothermic reaction). The magnitude of h2 represents the amount of heat released or absorbed for 1 mole of methanol produced.

To know about Methanol visit:

https://brainly.com/question/3909690

#SPJ11

In a 1.0� 10�4 M solution of HCN(aq), identify the relative molar amounts of these species. Arrange from most to least
H2O
H3O+
HCN
OH-
CN-

Answers

The reaction for the ionization of HCN in water is:

HCN(aq) + H2O(l) ⇌ H3O+(aq) + CN-(aq)

The equilibrium constant expression for this reaction is:

Ka = [H3O+][CN-]/[HCN]

At equilibrium, the concentrations of the species will be related to the value of Ka.

Since the value of Ka for HCN is small (4.9 x 10^-10), the dissociation of HCN in water is limited. Therefore, we can assume that [HCN] ≈ [HCN]0 and that [H3O+] ≈ [CN^-].

Thus, in a 1.0 x 10^-4 M solution of HCN(aq), the relative molar amounts of the species can be approximated as follows:

[H2O] ≈ 55.5 M (the molarity of water is essentially constant)

[H3O+] ≈ [CN^-] ≈ √(Ka[HCN]) ≈ √(4.9 x 10^-10 x 1.0 x 10^-4) ≈ 2.2 x 10^-7 M

Therefore, the relative molar amounts from most to least are:

H2O > H3O+ ≈ CN- > HCN

To learn more about solution click here: brainly.com/question/1616939

#SPJ11

Calculate the molality of potassium chloride (molar mass 79.55 g/mol) in a solution that which contains 25 g of potassium chloride in 120 g of water.

Answers

The molality of potassium chloride in a solution that which contains 25 g of potassium chloride in 120 g of water is  2.618 molal.

Molal concentration is defined as a measure by which concentration of chemical substances which are  present in a solution are determined. It is defined in particular reference to solute concentration  which is present in a solution . Most commonly used unit for molar concentration is moles/liter.

The molal concentration depends on the  change in volume of the solution which is mainly due to thermal expansion. Molal concentration is calculated by the formula, molal concentration=mass/ molar mass ×1/mass of solvent in kg.

On substitution in formula, molal concentration= 25/79.55×1/0.120=2.618 molal.

Thus, the molality is 2.618 molal.

Learn more about molality,here:

https://brainly.com/question/26921570

#SPJ1

brass has a density of 88.25 g/cm3 and a specific heat of 0.362 j/gc. A cube of brass 22 mm on an edge is heated in a bunsen burner flame to a temperature of 95 degrees celsius. It is then immersed in 20 ml of water (d=1g/ml, c=4.18 j/gc) at 22c in an insulated container. Assuming no heat loss, what is the final temperature of the water?

I found the mass of the brass, but I am confused about how to set up the equation because we don't know the initial temp of the brass.

Answers

The final temperature of the water, given that the cube of brass heated to 95 degrees celsius was immersed in it is 80.6 °C

How do i determine the final temperature of the water?

First, we shall determine the mass of the brass. Details below:

Edge length (L) = 22 mm = 22 / 10 = 2.2 cmVolume = L³ = 2.2 = 10.684 cm³Density = 88.25 g/cm³Mass of brass =?

Mass = density × volume

Mass of brass = 88.25 × 10.684

Mass of brass = 939.686 g

Finally, we shall determine the equilibrium temperature in order to obtain the final temperature of the water. Details below:

Mass of brass (M) = 939.686 gTemperature of brass (T) = 95 °CSpecific heat capacity of brass = 0.362 J/gºC Volume of water = 20 mLDensity of water = 1 g/mLMass of water (Mᵥᵥ) = 1 × 20 = 20 gTemperature of water (Tᵥᵥ) = 22 °CSpecific heat capacity of the water = 4.18 J/gºC Equilibrium temperature (Tₑ) =?

Heat loss by brass = Heat gain water

MC(T - Tₑ) = MᵥᵥCᵥᵥ(Tₑ - Tᵥᵥ)

939.686 × 0.362 (95 - Tₑ) = 20 × 4.18(Tₑ - 22)

340.166332(95 - Tₑ) = 83.6 (Tₑ - 22)

Clear bracket

32315.80154 - 340.166332Tₑ = 83.6Tₑ - 1839.2

Collect like terms

32315.80154 + 1839.2 = 83.6Tₑ + 340.166332ₑ

34155.00154 = 423.766332Tₑ

Divide both side by 423.766332

Tₑ = 34155.00154 / 423.766332

Tₑ = 80.6 °C

Now, the equilibrium temperature is 80.6 °C

Thus, we can conclude that the final temperature of the water is 80.6 °C

Learn more about temperature:

https://brainly.com/question/14281142

#SPJ1

A group of acids arranged in order of decreasing acidity is:
HNO3 > CH3COOH > C6H5OH > H2O > HC≡CH
What is the arrangement of the conjugate bases of these compounds in decreasing order of basicity?

Answers

In conclusion, the order of the conjugate bases in decreasing order of basicity is NO3-, CH3COO-, C6H5O-, OH-, and HC2H3O2-.

This arrangement helps us understand the relative strengths of acids and their conjugate bases let's first understand what conjugate bases are. Conjugate bases are the species that result from the removal of a proton (H+) from an acid. In other words, it is the acid minus a proton. So, for example, the conjugate base of HNO3 is NO3-, and the conjugate base of CH3COOH is CH3COO- now that we know what conjugate bases are, we can arrange them in order of decreasing basicity using the same order as the original acids:
NO3- > CH3COO- > C6H5O- > OH- > HC2H3O2-
This means that NO3- is the strongest conjugate base (i.e. the weakest acid) and HC2H3O2- is the weakest conjugate base (i.e. the strongest acid) in the given group of acids. The basicity of a conjugate base is directly related to the acidity of its parent acid. The stronger the acid, the weaker its conjugate base, and vice versa.


To know more about conjugate bases visit:
https://brainly.com/question/30086613

#SPJ11

A 5 M solution of 100 mL of glucose contains how many grams of glucose, molecular mass = 180 Daltons? a.1.0 b.90 c.360 d.6.02 x 10^23 e.180

Answers

100 mL of a 5 M solution of glucose contains 90 grams of glucose. The correct answer is c. 360 is not correct as it is not the result of any calculation.

To calculate the number of grams of glucose in 100 mL of a 5 M solution, we need to use the formula:

moles = concentration x volume

First, we need to convert the volume from mL to L:

100 mL = 0.1 L

Next, we can calculate the number of moles of glucose in the solution:

moles = 5 M x 0.1 L = 0.5 moles

Finally, we can use the molecular mass of glucose to convert moles to grams:

grams = moles x molecular mass

grams = 0.5 moles x 180 g/mol = 90 g

Therefore, 100 mL of a 5 M solution of glucose contains 90 grams of glucose. The correct answer is c. 360 is not correct as it is not the result of any calculation.

Visit here to learn more about glucose brainly.com/question/30548064

#SPJ11

Other Questions
crc cards are used to document the responsibilities and collaborations of a(n) _____. dehydration may cause some ions to become concentrated. if a person was suffering from severe hyperkalemia, you would expect: Why does the time between the arrival of the P waves and S waves become greater and greater as you get further away from the epicenter? the event in 1933 that led to hitler being given unlimited power was the: Ian gets $9.00 for each hour he works. He also gets $10.00 for each day he works. He made the equation y=9x+10x where x is the number of hours he works.Explain why his equation will not tell him how much he makes in a day. a(n) provides a way to collect, process, store, display, modify, or cancel transactions. shirley temple, the youngest, most sacred monster of the cinema in her timeT/F In the figure, the pulley's axle is frictionless, and its rotational inertia is. 33 kgm2. M1 = 5 kg and M2 = 9 kg. R1 = 28 cm and r2 = 16 cm. Find the angular speed of the pulley, in rad/s, when M1 has moved 3 meters. Assume neither mass reaches the pulley nor the ground impermeable layers such as clay that hinder or prevent water movement are called ________. upton umbrellas has a cost of equity of 10.6 percent, the ytm on the company's bonds is 5.2 percent, and the tax rate is 22 percent. the company's bonds sell for 92.6 percent of par. the debt has a book value of $378,000 and total assets have a book value of $942,000. if the market-to-book ratio is 2.44 times, what is the company's wacc? multiple choice 8.09% 5.38% 7.85% 9.27% 8.68% the process in which an ovum is discharged from the cortex of the ovary is known as: 500000000 in standard form A client verbalizes fear of infection from a blood transfusion. What is the nurse's best response?A. "The risk of transmission of HIV is so low, there's no need to worry."B. "Blood typing is more important than testing for infection."C. "There is no need for testing unless you have a history of a transfusion reaction."D. "Every unit of donated blood is typed and tested for antibodies to infections." m and n are inversely proportional and areboth positive.The equation of proportionality is m = 3/na) Does m increase or decrease if nincreases?b) Does n increase or decrease if mincreases? Which of the following is a radiographic test that visualizes the entire urinary tract?cytoscopyKUBIVP why does zitkala-a present such detailed description of her haircut? A. To convince the reader how happy she is B. To help the reader visualize the beautiful memory she expresses C. To give an interesting observation about what happens to otherpeople D. To support her argument that Native Americans were mistreated what are the primary similarities and differences between job enrichment and the approach proposed by job characteristics theory? humans tend to be monogamous, so maybe a baculum is not as useful as in other species. why else may humans not have evolved to have a baculum? What is the function of early vocalization (crying, cooing, and babbling) for infants?A. to practice making soundsB. to attract attentionC. to communicateD. All of these answers are correct. Reflect on your personal habits, behaviors, and risk factors. Write two paragraphs explaining how they are likely to influence your health and auto insurance costs